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ABSTRACT 

In this paper, the existence and uniqueness of coupled coincidence and coupled common fixed point of 

mixed monotone mappings in the setting of partially ordered metric spaces has been proved. Our 

results extend and generalize several well-known comparable results in the literature. An example is 

also provided in support of our main result. 
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INTRODUCTION  

Fixed point theory is a powerful tool in modern mathematics. It is also considered to be the key 

connection between pure and applied mathematics. Its application is not limited to various branches of 

mathematics but also in many fields such as, Economics, Biology, Chemistry, Physics, Statistics, 

Computer Science, Engineering etc. This is because in almost all scientific disciplines, most of the 

problems can be converted into fixed point equations. In other words, the existence of a solution to a 

theoretical or real-world problem is equivalent to the existence of a fixed point for a suitable map or 

operator.  

The Banach Contraction Principle is the most famous elementary result in the metric fixed point theory 

and it has fascinated many researchers since 1922. A huge amount of literature contains applications, 

generalizations and extensions of this principle carried out by several authors in different directions, 

for example, by weakening the hypotheses, using different setups, considering various types of 

mappings and generalized form of metric spaces. He developed a theorem called Banach contraction 

principle which states as follows. Let 𝑋 be a complete metric space and 𝑇 ∶  𝑋 →  𝑋 be a contraction 

mapping. Then T has a unique fixed point. This principle is one of very useful tools to test the 

existence and uniqueness of the solution of considerable problems arising in mathematics.  

One of the generalizations of Banach contraction principle is in the setting of partially ordered metric 

spaces given by Ran and Reurings (2004). They generalized Banach contraction principle in partially 

ordered sets with some applications to matrix equations. Also, Nieto and Lopez (2007) and Agarwal et 

al. (2008) presented some new results for contractions in partially ordered metric spaces. Bhaskar and 

Lakshmikantham (2006) initiated the concept of coupled fixed point for non-linear contractions in 

partially ordered metric spaces. Lakshmikantham and Ciric (2009) established coupled coincidence 

and coupled common fixed point theorems for two mappings 𝐹 and 𝑔 where F has the mixed 𝑔-

monotone property.  
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In 2018, Liu et al. established the existence of coupled fixed point for a single mapping satisfying 

certain contraction condition in a complete partially ordered metric space. Inspired and motivated by 

the research works of Liu et al. (2018), in this paper we establish new coupled coincidence and 

coupled common fixed point results for a pair of mixed monotone mappings in the framework of 

partially ordered complete metric spaces. To the best of our knowledge, there are no similar results in 

the literature. In this research undertaking, we followed standard procedures.  

First, we recall some known definitions and theorems.  

Throughout this paper ℝ denotes the set of real numbers; ℝ+= [0, +∞), 𝜑 denotes all altering distance 

functions, and 𝛹 denotes the set of continuous functions such that 

 𝛹 =  {𝜓 ∈  𝐶 (ℝ+, ℝ+) |𝜓(0)  =  0, and for any 𝑡 >  0, 𝜓(𝑡)  >  0}. 

Definition 1 (Khan et al., 1984).  A function 𝜑: ℝ+  →  ℝ+ is called an altering distance function if the 

following conditions are satisfied. 

(i) 𝜑 is continuous and non-decreasing. 

(ii)  𝜑 (𝑡)  =  0 if and only if 𝑡 = 0. 

Definition 2 Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 →  𝑋 be a self-map, then 𝑇 is said to be a 

contraction mapping if there exists a constant 𝑘 ∈ [0,1) called a contraction factor such that  

𝑑(𝑇𝑥, 𝑇𝑦)  ≤  𝑘 𝑑(𝑥, 𝑦) 

for all 𝑥, 𝑦 ∈  𝑋. 

Definition 3 A set 𝑀 is said to be partially ordered set if there is a binary relation "≼" defined on it 

such that:  

(i) 𝑎 ≼  𝑎 for all 𝑎 ∈  𝑀 (Reflexivity);  

(ii) If 𝑎 ≼  𝑏 and 𝑏  ≼ 𝑎 for all 𝑎, 𝑏 ∈  𝑀, then 𝑎 =  𝑏 (anti-symmetry);  

(iii)  If 𝑎 ≼  𝑏and ≼  𝑐, then 𝑎 ≼  𝑐 for all 𝑎, 𝑏, 𝑐 ∈  𝑀 (Transitivity).  

The pair (𝑀, ≼) is called partially ordered set. 

Note: Two elements 𝑎, 𝑏 ∈  𝑀 are said to be comparable if 𝑎 ≼  𝑏 or 𝑏 ≼  𝑎 or both.  

Definition 4 Let 𝑋 be a nonempty set, then (𝑋, 𝑑, ≼)  is said be partially ordered metric space if:  

(i) (𝑋, 𝑑) is a metric space and 

(ii)  (𝑋, ≼ ) is a partially ordered set. 

Definition 5 (Bhaskar & Lakshmikantham, 2006). Let 𝑋 be a partially ordered set. A mapping 

𝐹 ∶  𝑋 ×  𝑋 →  𝑋 is said to have a mixed monotone property if 𝐹(𝑥, 𝑦) is monotone non-decreasing in 

𝑥 and monotone non-increasing in 𝑦, that is, for any 𝑥, 𝑦 ∈  𝑋;  

𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 ≼ 𝑥2 ⇒ F(𝑥1, y) ≼ F(𝑥2, 𝑦) and  𝑦1, 𝑦2 ∈ 𝑋, 𝑦1 ≼ 𝑦2 ⇒  F (𝑥, 𝑦1) ≽    F(𝑥, 𝑦2). 



Coupled Coincidence and Coupled Common                                         Baye et al.        65         

 

 
 

Definition 6 (Bhaskar & Lakshmikantham, 2006). An element (𝑥, 𝑦)  ∈  𝑋 ×  𝑋 where 𝑋 is any 

nonempty set is called a coupled fixed point of the mapping 𝐹 ∶  𝑋 ×  𝑋 →  𝑋 if 𝐹(𝑥, 𝑦)  =  𝑥 and 

𝐹(𝑦, 𝑥)  =  𝑦. 

Definition 7 (Lakshmikantham and Ciric, 2009). An element (𝑥, 𝑦) ∈  𝑋 ×  𝑋 is called:  

(i) a coupled coincidence point of the mappings 𝐹 ∶  𝑋 ×  𝑋 →  𝑋 and 𝑔 ∶  𝑋 →  𝑋 if 

𝐹(𝑥, 𝑦)  =  𝑔(𝑥) and 𝐹(𝑦, 𝑥)  =  𝑔(𝑦), and (𝑔𝑥, 𝑔𝑦) is called coupled point of coincidence. 

(ii) a coupled common fixed point of the mappings 𝐹 ∶  𝑋 ×  𝑋 →  𝑋 and 𝑔 ∶  𝑋 →  𝑋 if 

𝐹(𝑥, 𝑦)  =  𝑔(𝑥)  =  𝑥 and 𝐹(𝑦, 𝑥)  =  𝑔(𝑦)  =  𝑦. 

Definition 8 (Lakshmikantham and Ciric, 2009). Let 𝑋 be a partially ordered set. A mapping 𝐹 ∶  𝑋 ×

 𝑋 →  𝑋 and 𝑔 ∶  𝑋 →  𝑋 be two mappings. 

(i) We say that 𝐹 has the 𝑔 -mixed monotone property if 𝐹(𝑥, 𝑦) is 𝑔 monotone non-decreasing 

in 𝑥 and non-increasing in 𝑦. That is, for any 𝑥1, 𝑥2 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑋; 𝑔(𝑥1) ≼  𝑔(𝑥2) ⇒

𝐹(𝑥1, 𝑦) ≼  𝐹(𝑥2, 𝑦) and 𝑔(𝑦1) ≼   𝑔(𝑦2) ⇒ 𝐹(𝑥, 𝑦1) ≽ 𝐹(𝑥, 𝑦2). 

(ii) Let (𝑋, 𝑑) be a metric space,  the mappings 𝐹 ∶  𝑋 ×  𝑋 →  𝑋and 𝑔 ∶  𝑋 →  𝑋 are called 

compatible if 

lim𝑛→∞𝑑(𝑔𝐹(𝑥𝑛, 𝑦𝑛), 𝐹(𝑔𝑥𝑛 ,  𝑔𝑦𝑛)) = 0 and lim𝑛→∞𝑑(𝑔𝐹(𝑦𝑛 , 𝑥𝑛), 𝐹(𝑔𝑦𝑛 ,  𝑔𝑥𝑛)) = 0 

whenever {𝑥𝑛} and {𝑦𝑛} are sequences in 𝑋 such that lim𝑛→∞𝐹(𝑥𝑛, 𝑦𝑛) = lim𝑛→∞ 𝑔𝑥𝑛 and 

lim𝑛→∞𝐹(𝑦𝑛 , 𝑥𝑛) = lim𝑛→∞ 𝑔𝑦𝑛. 

Definition 9 (Lakshmikantham and Ciric, 2009). Suppose 𝑋 is a non-empty set. The mappings 

𝐹 ∶ 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 are called commutative if  

𝑔(𝐹(𝑥, 𝑦)) =  𝐹(𝑔𝑥, 𝑔𝑦) and 𝑔(𝐹(𝑦, 𝑥)) =  𝐹(𝑔𝑦, 𝑔𝑥) 

for all 𝑥, 𝑦 ∈ 𝑋. 

Definition 10 (Abbas et al., 2010). Suppose 𝑋 is a non-empty set.The mappings 

 𝐹 ∶ 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 are called weakly compatible if  

𝑔(𝐹(𝑥, 𝑦)) =  𝐹(𝑔𝑥, 𝑔𝑦)and 𝑔(𝐹(𝑦, 𝑥))  =  𝐹(𝑔𝑦, 𝑔𝑥)   

whenever 𝑔𝑥 =  𝐹(𝑥, 𝑦) and 𝑔𝑦 =  𝐹(𝑦, 𝑥). 

Theorem 1 (Liu, Mao & Shi, 2018). Assume 

(𝐻1) 𝜓 ∈  𝛹. 

(𝐻2) Let 𝑋 be a partially ordered metric space and a mapping 𝐹 ∶  𝑋 × 𝑋 →  𝑋 being a mixed 

monotone mapping, there exists a constant 𝑘 ∈ (0,1) such that:  

𝜑[𝑑(𝐹(𝑢, 𝑣), 𝐹(𝑥, 𝑦)) +  𝑑(𝐹(𝑣, 𝑢), 𝐹(𝑦, 𝑥))]    ≤    𝑘𝜑(𝑑(𝑢, 𝑥) +  𝑑(𝑣, 𝑦))   

                                                                                                                  − 𝜓(𝑘[𝑑(𝑢, 𝑥)  +  𝑑(𝑣, 𝑦)]) 
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for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 and for each 𝑢 ≼ 𝑥  and 𝑣 ≽ 𝑦. Moreover, 𝜑 satisfies  

𝜑(𝑡 +  𝑠)  ≤  𝜑(𝑡)  +  𝜑(𝑠), for all 𝑡, 𝑠 ∈ +.  

(𝐻3) There exists (𝑢0, 𝑣𝑜)  ∈  𝑋 ×  𝑋 such that 𝑢0  ≼  𝐹(𝑢0, 𝑣𝑜) and    𝑣0 ≽  𝐹(𝑢0, 𝑣𝑜). 

(𝐻4) One of the following conditions holds. 

a) 𝐹 is continuous (or) 

b)  𝑋 has the following properties: 

(i) If a non-decreasing sequence {𝑢𝑛} → 𝑢, then 𝑢𝑛  ≼ 𝑢 for all 𝑛; 

(ii) If a non-increasing sequence {𝑣𝑛} → 𝑣, then 𝑣𝑛  ≽  𝑣 for all 𝑛.  

Then there exist 𝑢, 𝑣 ∈  𝑋 such that 𝑢 =  𝐹(𝑢, 𝑣) and 𝐹(𝑣, 𝑢)  =  𝑣. 

RESULT AND DISCUSSION  

Theorem 2 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space. Suppose 𝐹 ∶  𝑋 ×  𝑋 →  𝑋 and 

𝑔 ∶  𝑋 →  𝑋 are continuous such that 𝐹 has the mixed 𝑔-monotone property and commutes with 𝑔 on 

𝑋 such that there exist 𝑥0, 𝑦0 ∈  𝑋 with 𝑔𝑥0  ≼ 𝐹(𝑥0,  𝑦0) and 𝑔𝑦0 ≽  𝐹(𝑦0, 𝑥0). The following 

conditions are satisfied.  

(i) 𝐹(𝑋 ×  𝑋) ⊆  𝑔(𝑋). 

(ii) There exists 𝑘 ∈ (0,1) such that  

𝜑[𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) +  𝑑(𝐹(𝑦, 𝑥), 𝐹(𝑣, 𝑢))] ≤  𝑘𝜑((𝑑(𝑔𝑥, 𝑔𝑢)  + 𝑑(𝑔𝑦, 𝑔𝑣)) 

                                  −𝜓(𝑘[𝑑(𝑔𝑥, 𝑔𝑢)  𝑑(𝑔𝑦, 𝑔𝑣)])                     (1) 
 

 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 with  𝑔𝑥 ≽ 𝑔𝑢and 𝑔𝑦 ≼ 𝑔𝑣, 𝜑 satisfies 

𝜑(𝑡 +  𝑠)  ≤  𝜑(𝑡)  +  𝜑(𝑠), for all 𝑡, 𝑠 ∈ +. 

Then 𝐹 and 𝑔 have a coupled coincidence point. 

Proof. By the hypothesis there exist 𝑥0 ∈  𝑋 and 𝑦0 ∈  𝑋  such that 𝑔𝑥0  ≼ 𝐹(𝑥0,  𝑦0) and 𝑔𝑦0 ≽

 𝐹(𝑦0, 𝑥0). Since 𝐹(𝑋 ×  𝑋)  ⊆  𝑔(𝑋), there exist 𝑥1, 𝑦1 ∈  𝑋 such that 

𝑔𝑥1  =  𝐹(𝑥0,  𝑦0) and  𝑔𝑦1 =  𝐹(𝑦0, 𝑥0). 

Again from 𝐹(𝑋 ×  𝑋)  ⊆  𝑔(𝑋), there exist 𝑥2, 𝑦2 ∈  𝑋 such that  

𝑔𝑥2  =  𝐹(𝑥1, 𝑦1) and 𝑔𝑦2  =  𝐹(𝑦1, 𝑥1). 

Continuing this process we can construct sequences {𝑔𝑥𝑛} and {𝑔𝑦𝑛} in 𝑋 such that  

𝑔𝑥𝑛+1  =  𝐹(𝑥𝑛, 𝑦𝑛) and  𝑔𝑦𝑛+1 =  𝐹(𝑦𝑛 , 𝑥𝑛) 

for 𝑛 =  0,1,2,··· and since 𝐹 has 𝑔-monotone property, we have  

𝑔𝑥0  ≼  𝐹(𝑥0, 𝑦0)  =  𝑔𝑥1  ≼  𝑔𝑥2  ≼ . . . ≼  𝐹(𝑥𝑛, 𝑦𝑛)  =  𝑔𝑥𝑛+1  ≼··· . 
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Similarly 𝑔𝑦0 ≽  𝑔𝑦1  ≽  𝑔𝑦2. . . ≽  𝐹(𝑦𝑛, 𝑥𝑛)  =  𝑔𝑦𝑛+1 ≽ ··· . 

If  𝑔𝑥𝑛 = 𝑔𝑥𝑛+1 and 𝑔𝑦 = 𝑔𝑦𝑛+1 for some 𝑛, then 𝑔𝑥𝑛  =  𝐹(𝑥𝑛, 𝑦𝑛)  and𝑔𝑦𝑛 =  𝐹(𝑦𝑛 , 𝑥𝑛), i.e., 

(𝑥𝑛 , 𝑦𝑛) is a coupled coincidence point of 𝐹 and 𝑔 and this completes the proof.  

So, from now on, we assume that 𝑔𝑥𝑛 ≠ 𝑔𝑥𝑛+1and 𝑔𝑦 ≠ 𝑔𝑦𝑛+1for 𝑛 =  0,1,2,···. Since 𝑔𝑥𝑛−1  ≼

𝑔𝑥𝑛and 𝑔𝑦𝑛−1 ≽   𝑔𝑦𝑛,  for  𝑛 =  1,2,···, then from Eq. (1), we have  

𝜑[𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛) +  𝑑(𝑔𝑦𝑛+1, 𝑔𝑦𝑛)] = 𝜑[𝑑( 𝐹(𝑥𝑛, 𝑦𝑛), 𝐹(𝑥𝑛−1, 𝑦𝑛−1))  

                                                                         + 𝑑(𝐹(𝑦𝑛 , 𝑥𝑛), 𝐹(𝑦𝑛−1, 𝑥𝑛−1))]  

                                   ≤ 𝑘𝜑(𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛−1) +  𝑑(𝑔𝑦𝑛 , 𝑔𝑦𝑛−1)) 

                                       − 𝜓(𝑘[𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1)  +  𝑑(𝑔𝑦𝑛 , 𝑔𝑦𝑛−1)]) 

                                                             ≤ 𝑘𝜑(𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1)  +  𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1)). 

Since 𝑘 ∈ (0,1) and 𝜑 is non-decreasing, we have 

 𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛) + 𝑑(𝑔𝑦𝑛+1, 𝑔𝑦𝑛) ≤  𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) + 𝑑(𝑔𝑦𝑛 , 𝑔𝑦𝑛−1). (2) 

Thus, Eq. (2) holds for each 𝑛 ∈  𝑁. 

Let 𝛿𝑛  = 𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛) + 𝑑(𝑔𝑦𝑛+1, 𝑔𝑦𝑛).  

It follows that the sequence {𝛿𝑛} is a monotone decreasing sequence of non-negative real numbers and 

consequently there exists 𝛿 ≥  0 such that 

limn→∞𝛿𝑛 = 𝛿. 

Now, we show that 𝛿 =  0. 

Suppose on the contrary, that 𝛿 >  0. 

Since 𝜑 is continuous, we have 

 𝜑(𝛿)  = 𝑙𝑖𝑚𝑛→∞  𝜑(𝛿𝑛) 

            = 𝑙𝑖𝑚𝑛→∞ 𝜑(𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛) + 𝑑(𝑔𝑦𝑛+1, 𝑔𝑦𝑛))  

          ≤  𝑘 𝑙𝑖𝑚𝑛→∞   𝜑(𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛−1) + 𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1)) 

               − limn→∞  𝜓(𝑘[𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛−1) + 𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑛−1)]) 

          ≤  𝑘𝜑(𝛿) − 𝑙𝑖𝑚𝑛→∞  𝜓(𝑘𝛿𝑛−1)  ≤  𝑘𝜑(𝛿)  <  𝜑(𝛿)( 𝑠𝑖𝑛𝑐𝑒 𝑘 ∈ (0,1)). 

This is a contradiction. Hence 𝛿 =  0. 

Now, we want to show that  {𝑔𝑥𝑛}and {𝑔𝑦𝑛} are Cauchy sequences.  
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Suppose at least {𝑔𝑥𝑛} or  {𝑔𝑦𝑛} is not a Cauchy sequence, then there exists a positive constant 𝜀 such 

that for any 𝑘 >  0, there exist 𝑛𝑘 > 𝑚𝑘 >  𝑘 such that 

 𝑠𝑘  =  𝑑(𝑔𝑥𝑛𝑘
 , 𝑔𝑥𝑚𝑘

)  +  𝑑(𝑔𝑦𝑛𝑘
 , 𝑔𝑦𝑚𝑘

)  ≥ 𝜀 . (3) 

Let 𝑛𝑘 be the smallest integer satisfying𝑛𝑘 > 𝑚𝑘 >  𝑘 and Eq. (3) holds. Thus 

 𝑑(𝑔𝑥𝑛𝑘−1
, 𝑔𝑥𝑚𝑘

)  +  𝑑(𝑔𝑦𝑛𝑘−1
 , 𝑔𝑦𝑚𝑘

)  < 𝜀 . (4) 

From Eq. (3), Eq. (4), and by the triangle inequality, we have 

 𝜀 ≤ 𝑠𝑘 =  𝑑(𝑔𝑥𝑛𝑘
 , 𝑔𝑥𝑚𝑘

) +  𝑑(𝑔𝑦𝑛𝑘
 , 𝑔𝑦𝑚𝑘

) 

                                                    ≤ d (𝑔𝑥𝑛𝑘
 , 𝑔𝑥𝑛𝑘−1

)  +  d(𝑔𝑥𝑛𝑘−1
, 𝑔𝑥𝑚𝑘

) 

                                                        + 𝑑(𝑔𝑦𝑛𝑘
, 𝑔𝑦𝑛𝑘−1

)  +  d(𝑔𝑦𝑛𝑘−1
, 𝑔𝑦𝑚𝑘

) 

                                                    = 𝑑(𝑔𝑥𝑛𝑘−1
, 𝑔𝑥𝑚𝑘

) +  𝑑(𝑔𝑦𝑛𝑘−1
, 𝑔𝑦𝑚𝑘

) +  𝛿𝑛𝑘−1
 

                                                    <  𝜀 + 𝛿𝑛𝑘−1
. 

(5) 

Taking limit as 𝑘 → ∞  in Eq. (5), we get 

𝜀 ≤   lim
𝑘→∞

𝑠𝑘 <  𝜀 +  lim
𝑘→∞

𝛿𝑛𝑘−1
. 

Since limn→∞𝛿𝑛 = 0, it follows that lim𝑘→∞𝛿𝑛𝑘−1
= 0. Hence  lim𝑘→∞𝑠𝑘 = 𝜀. 

Again, by the triangle inequality, we have  

𝑠𝑘 ≤ d(𝑔𝑥𝑛𝑘
 , 𝑔𝑥𝑛𝑘+1

)  +  d(𝑔𝑥𝑛𝑘+1
 , 𝑔𝑥𝑚𝑘+1

)  +  d(𝑔𝑥𝑚𝑘+1
, 𝑔𝑥𝑚𝑘

)  +  d(𝑔𝑦𝑛𝑘
 , 𝑔𝑦𝑛𝑘+1

)  

               +𝑑(𝑔𝑦𝑛𝑘+1 
, 𝑔𝑦𝑚𝑘+1

) + d(𝑔𝑦𝑚𝑘+1
, 𝑔𝑦𝑚𝑘

) 

           = 𝛿𝑛𝑘
+ 𝛿𝑚𝑘

+  d(𝑔𝑥𝑛𝑘+1
 , 𝑔𝑥𝑚𝑘+1

)  +  d(𝑔𝑦𝑛𝑘+1
, 𝑔𝑦𝑚𝑘+1

) 

Further by the sub-additivity property of φ, we have 

φ (𝑠𝑘)  ≤ φ (𝛿𝑛𝑘
 +  𝛿𝑚𝑘

)  +   φ (𝑑(𝑔𝑥𝑛𝑘+1
 , 𝑔𝑥𝑚𝑘+1

) ) +  φ (𝑑(𝑔𝑦𝑛𝑘+1
, 𝑔𝑦𝑚𝑘+1

)).   

It follows that 

   𝜑 (𝑑(𝑔𝑥𝑛𝑘+1
 , 𝑔𝑥𝑚𝑘+1

)) +  𝜑 (𝑑(𝑔𝑦𝑛𝑘+1
, 𝑔𝑦𝑚𝑘+1

)) 

= 𝜑 ( 𝑑 (𝐹(𝑥𝑛𝑘
 , 𝑦𝑛𝑘

), 𝐹(𝑥𝑚𝑘
 , 𝑦𝑚𝑘

))) 

                                                   +   𝜑(𝑑(𝐹(𝑦𝑛𝑘
 , 𝑥𝑛𝑘

), (𝐹(𝑦𝑚𝑘
 , 𝑥𝑚𝑘

))) 

                                               ≤ 𝑘φ (𝑑(𝑔𝑥𝑛𝑘
 , 𝑔𝑥𝑚𝑘

) +   𝑑(𝑔𝑦𝑛𝑘
 , 𝑔𝑦𝑚𝑘

)) 

                                                    −𝜓(𝑘[𝑑(𝑔𝑥𝑛𝑘
 , 𝑔𝑥𝑚𝑘

) + 𝑑(𝑔𝑦𝑛𝑘
 , 𝑔𝑦𝑚𝑘

)]). 

  Thus, we have  

                  φ (𝑠𝑘)  ≤ 𝑘φ (𝑠𝑘) − 𝜓(𝑘𝑠𝑘) +  φ (𝛿𝑛𝑘
 +  𝛿𝑚𝑘

) 

                           ≤  𝜑(𝑠𝑘) − 𝜓( k𝑠𝑘) +  φ (𝛿𝑛𝑘
 +  𝛿𝑚𝑘

)                 ( 𝑠𝑖𝑛𝑐𝑒 𝑘 ∈ (0,1)) . 

(6) 
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Taking limit as 𝑘 → ∞in Eq. (6), we get  

lim𝑘→∞𝜑(𝑠𝑘)  ≤ lim𝑘→∞ 𝜑(𝑠𝑘) − lim𝑘→∞𝜓( k𝑠𝑘) + lim𝑘→∞[φ (𝛿𝑛𝑘
 +  𝛿𝑚𝑘

)]. 

Since 𝛿𝑛  → 0, 𝑠𝑘 →  𝜀, and 𝜓 is continuous, we have 

𝜑(𝜀)  ≤  𝜑(0)  +  𝜑(𝜀) − 𝑙𝑖𝑚𝑘→∞𝜓( 𝑘𝑠𝑘) 

                                                             =  𝜑(𝜀) − 𝑙𝑖𝑚𝑘→∞𝜓( 𝑘𝑠𝑘)  <  𝜑(𝜀),  

which is a contradiction.  

Therefore, {𝑔𝑥𝑛} and {𝑔𝑦𝑛} are Cauchy sequences in  𝑋.  

So, lim𝑛,𝑚→∞ 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑚) = 0,     limn,m→∞𝑑(𝑔𝑦𝑛, 𝑔𝑦𝑚) = 0.  

Since 𝑋 is complete, there exist 𝑥, 𝑦 ∈  𝑋 such that 

lim𝑛→∞ 𝑔𝑥𝑛+1 = lim𝑛→∞𝐹(𝑥𝑛 , 𝑦𝑛) = 𝑥,  lim𝑛→∞ 𝑔𝑦𝑛+1 = lim𝑛→∞𝐹(𝑦𝑛  , 𝑥𝑛) = 𝑦. 

Since  𝐹 and 𝑔 are commutative we have 

 𝑔(𝑔𝑥𝑛+1) =  𝑔(𝐹(𝑥𝑛 , 𝑦𝑛)) = 𝐹(𝑔𝑥𝑛 , 𝑔𝑦𝑛). (7) 

   

    𝑔(𝑔𝑦𝑛+1) =  𝑔(𝐹(𝑦𝑛  , 𝑥𝑛)) = 𝐹(𝑔𝑦𝑛  , 𝑔𝑥𝑛).  (8) 

   

Now, our claim is 𝑔𝑥 =  𝐹(𝑥, 𝑦) and 𝑔𝑦 =  𝐹(𝑦, 𝑥). 

Since 𝐹 and𝑔  are continuous, letting 𝑛 → ∞ in Eq. (7) and Eq. (8), we get 

 𝑔𝑥 =   lim𝑛→∞  𝑔(𝑔𝑥𝑛+1) =  lim𝑛→∞𝑔(𝐹(𝑥𝑛  , 𝑦𝑛)) = lim𝑛→∞𝐹(𝑔𝑥𝑛  , 𝑔𝑦𝑛) = 𝐹(𝑥, 𝑦), 

  𝑔𝑦 =   lim𝑛→∞𝑔(𝑔𝑦𝑛+1) =  lim𝑛→∞ 𝑔(𝐹(𝑦𝑛 , 𝑥𝑛)) =  lim𝑛→∞𝐹(𝑔𝑦𝑛  , 𝑔𝑥𝑛) = 𝐹(𝑦, 𝑥).  

Hence (𝑔𝑥, 𝑔𝑦) is a coupled point of coincidence and (𝑥, 𝑦) is a coupled coincidence point of 𝐹 and 𝑔.  

Theorem 3 Let all the conditions of Theorem 2 be fulfilled and in addition let the following conditions 

be satisfied 

(i) for every (𝑥, 𝑦) and  (𝑧, 𝑡) in 𝑋 × 𝑋 there exists a (𝑢, 𝑣)  in  𝑋 × 𝑋  such that 

 (𝑔(𝑢), 𝑔(𝑣)) is comparable to both  (𝑔(𝑥), 𝑔(𝑦))  and  (𝑔(𝑧), 𝑔(𝑡)). 

(ii) 𝐹 and 𝑔 are weakly compatible.  

Then 𝐹 and 𝑔 have a unique coupled common fixed point, that is, there exists a unique 

 (𝑥, 𝑦) ∈ 𝑋 × 𝑋 such that 𝑥 = 𝑔(𝑥) = 𝐹(𝑥, 𝑦) and 𝑦 = 𝑔(𝑦) = 𝐹(𝑦, 𝑥). 

Proof. First we show the uniqueness of coupled point of coincidence of 𝐹 and 𝑔. From Theorem 2 the 

set of coupled coincidence points of  𝐹 and 𝑔 is non-empty. Let (𝑥, 𝑦) and (𝑧, 𝑡) be coupled 

coincidence points of 𝐹 and 𝑔 that is  
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𝐹(𝑥, 𝑦)  =  𝑔𝑥,𝐹(𝑧, 𝑡)  =  𝑔𝑧, 𝐹(𝑦, 𝑥)  =  𝑔𝑦,𝐹(𝑡, 𝑧)  =  𝑔𝑡. 

Claim:𝑔𝑥 =  𝑔𝑧 and 𝑔𝑦 =  𝑔𝑡.  

By assumption there exists (𝑢, 𝑣) ∈  𝑋 × 𝑋 such that (𝐹(𝑢, 𝑣), 𝐹(𝑣, 𝑢)) is comparable to 

Both (𝐹(𝑥, 𝑦), 𝐹(𝑦, 𝑥)) and (𝐹(𝑧, 𝑡), 𝐹(𝑡, 𝑧)).  

Without loss of generality, we can assume that 

(𝐹(𝑥, 𝑦), 𝐹(𝑦, 𝑥))  ≼ (𝐹(𝑢, 𝑣), 𝐹(𝑣, 𝑢)) and (𝐹(𝑧, 𝑡), 𝐹(𝑡, 𝑧))  ≼ (𝐹(𝑢, 𝑣), 𝐹(𝑣, 𝑢)). 

Put 𝑢0 =  𝑢 and 𝑣0  =  𝑣 and by hypothesis there exists (𝑢1, 𝑣1) ∈  𝑋 ×  𝑋 suchthat  

𝑔𝑢1  =  𝐹(𝑢0, 𝑣0), 𝑔𝑣1  =  𝐹(𝑣0, 𝑢0). 

For 𝑛 ≥  1, continuing the process we construct sequences {𝑔𝑢𝑛} and {𝑔𝑣𝑛} such that 

𝑔𝑢𝑛+1  =  𝐹(𝑢𝑛 , 𝑣𝑛) and 𝑔𝑣𝑛+1  =  𝐹(𝑣𝑛,  𝑢𝑛) 

for all 𝑛. 

Further set 𝑥0 =  𝑥, 𝑦0 =  𝑦, 𝑧0 = 𝑧 and 𝑡0 =  𝑡, then on the same way we define sequences 

{𝑔𝑥𝑛} , {𝑔𝑦𝑛}, {𝑔𝑧𝑛} and {𝑔𝑡𝑛}. Since (𝑔𝑥, 𝑔𝑦)  =  (𝐹(𝑥, 𝑦), 𝐹(𝑦, 𝑥))  =  (𝑔𝑥1, 𝑔𝑦1) and 

(𝐹(𝑢, 𝑣), 𝐹(𝑣, 𝑢))  =  (𝑔𝑢1, 𝑔𝑣1) are comparable, we have 

(𝑔𝑥, 𝑔𝑦)  ≼  (𝑔𝑢, 𝑔𝑣). 

By induction (𝑔𝑥𝑛, 𝑔𝑦𝑛)  ≼ (𝑔𝑢𝑛, 𝑔𝑣𝑛) for all 𝑛. Then  

 𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛+1)  +  𝑑(𝑔𝑦, 𝑔𝑣𝑛+1))  
= 𝜑(𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢𝑛, 𝑣𝑛))  +  𝑑(𝐹(𝑦, 𝑥), 𝐹(𝑣𝑛, 𝑢𝑛)))  

                                      ≤  𝑘𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛)  +  𝑑(𝑔𝑦, 𝑔𝑣𝑛)) 

                                           −𝜓(𝑘[𝑑(𝑔𝑥, 𝑔𝑢𝑛)  +  𝑑(𝑔𝑦, 𝑔𝑣𝑛)])                 

                                      ≤  𝑘𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛) +  𝑑(𝑔𝑦, 𝑔𝑣𝑛)). 
 

(9) 

Since 𝜑 is non-decreasing and 𝑘 ∈ (0,1) we see that  

𝑑(𝑔𝑥, 𝑔𝑢𝑛+1) +  𝑑(𝑔𝑦, 𝑔𝑣𝑛+1) ≤  𝑑(𝑔𝑥, 𝑔𝑢𝑛) +  𝑑(𝑔𝑦, 𝑔𝑣𝑛), 

which implies {𝑑(𝑔𝑥, 𝑔𝑢𝑛) +  𝑑(𝑔𝑦, 𝑔𝑣𝑛)}  is a non-increasing sequence. Hence there exists 𝑟 ≥  0 

such that  lim𝑛→∞ [𝑑(𝑔𝑥, 𝑔𝑢𝑛)  +  𝑑(𝑔𝑦, 𝑔𝑣𝑛)]  =  𝑟. 

Taking the limit in Eq. (9) as 𝑛 → ∞, we get  

𝜑(𝑟)  ≤  𝜑(𝑟) − 𝜓(𝑘𝑟). 

It follows that 𝜓(𝑟)  ≤ 0. From the property of  𝜓 we have 

𝜓(𝑟)  =  0 and  𝑟 =  0. 

Therefore,  lim𝑛→∞ [𝑑(𝑔𝑥, 𝑔𝑢𝑛)  +  𝑑(𝑔𝑦, 𝑔𝑣𝑛)]  =  0, which in turn implies that 
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                 lim𝑛→∞ 𝑑(𝑔𝑥, 𝑔𝑢𝑛) =  0 and lim𝑛→∞  𝑑(𝑔𝑦, 𝑔𝑣𝑛)  =  0.               (10)  

Similarly, we can prove that 

                    lim𝑛→∞ 𝑑(𝑔𝑧, 𝑔𝑢𝑛) =  0 and lim𝑛→∞  𝑑(𝑔𝑡, 𝑔𝑣𝑛)  =  0.              (11)_  

From Eq. (10), Eq. (11) and by the uniqueness of the limit, it follows that 𝑔𝑥 =  𝑔𝑧 and 𝑔𝑦 =  𝑔𝑡. 

Hence  (𝑔𝑥, 𝑔𝑦) is a unique coupled point of coincidence.  

Since 𝑔𝑥 =  𝐹(𝑥, 𝑦) and 𝑔𝑦 =  𝐹(𝑦, 𝑥), by the weakly compatible of 𝐹 and 𝑔, we have  

𝑔(𝑔𝑥) =  𝑔(𝐹(𝑥, 𝑦)) =  𝐹(𝑔𝑥, 𝑔𝑦) and 𝑔(𝑔𝑦)  =  𝑔(𝐹(𝑦, 𝑥))  =  𝐹(𝑔𝑦, 𝑔𝑥). 

Denoting 𝑔𝑥 =  𝑎 and 𝑔𝑦 =  𝑏, we get  

 𝑔(𝑎)  =  𝐹(𝑎, 𝑏) and 𝑔(𝑏)  =  𝐹(𝑏, 𝑎).                   (12)  

Thus, (𝑎, 𝑏) is a coupled coincidence point of  𝐹and 𝑔. 

Then with 𝑧 =  𝑎 and 𝑡 =  𝑏, it follows that 𝑔𝑎 =  𝑔𝑥 and 𝑔𝑏 =  𝑔𝑦. That is 

                         𝑔(𝑎)  =  𝑎 and 𝑔(𝑏)  =  𝑏.                 (13)  

From Eq. (12) and Eq. (13), we have 

𝑎 =  𝑔(𝑎)  =  𝐹(𝑎, 𝑏). 

𝑏 =  𝑔(𝑏)  =  𝐹(𝑏, 𝑎). 

Therefore, (𝑎, 𝑏) is a coupled common fixed point of 𝐹 and 𝑔. 

To prove the uniqueness of the point (𝑎, 𝑏), assume that (𝑐, 𝑑) is another coupled common fixed point 

of 𝐹 and 𝑔, that is,   

𝑐 =  𝑔𝑐 =  𝐹(𝑐, 𝑑), 𝑑 =  𝑔𝑑 =  𝐹(𝑑, 𝑐). 

Since (𝑐, 𝑑) is a coupled coincidence point of 𝐹 and 𝑔, we have 

                                         𝑔𝑐 =  𝑔𝑥 =  𝑎 and 𝑔𝑑 =  𝑔𝑦 =  𝑏.  

So, 𝑐 =  𝑔𝑐 =  𝑔𝑎 =  𝑎   and 𝑑 =  𝑔𝑑 =  𝑔𝑏 =  𝑏. 

Hence the coupled common fixed point is unique. 

Theorem 4 Let (𝑋, 𝑑) is a partially ordered complete metric space and 𝐹 ∶  𝑋 ×  𝑋 →  𝑋 and 𝑔 ∶

 𝑋 →  𝑋 are maps where 𝐹 has the mixed 𝑔-monotone property and for 𝑘 ∈ (0,1) satisfying 

 𝜑[𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) +  𝑑(𝐹(𝑦, 𝑥), 𝐹(𝑣, 𝑢))]   ≤   𝑘𝜑(𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣)) 

                                                                                                        

                                                                                              −  𝜓(𝑘[𝑑(𝑔𝑥, 𝑔𝑢)  +  𝑑(𝑔𝑦, 𝑔𝑣)])   

(14) 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 and 𝑔𝑥 ≽  𝑔𝑢 and 𝑔𝑦 ≼  𝑔𝑣. Suppose 𝐹(𝑋 ×  𝑋)  ⊆  𝑔(𝑋), 𝑔 is continuous and 

commutes with 𝐹 and also suppose 𝑋 has the following properties 



Ethiop. J. Educ. & Sci.                             Vol. 18         No. 2             March, 2023         72 

 

 

(a) If a non-decreasing sequence {𝑥𝑛} →  𝑥, then 𝑥𝑛 ≼ 𝑥 for all 𝑛. 

(b) If a non-increasing sequence {𝑦𝑛} →  𝑦, then 𝑦𝑛 ≽ 𝑦 for all 𝑛. 

 If there exist 𝑥0, 𝑦0 ∈  𝑋 such that 𝑔𝑥0  ≼ 𝐹(𝑥0, 𝑦0) and 𝑔𝑦0  ≽  𝐹(𝑦0, 𝑥0), then 𝐹 and 𝑔 have a 

coupled coincidence pint. 

Proof.  In Theorem 2, we have proved that {g𝑥𝑛}and {g𝑦𝑛} are Cauchy sequences in 𝑋 and since 𝑋 is  

complete, there exist 𝑥, 𝑦 ∈  𝑋 such that  

 lim𝑛→∞ 𝑔𝑥𝑛  =  𝑥 and lim𝑛→∞ 𝑔𝑦𝑛  =  𝑦. 

From the continuity of 𝑔, we have  

 lim𝑛→∞ 𝑔(𝑔𝑥𝑛)  =  𝑔𝑥 and lim𝑛→∞ 𝑔(𝑔𝑦𝑛)  =  𝑔𝑦. 

Since F and g commute to each other, we have  

                                        𝑔(𝑔𝑥𝑛+1)  =  𝑔(𝐹(𝑥𝑛,  𝑦𝑛))  =  𝐹(𝑔𝑥𝑛, 𝑔𝑦𝑛   and 

  𝑔(𝑔𝑦𝑛+1)  =  𝑔(𝐹(𝑦𝑛 ,  𝑥𝑛))  =  𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛). 

Again { 𝑔𝑥𝑛} is a non-decreasing and 𝑔𝑥𝑛  →  𝑥, and {𝑔𝑦𝑛} is a non-increasing and 

  𝑔𝑦𝑛 →  𝑦. So we have 𝑔𝑥𝑛  ≼  𝑥and 𝑔𝑦𝑛  ≽  𝑦. Then by the triangle inequality, we have 

𝜑(𝑑(𝑔𝑥, 𝐹(𝑥, 𝑦)))  ≤  𝜑(𝑑(𝑔𝑥, 𝑔(𝑔𝑥𝑛+1))  +  𝑑(𝑔(𝑔𝑥𝑛+1), 𝐹(𝑥, 𝑦)))  

                                 =  𝜑(𝑑(𝑔𝑥, 𝑔(𝑔𝑥𝑛+1)) +  𝑑(𝐹(𝑔𝑥𝑛, 𝑔𝑦𝑛), 𝐹(𝑥, 𝑦))) 

                                 ≤  𝜑(𝑑(𝑔𝑥, 𝑔(𝑔𝑥𝑛+1))) + 𝜑( 𝑑(𝐹(𝑔𝑥𝑛, 𝑔𝑦𝑛), 𝐹(𝑥, 𝑦))) 

                                 ≤  𝜑(𝑑(𝑔𝑥, 𝑔(𝑔𝑥𝑛+1))) + 𝜑( 𝑑(𝐹(𝑔𝑥𝑛, 𝑔𝑦𝑛), 𝐹(𝑥, 𝑦))                               (15) 

                                           + 𝑑(𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛), 𝐹(𝑦, 𝑥))) 

                                 ≤  𝜑(𝑑(𝑔𝑥, 𝑔(𝑔𝑥𝑛+1)))  +  𝑘𝜑(𝑑(𝑔(𝑔𝑥𝑛), 𝑔𝑥) 

                                           + 𝑑(𝑔(𝑔𝑦𝑛), 𝑔𝑦)) −  𝜓(𝑘[𝑑(𝑔(𝑔𝑥𝑛), 𝑔𝑥)  
                                      + 𝑑(𝑔(𝑔𝑦𝑛), 𝑔𝑦)]).   

 

Taking 𝑛 → ∞  in Eq. (15), we get 

𝜑(𝑑(𝑔𝑥, 𝐹(𝑥, 𝑦))  ≤  0. 

This implies that 𝐹(𝑥, 𝑦)  =  𝑔𝑥. 

Similarly 

𝜑(𝑑(𝑔𝑦, 𝐹(𝑦, 𝑥)))  ≤  𝜑(𝑑(𝑔𝑦, 𝑔(𝑔𝑦𝑛+1))  +  𝑑(𝑔(𝑔𝑦𝑛+1), 𝐹(𝑦, 𝑥)))  

                                =  𝜑(𝑑(𝑔𝑦, 𝑔(𝑔𝑦𝑛+1)) +  𝑑(𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛), 𝐹(𝑦, 𝑥))) 

                                ≤  𝜑(𝑑(𝑔𝑦, 𝑔(𝑔𝑦𝑛+1))) + 𝜑( 𝑑(𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛), 𝐹(𝑦, 𝑥))) 

                                ≤  𝜑(𝑑(𝑔𝑦, 𝑔(𝑔𝑦𝑛+1))) + 𝜑( 𝑑(𝐹(𝑔𝑦𝑛, 𝑔𝑥𝑛), 𝐹(𝑦, 𝑥))                          (16) 

                                     + 𝑑(𝐹(𝑔𝑥𝑛 , 𝑔𝑦𝑛), 𝐹(𝑥, 𝑦)))  
                                ≤  𝜑(𝑑(𝑔𝑦, 𝑔(𝑔𝑦𝑛+1)))  +  𝑘𝜑(𝑑(𝑔(𝑔𝑦𝑛), 𝑔𝑦)  

      + 𝑑(𝑔(𝑔𝑥𝑛), 𝑔𝑥) −  𝜓(𝑘[𝑑(𝑔(𝑔𝑦𝑛), 𝑔𝑦)  
                                                                    + 𝑑(𝑔(𝑔𝑥𝑛), 𝑔𝑥)]).       

 

Taking 𝑛 → ∞  in Eq. (16), we get 



Coupled Coincidence and Coupled Common                                         Baye et al.        73         

 

 
 

𝜑(𝑑(𝑔𝑦, 𝐹(𝑦, 𝑥))  ≤  0. 

This implies that 𝐹(𝑦, 𝑥)  =  𝑔𝑦. 

Therefore, (𝑔𝑥, 𝑔𝑦) is a coupled point of coincidence and (𝑥, 𝑦) a coupled coincidence point of  𝐹 and 

𝑔. 

Remark: If we take 𝑔 =  𝐼 (the identity map), then Theorem 2 will be reduced to Theorem 1. 

Example: Let 𝑋 =  ℝ be a set endowed with the usual order and usual metric 

𝑑(𝑥, 𝑦) =  |𝑥 − 𝑦| 

for all 𝑥, 𝑦 ∈  𝑋.  

(𝑋, ≼) is a partially ordered set and (𝑋, ≼, 𝑑) is a partially ordered metric space.  

Define the mappings 𝐹 ∶  𝑋 ×  𝑋 →  𝑋 by 𝐹(𝑥, 𝑦)  =   
𝑥−2𝑦

8
 for all (𝑥, 𝑦)  ∈  𝑋 ×  𝑋 and 𝑔 ∶  𝑋 →  𝑋 

by 𝑔 (𝑥)  =  
𝑥

2
 for all 𝑥 ∈  𝑋. Then  

(i) 𝐹 and 𝑔 are continuous. 

(ii) For any 𝑥1, 𝑥2 ∈  𝑋 and for all 𝑥, 𝑦 ∈  𝑋, 𝑔𝑥1 ≼  𝑔𝑥2  ⇒  𝐹(𝑥1, 𝑦)  ≼ 𝐹(𝑥2, 𝑦) and 𝑔𝑦1  ≼

 𝑔𝑦2 ⇒  𝐹(𝑥, 𝑦1)  ≽  𝐹(𝑥, 𝑦2) which implies 𝐹 has 𝑔-monotone property. 

(iii) There exist 𝑥0  =  0 and 𝑦0 =  0 such that 𝑥0, 𝑦0 ∈  𝑋, 𝑔𝑥0  ≼  𝐹(𝑥0, 𝑦0) and 

 𝑔𝑦0  ≽ 𝐹(𝑦0, 𝑥0), that is,  g(0) =  
0

2
=  0 ≼  𝐹(0,0) =  

0−2(0)

8
  =  0 and 

 𝑔(0) =  
0

2
 =  0 ≽  𝐹(0,0) =  

0−2(0)

8
 =  0.  

(iv) 𝑔(𝐹(𝑥, 𝑦)) =  𝑔 (
𝑥−2𝑦

8
  ) =  

𝑥−2𝑦 

16
 and 𝐹(𝑔𝑥, 𝑔𝑦) =  𝐹 (

𝑥 

2
,

𝑦

2
) =

𝑥

2
−

2(𝑦)

2

8
=

𝑥−2𝑦

16
, 

which shows that 𝑔(𝐹(𝑥, 𝑦))  =  𝐹(𝑔𝑥, 𝑔𝑦).  

In addition 

𝑔(𝐹(𝑦, 𝑥)) =  𝑔 (
𝑦−2𝑥

8
) =  

𝑦−2𝑥 

16
 and 𝐹(𝑔𝑦, 𝑔𝑥) =  𝐹 (

𝑦

2
,

𝑥

2
) =

𝑦

2
−

2(𝑥)

2

8
=

𝑦−2𝑥

16
. 

which gives  that 𝑔(𝐹(𝑦, 𝑥))  =  𝐹(𝑔𝑦, 𝑔𝑥). 

Hence 𝐹 and 𝑔 are commutative.  

(i) Let 𝜑(𝑡)  =  
5𝑡 

4
 , 𝜓(𝑡)  =  

𝑡

5
  and 𝑘 =  

15

16
, then  

𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) +  𝑑(𝐹(𝑦, 𝑥), 𝐹(𝑣, 𝑢)) 

                                    = |
𝑥−2𝑦

8
− (

𝑢−2𝑣

8
)| + |

𝑦−2𝑥

8
– (

𝑣−2𝑢

8
)| 

                      = |
𝑥−𝑢

8
+

2𝑣−2𝑦

8
| + |

𝑦−𝑣

8
+

2𝑢−2𝑥

8
| 

                   ≤  
1

8
|𝑥 − 𝑢| +  

1

4
|𝑦 − 𝑣| + 

1

8
|𝑦 − 𝑣| + 

1

4
|𝑢 − 𝑥| 
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                                          =
3

8
(|𝑥 − 𝑢| + |𝑦 − 𝑣|).  

and then 

 𝜑 (𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) +  𝑑(𝐹(𝑦, 𝑥), 𝐹(𝑣, 𝑢))) =
5

4
(

3

8
(|𝑥 − 𝑢| + |𝑦 − 𝑣|)) 

                                                                                          =
15

32
(|𝑥 − 𝑢| + |𝑦 − 𝑣|), 

 𝑑(𝑔𝑥, 𝑔𝑢)  +  𝑑(𝑔𝑦, 𝑔𝑣)  = |
𝑥

2
−

𝑢

2
|+|

𝑦

2
−

𝑣

2
| =

1

2
|𝑥−𝑢| +

1

2
|𝑦−𝑣| =

1

2
(|𝑥−𝑢| + |𝑦−𝑣|), 

and 

𝑘𝜑(𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣)) = (
15

16
) (

5

4
) (

1

2
(|𝑥−𝑢| + |𝑦−𝑣|)) 

                                       =
75

128
(|𝑥−𝑢| + |𝑦−𝑣|). 

Again, 𝜓(𝑘[𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣)]) =
1

5
(

15

32
(|𝑥−𝑢| + |𝑦−𝑣|)) =

3

32
(|𝑥−𝑢| + |𝑦−𝑣|). 

𝑘𝜑(𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣)) −   𝜓(𝑘[𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣)]) =
75

128
(|𝑥−𝑢| + |𝑦−𝑣|) − 

                                                                                                                   −
3

32
(|𝑥−𝑢| + |𝑦−𝑣|) 

                                                                                                                      =
63

128
(|𝑥−𝑢| + |𝑦−𝑣|). 

Hence  

𝜑 (𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) +  𝑑(𝐹(𝑦, 𝑥), 𝐹(𝑣, 𝑢))) =
15

32
(|𝑥 − 𝑢| + |𝑦 − 𝑣|) 

                                                          ≤ 𝑘𝜑(𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣))  

                                                                 − 𝜓(𝑘[𝑑(𝑔𝑥, 𝑔𝑢) +  𝑑(𝑔𝑦, 𝑔𝑣)]) 

                                                                                 =
63

128
(|𝑥−𝑢| + |𝑦−𝑣|). 

Therefore, all the conditions of the Theorem 2 hold and 𝐹and 𝑔 have a unique coupled point of 

coincidence and a unique coupled common fixed point which are (𝑔0, 𝑔0) and (0,0) respectively. 

This is because 𝑔(𝐹(0, 0))  =  𝐹(𝑔0, 𝑔0)  =  𝐹(0, 0)  =  0.  

CONCLUSION  

In 2018, Liu et al. established the existence of coupled fixed point for mapping satisfying certain 

contraction condition in a complete partially ordered metric space. In this paper, we have explored the 

properties of partially ordered metric spaces and established and proved the existence and uniqueness 

of coupled coincidence and coupled common fixed point results for a pair of mixed monotone 

mappings satisfying certain contractive condition in the setting of partially ordered metric spaces. 
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Also, we provided an example in support of our main result. Our work extended coupled fixed point 

result of a single map to coupled coincidence point and coupled common fixed point results for a pair 

of maps. The presented theorems extend and generalize several well-known comparable results in 

literature. 
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