
Ethiop. J. Educ. & Sci.                                   Vol. 20     No. 1                                  September 2024  58 

FULL-LENGTH ARTICLE 

Application of Piecewise Mathematical Modeling to Analyse the Effect of 

HIV/AIDS on Working Class: The Case of Ethiopia 

Abdulsamad Engida Sado
1*

, Gemechis File Duressa
2
, Chernet Tuge Deressa

2
 

1
Debre Berhan University, Department of Mathematics, Debre Berhan, Ethiopia 

2
Jimma University, Department of Mathematics, Jimma, Ethiopia 

Corresponding author: e-mail, abdulsemede@gmail.com  

ABSTRACT 

In this study, we employed a novel combination of piecewise models to investigate the 

impact of IV/AIDS on the working class in Ethiopia. The piecewise model was changed 

from deterministic to stochastic, from fractal-fractional to a random, and from deterministic 

to fractal-fractional, then to stochastic. This innovative piecewise model takes into account 

data fitting for working-class HIV/AIDS cases for the period 2000–2022. According to 

numerical simulation, fractional model-follow stochastic models are more reliable than 

deterministic model-follow stochastic models. Numerical simulations show that decreasing 

the contact rate decreases the number of individuals infected with HIV/AIDS infection, 

decreasing the contact rate to eradicate HIV/AIDS infection before the estimated time, and 

increasing the contact rate prolongs the estimated time to end HIV/AIDS infection. 

According to the numerical simulation result, non-productivity increases the chance of being 

infected by HIV/AIDS.  As the rate at which non-productive classes become productive 

increases, the productivity force of the population increases, and the non-productive class of 

the population decreases. This condition is used to quickly eradicate HIV/AIDS infection by 

decreasing the inequality due to the economic crisis. 

Key words: ABC Operator; working class population; Fractional order; Fractal-Fractional; 

stochastic model 

INTRODUCTION 

HIV/AIDS is a severe condition that affects the immune system, leading to life-threatening 

infections and cancers (Page et al., 2020). It is transmitted through sexual contact, sharing 

needles, exposure to infected blood, and mother-to-child (Gupta & Saxena, 2021). The 

spread of HIV depends on several factors such as prevalence of the disease, human 

behaviours, access to treatment services, and social and economic conditions of the society. 

Treatments include antiretroviral therapy (ART), prophylaxis, management of opportunistic 

infections and cancers, and palliative care. Symptoms vary depending on the stage of 

infection and the individual's immune system (Dereje et al., 2019).  

Mathematical modelling is used to describe the dynamic system using different 

mathematical models: deterministic, stochastic, fractional, fractal-fractional, piecewise, and 

many other types of mathematical models. We can easily apply this method to describe the 

dynamics of the epidemiology of infectious and non-infectious diseases. A deterministic 

model was studied by many researchers (Rana et al., 2024; Sado, 2019; Sado & Kotola, 

2024). The fractional order derivative model and fractal-fractional order derivatives have 
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also been used to study HIV/AIDS by many scholars (Ahmad et al., 2023; Jamil et al., 2023; 

Mangal et al., 2023; Salah et al., 2024; Wu et al., 2024).  Frequently, we require new 

definitions to better describe phenomena beyond the traditional concepts. In this study, we 

focus on a piecewise mathematical model: a mathematical model that contains different 

functions or equations for different intervals or segments of the input variable (Cao et al., 

2021; Rezapour et al., 2022). A piecewise model can be useful for modeling HIV/AIDS 

because it can capture the non-linear and complex dynamics of the infection, such as 

changes in the transmission rate, progression of the disease stages, effects of interventions, 

and heterogeneity of the population (Li et al., 2021). A piecewise fractional differential 

equation model that uses the Atangana-Baleanu derivative to describe HIV/AIDS infection 

dynamics in a homogeneous population was studied by Zhao and colleagues (Zhao et al., 

2022). This model fits the cases of HIV/AIDS in Indonesia better than the previous Caputo 

model. 

The piecewise deterministic Markov process model incorporates the stochasticity and 

uncertainty of HIV/AIDS transmission and progression. This model was used to estimate the 

prevalence and incidence of HIV/AIDS in South Africa and to evaluate the impact of 

different prevention strategies. Here, we can observe the different procedures used to 

construct piecewise differential equations for different periods (Li et al., 2022). To increase 

the reliability of our model, we can divide our time into different intervals according to the 

nature of our real problem. Some real problems occur in the form of random processes 

rather than deterministic processes (Elangovan, 2023). 

First, we formulated the HIV/AIDS model of working-class population as deterministic 

model and then extended to piecewise mathematical model by including random process 

(stochastic) and Mittag-Leffler function law for the generalization of the exponential 

function. Extending the model to piecewise form increases the reliability of the model in 

describing the model of HIV/AIDS of working-class populations. The numerical simulation 

was performed using MATLAB 2020a by using Runge Kutta for deterministic model and 

the numerical methods developed by Abdon Atangana and Sania Qureshi to solve fractal-

fractional order. The Euler-Maruyama method was used to solve the stochastic parts of our 

model. After that we combined those numerical methods on piecewise form for 

mathematical modeling of effects of HIV/AIDS on working class population in case of 

Ethiopia. 

The fundamental concepts of piecewise differential operators  

The following list includes some basic definitions related to the idea of piecewise operators. 

Definition: (Almalahi et al., 2024), Let H(t) be a continuous function on [𝑎, 𝑏] that is not 

necessarily differentiable. Next, the piecewise Atangana-Baleanu derivative is described as 

follows:Error! Reference source not found. 

𝐺(𝑡) = {
𝐺′(𝑡),    𝑖𝑓        0 ≤ 𝑡 ≤  𝑎,

𝐷𝑘𝐺(𝑡)   𝑖𝑓  , 𝑎 ≤ 𝑡 ≤ 𝑏.
𝐴𝐵.

𝑃𝐴𝐵                                (1) 
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Similarly, the definition of a normal derivative for functions is identical to the operator 

𝐷𝜅
.

𝑃𝐴𝐵  on the interval [0, 𝑎], while on [𝑎, 𝑏], the definition is reduced to the operator 𝐷𝜅
.

𝐴𝐵 , 

which is defined as  

𝐷.
𝐴𝐵 𝑘𝐺(𝑡) =

𝐴𝐵(𝑘)

1−𝑘
∫ 𝐺′(𝛿)𝐸𝜅

𝑡

0
[−

𝜅

1−𝜅
(𝑡 − 𝛿)𝜅] 𝑑𝛿              (2) 

   0 ≤ 𝜅 ≤  1, and  𝐴𝐵(𝜅 ) = 1 − 𝜅 +
𝜅

Γ(𝜅
    

Composition of the model with piecewise operators 

The piecewise form of model is formulated using one of the following scenarios: the model 

moves from a deterministic to a random process, from the Mittag-Leffler rule to a random 

process, and from a deterministic to a fractional order and then to a random process in which 

the underlying assumptions of piecewise differential and integral operators are taken into 

account. 

Scenario I 

Deterministic models are models that are based on precise inputs and produce the same 

output for a given set of inputs. They assume that the future can be predicted with certainty 

based on the current state. Stochastic models are models that incorporate randomness and 

uncertainty into the modeling process (Ndii & Supriatna, 2017). They consider the 

probability of different outcomes and provide various possible results. One advantage of 

stochastic models over deterministic models is that they can account for the uncertainty and 

variability inherent in many real-world situations, such as weather, stock prices, and 

epidemics. In this case, the model loses the property of a deterministic rate and gains the 

random rate of transmission and spread of the disease. This situation increases the 

complexity of the model but increases the reality and capacity to represent the real situations 

of the model. They can also offer a range of possible outcomes, enabling decision-makers to 

evaluate the likelihood of various scenarios and make informed choices. On the other hand, 

deterministic models may not capture the complexity and unpredictability of reality and may 

lead to potential inaccuracies or biases in predictions.  

 

{
𝐺𝑖

′(𝑡) = 𝐻(𝑡, 𝐺𝑖), 𝑖𝑓 0 ≤  𝑡 ≤  𝑎, 𝐺𝑖(0) = 𝐺𝑖 , 0,   𝑓𝑜𝑟 1 ≤ 𝑖 ≤  𝑛                              

𝑑𝐺𝑖(𝑡) = 𝐻(𝑡, 𝐺𝑖)𝑑𝑡 + 𝑟𝑖𝐺𝑖𝑑𝐵𝑖(𝑡)    𝑖𝑓  𝑏 ≤ 𝑡 ≤ 𝑐, 𝐺𝑖(𝑏) = 𝐺𝑖,2 , 𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑛
          (3)  

 

Scenario II 

Fractal-fractional order models can describe the nonlocal and memory effects that are 

observed in many complex and multiscale systems (Rezapour et al., 2022; Suzuki et al., 

2023). They can also provide more flexibility and accuracy in fitting the experimental data 

and capturing the system dynamics (Rogosin, 2015). Stochastic models can capture the 

randomness and uncertainty inherent in many natural and social processes, such as 

epidemics, population dynamics, and stock markets. These models can also account for the 

effects of noise and external disturbances on a system's behavior. However, stochastic 

models may require more data and computational resources to estimate the parameters and 

simulate the outcomes. They may also be less interpretable and more difficult to analyze 

mathematically than deterministic models (Ndii & Supriatna, 2017). 
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From the fractal-fractional Mittag-Leffler law to the randomness point of view of the model, 

it is given as: 

{
𝐷𝑡

𝜔,𝜉
0

𝐴𝐵𝐶 𝐻(𝑡, 𝐺𝑖), 𝑖𝑓 a ≤  𝑡 ≤  𝑏, 𝐺𝑖(a) = 𝐺𝑖 , 1,   𝑓𝑜𝑟   0 ≤ κ ≤ 1,   for 1 ≤ 𝑖 ≤  𝑛   

𝑑𝐺𝑖(𝑡) = 𝐻(𝑡, 𝐺𝑖)𝑑𝑡 + 𝑟𝑖𝐺𝑖𝑑𝐵𝑖(𝑡)       𝑖𝑓  𝑏 ≤ 𝑡 ≤ 𝑐, 𝐺𝑖(𝑏) = 𝐺𝑖,2 , 𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑛
          (4)  

Scenario III 

This scenario is a mix of the first two scenarios in the case of transforming a deterministic 

model to a fractal-fractional order model and then to a stochastic model. It is given as: 

{

𝐺𝑖
′(𝑡) = 𝐻(𝑡, 𝐺𝑖), 𝑖𝑓 0 ≤  𝑡 ≤  𝑎, 𝐺𝑖(0) = 𝐺𝑖 , 0,   𝑓𝑜𝑟 1 ≤ 𝑖 ≤  𝑛                                      

𝐷𝑡
𝜔,𝜉

0
𝐴𝐵𝐶 𝐻(𝑡, 𝐺𝑖), 𝑖𝑓 a ≤  𝑡 ≤  𝑏, 𝐺𝑖(a) = 𝐺𝑖 , 1,   𝑓𝑜𝑟   0 ≤ κ ≤ 1,   for 1 ≤ 𝑖 ≤  𝑛         

𝑑𝐺𝑖(𝑡) = 𝐻(𝑡, 𝐺𝑖)𝑑𝑡 + 𝑟𝑖𝐺𝑖𝑑𝐵𝑖(𝑡)       𝑖𝑓  𝑏 ≤ 𝑡 ≤ 𝑐, 𝐺𝑖(𝑏) = 𝐺𝑖,2 , 𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑛

         (5)  

Model formulation 

In this section, we formulated the model of interest applicable to the problem under 

investigation.  We took into consideration a uniformly mixed working-class population with 

a size of 𝑁, split into eight compartments that are mutually exclusive. There are four basic 

classes in the population: those who are susceptible, those who are infectious, those in the 

treatment class, and those with full-blown AIDS and sufficiently altered their sexual 

behaviours to be, in a sense, immune to HIV infection through their life. We then segmented 

each of the infectious and susceptible groups into productive and non-productive subclasses 

(with subscripts p and n denoting productive and non-productive, respectively) to examine 

the dynamics of productivity changes in the workforce. The entire population 𝑁(𝑡) is split 

into eight compartments: 𝑆𝑝(𝑡) denotes the number of susceptible productive individuals; 

𝑆𝑛(𝑡)  denotes the number of susceptible non-productive individuals; 𝐼𝑝(𝑡)  denotes the 

number of HIV-positive but productive individuals in the stage of HIV infection; 𝐼𝑛(𝑡) 

denotes the number of HIV-positive but nonproductive individuals in the stage of HIV 

infection; 𝑇(𝑡) denotes the number of individuals undergoing treatment; 𝑅(𝑡) denotes the 

number of people who have sufficiently altered their sexual behaviors to be, in a sense, 

immune to HIV infection through safe sexual intercourse; and 𝐴(𝑡) reflects the number of 

people with full-blown AIDS. All other parameters in the model were given in  

 

 

 

 

 

Table 1. Susceptible infected individuals were in contact to infected individuals. AIDS 

treatment is crucial even if there is no known cure for it. Therefore, we studied HIV 

treatment for the working-class population in the sense of productive and non-productive 

classes in this study. Following therapy, there is a decreased likelihood that someone will 

contract AIDS, and it also lowers the chance that future generations will contract it. It should 

be noted that the members of the 𝑅(𝑡)  class are those who established and maintained 

lifelong safe sexual behaviors. The total population  𝑁(𝑡) is given by 𝑁 = 𝑆𝑝(𝑡) + 𝑆𝑛(𝑡) +

𝐼𝑝(𝑡) + 𝐼𝑛(𝑡) + 𝑇(𝑡) + 𝐴(𝑡) + 𝑅(𝑡)  
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Table 1: Parameter descriptions 

Parameter  Description 

𝟏 − 𝑸 Fraction of new populations recruits in the 𝑆𝑝 class 

𝑸 Fraction of new populations recruits in the 𝑆𝑛 class 

𝝆 Rate of recruitment   

𝒂𝟏 Rate at which non-productive susceptible become productive 

𝒂𝟏𝟎 Rate at which non-productive recovered produces   

𝒂𝟒 Rate at which non-productive Infectives go to Productive class 

𝜷 Contact rate between Susceptible and Infectives 

𝒂𝟐 Rate at which productive Susceptible become Productive recovered 

𝒂𝟑 Rate at which non-Productive susceptible become non-productive 

recovered 

𝒂𝟔 Rate of progression of the  𝐼𝑝   class into Treatments 

𝒂𝟓 Rate of progression of the 𝐼𝑛 class into Treatments 

𝝁 Natural death rate 

𝒅 AIDS-induced death rate 

𝒂𝟕 Rate of progression of the 𝑇 class into 𝐴 

𝒂𝟖 Rate of progression of the 𝐼𝑝class into A 

𝒂𝟗 Rate of progression of the 𝐼𝑛class into A 

   

The corresponding dynamical system of the model or the flow diagram (Fig. 1) is given as: 
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Figure 1: Flow diagram of the model 

𝑑𝑆𝑝

𝑑𝑡
= (1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝

𝑑𝑆𝑛

𝑑𝑡
=  𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛                

𝑑𝐼𝑝

𝑑𝑡
= Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇 + 𝑑)𝐼𝑝  

𝑑𝐼𝑛

𝑑𝑡
= Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇 + 𝑑)𝐼𝑛     

𝑑𝑇

𝑑𝑡
= 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇            

𝑑𝐴

𝑑𝑡
=  𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴      

𝑑𝑅𝑝

𝑑𝑡
= 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝                           

𝑑𝑅𝑛

𝑑𝑡
= 𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛                              

 
                       (6) 

Force of Infection is given by  𝛹 = 𝛽
𝐼𝑝+𝐼𝑛+𝐴

𝑁
. All initial values are non-negative, 𝑆𝑝(0) >

0, 𝑆𝑛(0) > 0, 𝐼𝑝(0) > 0, 𝐼𝑛(0) > 0, 𝐴(0) > 0, 𝑇(0) > 0, 𝑅𝑝 > 0, 𝑅0 > 0 and 𝑡0  > 0  for all 

closed intervals [0, 𝑡0]. Model analysis, well possessness, positivity, the existence of and 

uniqueness of solutions, the existence of equilibrium points and all necessary analyses of 

deterministic models are presented in the next section. Before extending the model to a 

piecewise model, the real-ability of the model can be improved, and numerical simulations 

can be performed. For simplification, we can write the system as 𝑚1 = 𝑎2 + 𝜇,𝑚2 = 𝑎1 +

𝑎3 + 𝜇,𝑚3 = 𝑎6 + 𝑎8 + 𝜇 + 𝑑,𝑚4 = 𝑎4 + 𝑎5 + 𝑎9 + 𝜇 + 𝑑,𝑚5 = 𝑎7 + 𝜇 + 𝑑,𝑚6 = 𝜇 +

𝑑,𝑚7 = 𝑎10 + 𝜇 
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𝑑𝑆𝑝

𝑑𝑡
= (1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + m1)𝑆𝑝 

𝑑𝑆𝑛

𝑑𝑡
=  𝑄𝜌 − (Ψ + m2)𝑆𝑛                              

𝑑𝐼𝑝

𝑑𝑡
= Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − m3𝐼𝑝                            

𝑑𝐼𝑛

𝑑𝑡
= Ψ 𝑆𝑛 − m4𝐼𝑛                                         

𝑑𝑇

𝑑𝑡
= 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − m5𝑇                            

𝑑𝐴

𝑑𝑡
= 𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − m6𝐴               

𝑑𝑅𝑝

𝑑𝑡
= 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝                        

𝑑𝑅𝑛

𝑑𝑡
= 𝑎3𝑆𝑛 − m7𝑅𝑛                                       

 
            (7) 

 

Mathematical model analysis of HIV/AIDS in the working-class population  

Model properties 

Theorem 𝟏. (Kubra & Ali, 2023), The model(7) with the given initial conditions has non-

negative solutions and the solution of the system will remain positive for all 𝑡 >  0. 

 

Proof: From the first equation of the model system (7) 
𝑑𝑆𝑝

𝑑𝑡
= (1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + m1)𝑆𝑝 ≥ (Ψ + m1)𝑆𝑝  

Thus, we have 

𝑆𝑝(𝑡) ≥ 𝑆𝑃(0) exp [−∫ (Ψ + 𝑚1)𝑑𝑡
𝑡

0
] > 0  

 From the second equation of the model system [7] we obtain 
𝑑𝑆𝑛

𝑑𝑡
=  𝑄𝜌 − (Ψ + m2)𝑆𝑛 ≥ (Ψ + m2)𝑆𝑛   

Hence, 

𝑆𝑛(𝑡 ) ≥ 𝑆𝑛(0) exp [−∫ (Ψ + 𝑚2)
𝑡

0
𝑑𝑡] > 0  

Similarly, all 𝐼𝑝(𝑡) > 0, 𝐼𝑛(𝑡) > 0, 𝐴(𝑡) > 0, 𝑇(𝑡) > 0, 𝑅𝑝(𝑡) > 0, and 𝑅𝑛(𝑡) > 0 for all 

 𝑡 > 0. 

 

Theorem 2. The model 6 solutions are uniformly bounded in the set  

℧ = {(𝑆𝑝(𝑡) + 𝑆𝑛(𝑡) + 𝐼𝑝(𝑡) + 𝐼𝑛(𝑡) + 𝐴(𝑡) + 𝑇(𝑡) + 𝑅𝑝(𝑡) + 𝑅𝑛(𝑡)) ∈  𝑅+
8 |0 ≤  𝑁 ≤

𝜌

𝜇
} 

Proof: All parameters and initial conditions in the system 6 are assumed to be positive. The 

sum of equations system 6 gives 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆𝑝(𝑡)

𝑑𝑡
+

𝑑𝑆𝑛(𝑡)

𝑑𝑡
+

𝑑𝐼𝑝(𝑡)

𝑑𝑡
+

𝑑𝐼𝑛(𝑡)

𝑑𝑡
+

𝑑𝑇(𝑡)

𝑑𝑡
+

𝑑𝐴(𝑡)

𝑑𝑡
+

𝑅(𝑡)

𝑑𝑡
  

𝑑𝑁

𝑑𝑡
= 𝜌 − 𝜇𝑁 − 𝑑(𝐼𝑝 + 𝐼𝑛 + 𝑇 + 𝐴) 

𝑑𝑁

𝑑𝑡
< 𝜌 − 𝜇 𝑁 

The solutions of the differential equations are given by,   𝑁(𝑡) ≤
𝜌

𝜇
+ (𝑁0 −

𝜌

𝜇
) 𝑒−𝜇𝑡 
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If  𝑁0 >
𝜌

𝜇
, the solutions of 𝑁 decrease to 

𝜌

𝜇
, and if 𝑁0 <

𝜌

𝜇
, then 𝑁 approaches 

𝜌

𝜇
 as 𝑡 

approaches infinity. The region ℧ is thus positively invariant, and the solutions are bounded. 

This means that every solution of (6)  with initial conditions in ℧  remains in ℧ for all 

𝑡 ≥  0. The model is thus epidemiologically and mathematically well-posed in the region. 

℧ = {(𝑆𝑝(𝑡) + 𝑆𝑛(𝑡) + 𝐼𝑝(𝑡) + 𝐼𝑛(𝑡) + 𝐴(𝑡) + 𝑇(𝑡) + 𝑅𝑝(𝑡) + 𝑅𝑛(𝑡)) ∈  𝑅+
8 |0 ≤  𝑁 ≤

𝜌

𝜇
  

 

Equilibrium points 

To determine the HIV/AIDS disease free equilibrium point, we solve the system 
𝑑𝑆𝑝(𝑡)

𝑑𝑡
= 0,

𝑑𝑆𝑛(𝑡)

𝑑𝑡
= 0,

𝑑𝐼𝑝(𝑡)

𝑑𝑡
= 0,

𝑑𝐼𝑛(𝑡)

𝑑𝑡
= 0,

𝑑𝑇(𝑡)

𝑑𝑡
= 0,

𝑑𝐴(𝑡)

𝑑𝑡
= 0,

𝑅𝑝(𝑡)

𝑑𝑡
= 0,

𝑅𝑛(𝑡)

𝑑𝑡
= 0 and the 

infected class  

𝐼𝑝 = 0, 𝐼𝑛 = 0, 𝐴 = 0, 𝑇 = 0. Then the disease-free equilibrium point is equal to  

𝐷𝐹𝐸 = (
 (1−𝑄)𝜌+𝑎1𝑆𝑛

∗

𝑎2+𝜇
,

𝑄𝜌

𝑎1+𝑎3+𝜇
, 0,0,0,0,

𝑎2𝑆𝑝
∗  +𝑎10𝑅𝑛

∗

𝜇
,

𝑎3𝑆𝑛
∗

𝑎10+𝜇
)  

By using the next generation matrix, we obtain the reproduction number 𝑅0,  

𝑅0 = 𝛽
𝑆𝑛

0(𝑎7 𝑎6𝑎4+𝑎5𝑎7𝑚3+𝑎4𝑚5(𝑎8+𝑚6)+𝑚3𝑚5(𝑎9+𝑚6))+ 𝑆𝑝
0(𝑎6𝑎7𝑚4+𝑚4𝑚5(𝑎8+𝑚6))

𝑁𝑚3𝑚4𝑚5𝑚6
           (8) 

 Endemic equilibrium points of the model 

𝑆𝑛
∗ =

𝑄𝜌

Ψ∗+𝑚2
, 𝑆𝑝

∗ =
𝜌(1−𝑄)(Ψ∗ +𝑚2)+𝑎1𝑄𝜌

(Ψ∗+𝑚1)(Ψ∗+𝑚2)
, 𝐼𝑝

∗ =
Ψ∗

𝑚3
(
𝜌(1−𝑄)(Ψ∗+𝑚2)+𝑎1𝑄𝜌

(Ψ∗+𝑚1)(Ψ∗+𝑚2)
)  

𝐼𝑛
∗ =

Ψ∗𝑆𝑛
∗+𝑎4𝐼𝑝

∗

𝑚4
  ,   𝑇∗ =

𝑎6 𝐼𝑝
∗+𝑎5 𝐼𝑛

∗

𝑚5
, 𝐴∗ =

𝑎7𝑇∗+𝑎8 𝐼𝑃
∗+𝑎9𝐼𝑛

∗

𝑚6
 , 𝑅𝑛

∗ = 𝑎3
𝑆𝑛
∗

𝑚7
, 𝑅𝑝

∗ =
𝑎2  𝑆𝑝

∗   +𝑎10𝑅𝑛
∗

𝜇
   

interms of force of infection  Ψ∗ =
𝐼𝑝
∗+𝐼𝑛

∗+𝐴∗

𝑁
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Stability of the disease-free equilibrium point by using a Jacobian matrix 

The Jacobian matrix can be computed by taking partial derivatives of the right-hand side of 

the differential equations with respect to each compartment (Almeida et al., 2021). The 

Jacobian matrix at the DFE point is evaluated, 

 

𝐽(𝐷𝐹𝐸) =

[
 
 
 
 
 
 
 
 
 
 
 
 −𝑚1 𝑎1 −

𝑆𝑝
0𝛽

𝑁
−

𝑆𝑝
0𝛽

𝑁

𝑆𝑝
0𝛽

𝑁
0 0 0

0 −𝑚2 −
𝑆𝑃

0𝛽

𝑁
−

𝑆𝑝
0𝛽

𝑁
−

𝑆𝑝
0𝛽

𝑁
0 0 0

0 0 −𝑚3 +
𝑆𝑝

0𝛽

𝑁
𝑎4 +

𝑆𝑝
0𝛽

𝑁

𝑆𝑝
0𝛽

𝑁
0 0 0

0 0
𝑆𝑝

0𝛽

𝑁
−𝑚4 +

𝑆𝑝
0𝛽

𝑁

𝑆𝑃
0𝛽

𝑁
0 0 0

0 0 𝑎8 𝑎9 −𝑚6 𝑎7 0 0
0 0 𝑎6 𝑎5 0 −𝑚5 0 0
𝑎2 0 0 0 0 0 −𝜇 𝑎10

0 𝑎3 0 0 0 0 0 −𝑚7]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

From this, we have the eigenvalues𝜆8 = −𝑚7 , 𝜆7 − 𝜇, 𝜆1 = −𝑚1, 𝜆2 = −𝑚2. Hence the 

Jacobian matrix is reduced to   𝐽∗ =

[
 
 
 
 
 −𝑚3 +

𝑆𝑝
0𝛽

𝑁
𝑎4 +

𝑆𝑝
0𝛽

𝑁

𝑆𝑝
0𝛽

𝑁
0

𝑆𝑝
0𝛽

𝑁
−𝑚4 +

𝑆𝑝
0𝛽

𝑁

𝑆𝑝
0𝛽

𝑁
0

𝑎8 𝑎9 −𝑚6 𝑎7

𝑎6 𝑎5 0 −𝑚5]
 
 
 
 
 

 

  

The determinant of the characteristic equations is given as 

  

𝐷𝑒𝑡(𝐽) = 1 − 𝛽 (
𝑆𝑛

0(𝑎7 𝑎6𝑎4 + 𝑎5𝑎7𝑚3 + 𝑎4𝑚5(𝑎8 + 𝑚6) + 𝑚3𝑚5(𝑎9+𝑚6))

𝑁𝑚3𝑚4𝑚5𝑚6

− 𝛽
𝑆𝑝

0(𝑎6𝑎7𝑚4 + 𝑚4𝑚5(𝑎8 + 𝑚6))

𝑁𝑚3𝑚4𝑚5𝑚6

= 1 − 𝑅0                                     (9) 

The trace of the Jacobian matrix is  𝑇𝑟𝑎𝑐𝑒(𝐽) = − 𝑚3  −  𝑚4  −  𝑚5  −  𝑚6  +  
𝑆𝑛𝛽

𝑁
 +

𝑆𝑝𝛽

𝑁
 

and the characteristic polynomial of the sub-matrix is given as 
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 𝜆4   +  (𝑚3   +  𝑚4   +  𝑚5   +  𝑚6   − 𝛽(𝑆𝑛 + 𝑆𝑝)/𝑁 𝜆3    +  (𝑚3 𝑚4  +  𝑚3 𝑚5   

+  𝑚3 𝑚6  +  𝑚4 𝑚5  +  𝑚4 𝑚6 + 𝑚5 𝑚6  

−  𝑆𝑛 𝛽(𝑎4 + 𝑎9 + 𝑚3 + 𝑚5  + 𝑚6)

−  𝑆𝑝 (𝛽(𝑎8 + 𝑚4 + 𝑚5  +  𝑚6)𝜆
2)/𝑁   + (𝑚3 𝑚4 𝑚5  +  𝑚3 𝑚4 𝑚6  

+   𝑚3 𝑚5 𝑚6  +  𝑚4 𝑚5 𝑚6  

−  𝑆𝑛 𝛽 (𝑎4𝑎8 + 𝑎4𝑚5 + 𝑎4𝑚6 + 𝑎5𝑎7 + 𝑎9𝑚3 + 𝑎9𝑚5 + 𝑚3 𝑚5  

+  𝑚3 𝑚6  + 𝑚5 𝑚6)

− 𝑆𝑝 𝛽 ( 𝑎6𝑎7 + 𝑎8𝑚4 + 𝑎8𝑚5 + 𝑚4 𝑚5  +  𝑚4 𝑚6  +  𝑚5 𝑚6)𝜆/𝑁  

+ (𝑁 𝑚3 𝑚4  𝑚5 𝑚6  

−  𝑆𝑛 𝛽 (𝑎4𝑎6𝑎7 + 𝑎4𝑎8𝑚5 + 𝑎4𝑚5𝑚6  + 𝑎5𝑎7𝑚3 + 𝑎9 𝑚3 𝑚5

+ 𝑚3𝑚5𝑚6) −  𝑆𝑝𝛽 (𝑎6𝑎7𝑚4 + 𝑎8𝑚4 𝑚5 + 𝑚4 𝑚5 𝑚6)/𝑁  

Then, the characteristic polynomial equations are given as 

 𝑃(𝜆) = 𝑏4𝜆
4 + 𝑏3𝜆

3 + 𝑏2𝜆
2 + 𝑏1𝜆 + 𝑏0 

were, 

 𝑏4 = 1 

𝑏3 = 𝑚3  +  𝑚4  +  𝑚5  +  𝑚6  −
𝛽(𝑆𝑛+𝑆𝑝)

𝑁
  

𝑏2 = (𝑚3𝑚4  +  𝑚3 𝑚5  +   𝑚3 𝑚6  +   𝑚4 𝑚5  +  𝑚4 𝑚6 + 𝑚5 𝑚6  −  𝑆𝑛 𝛽(𝑎4 + 𝑎9 +

𝑚3 + 𝑚5  + 𝑚6) −  𝑆𝑝
𝛽(𝑎8+ 𝑚4+ 𝑚5 + 𝑚6)

𝑁
  

𝑏1 = (𝑚3 𝑚4 𝑚5  +  𝑚3 𝑚4 𝑚6  +  𝑚3 𝑚5 𝑚6  +  𝑚4 𝑚5 𝑚6  −  𝑆𝑛 𝛽 (𝑎4𝑎8 + 𝑎4𝑚5 +

𝑎4𝑚6 + 𝑎5𝑎7 + 𝑎9𝑚3 + 𝑎9𝑚5 + 𝑚3 𝑚5  +  𝑚3 𝑚6  + 𝑚5 𝑚6) −

  𝑆𝑝 𝛽
𝑎6𝑎7+𝑎8𝑚4+ 𝑎8𝑚5+𝑚4 𝑚5 + 𝑚4 𝑚6 + 𝑚5 𝑚6

𝑁
  

𝑏0 = (𝑁 𝑚3 𝑚4 𝑚5 𝑚6  −  𝑆𝑛 𝛽 (𝑎4𝑎6𝑎7 + 𝑎4𝑎8𝑚5 + 𝑎4𝑚5𝑚6  + 𝑎5𝑎7𝑚3 + 𝑎9 𝑚3 𝑚5 +

𝑚3𝑚5𝑚6) −  𝑆𝑝𝛽
𝑎6𝑎7𝑚4+ 𝑎8𝑚4 𝑚5+ 𝑚4 𝑚5 𝑚6

𝑁
 = 1 − 𝑅0  

The condition 𝑅0 < 1 should be equivalent to the condition 𝑏0 >  0. Hence, we define 𝑅0 as 

follows: 

𝑅0 = 𝛽
𝑆𝑛

0(𝑎7 𝑎6𝑎4+𝑎5𝑎7𝑚3+𝑎4𝑚5(𝑎8+𝑚6)+𝑚3𝑚5(𝑎9+𝑚6))+𝑆𝑝
0(𝑎6𝑎7𝑚4+𝑚4𝑚5(𝑎8+𝑚6))

𝑁𝑚3𝑚4𝑚5𝑚6
                 

(10) 

The conditions 𝑅0  <  1 and 𝑏0 > 0 are equivalent. In addition, 𝑏_0 <  0 if 𝑅0  >  1. The 

equation 𝑝(𝜆) = 0 has a real positive solution because lim𝜆→∞ 𝑝(𝜆) = ∞,  and as a result, 

the disease-free equilibrium is unstable. It is still to be shown if the disease-free equilibrium 

is locally asymptotically stable if 𝑅0  <  1.  

 

Sensitivity analysis of parameter parameters to the reproduction number 

The extent to which the value of the reproduction number (𝑅0) fluctuates in reaction to 

changes in particular parameters or variables is determined by the sensitivity index of  𝑅0 . It 

is useful to know which variables most significantly affect how a disease spread. The 

explicit expression of 𝑅0 is given by equation , and we derive an analytical expression for 10

its sensitivity to each parameter in 𝑅0.The normalized forward sensitivity index of 𝑅0, which 

depends on a parameter 𝑝, is defined as: 

  𝑆𝐼𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
  ×

𝑝

𝑅0
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These sensitivity indices allow us to determine the relative importance of different 

parameters in HIV/AIDS transmission and prevalence. We use the values in Table ; then, 3

we obtain the results in the sensitivity indices values. 

 Table 2 and Figure 2 according to the sensitivity indices values. 

 Table 2: Sensitivity indices of parameters 

Parameters Sensitivity index Parameters  Sensitivity index 

𝜷 1 𝑎6 0.0307   

𝒂𝟏 -0.4638 𝑎7 -0.0183 

𝒂𝟐 -0.2031 𝑎8 -0.0398 

𝒂𝟑 0.0401 𝑎9 0.2039 

𝒂𝟒 -0.2775 𝑑 -0.4168 

𝒂𝟓 0.1227   

   

  
Figure 2: Sensitivity indices of parameter  

Fractal-Fractional version of the model 

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑆𝑝 = (1 − Q)ρ + a1Sn − (Ψ + a2 + μ)Sp  

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑆𝑛 =  𝑄𝜌 − (Ψ + 𝑎1 + 𝑎3 + 𝜇)𝑆𝑛               

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐼𝑝 = Ψ 𝑆𝑝  + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝      

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐼𝑛 = Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛     

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑇 = 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇     
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𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐴 = 𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴 

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑅𝑝 = 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝                     

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑅𝑛 = 𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛                       

All initial values are positive, 𝑆𝑝(0) ≥ 0, 𝑆𝑛(0) ≥ 0, 𝐼𝑝(0) ≥ 0, 𝐼𝑛(0) ≥ 0, 𝐴(0) ≥

0, 𝑇(0) ≥ 0, 𝑅𝑝 ≥ 0, 𝑅0 ≥  0 and  𝑡0  > 0 for all closed intervals [0, 𝑡0]. 

 

 Stochastic version of the Model 

𝑑𝑆𝑝 = ((1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝)𝑑𝑡 + 𝑣1(𝑆𝑝)𝑑𝐵1(𝑡) 

𝑑𝑆𝑛 = (𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛)𝑑𝑡 + 𝑣2(𝑆𝑛)𝑑𝐵2(𝑡)              

𝑑𝐼𝑝 = (Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝)𝑑𝑡 + 𝑣3(𝐼𝑝)𝑑𝐵3(𝑡)          

𝑑𝐼𝑛 = (Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛)𝑑𝑡 + 𝑣4(𝐼𝑛)𝑑𝐵4(𝑡)            

𝑑𝑇 = (𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇)𝑑𝑡 + 𝑣5(𝐴)𝑑𝐵5(𝑡)         

𝑑𝐴 = (𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴)𝑑𝑡 + 𝑣6(𝐴)𝑑𝐵6(𝑡)      

𝑑𝑅𝑝 = (𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝)𝑑𝑡 + 𝑣7(𝐴𝑝𝑝)𝑑𝐵7(𝑡)                     

𝑑𝑅𝑛 = (𝑎3𝑆𝑛 − (𝑎10 + 𝜇 )𝑅𝑛)𝑑𝑡 + 𝑣8(𝐴𝑝𝑛)𝑑𝐵8(𝑡)                        

   

All initial values are positive, 𝑆𝑝(0) > 0, 𝑆𝑛(0) > 0, 𝐼𝑝(0) > 0, 𝐼𝑛(0) > 0, 𝐴(0) >

0, 𝑇(0) > 0, 𝑅𝑝 > 0, 𝑅0 > 0 and 𝑡0  > 0 for all closed intervals [0, 𝑡0]. Stochastic models 

are used to maintain the randomness of disease. 

 Piecewise mathematical modelling formulation  

From deterministic to random process 

For the following time interval and initial conditions, our model is deterministic. 

 For  0 ≤  𝑡 ≤  𝑡1, 𝑆𝑝(0) = 𝑆𝑝11, 𝑆𝑛(0) = 𝑆𝑛12, 𝐼𝑝(0) = 𝐼𝑝13, 𝐼𝑛(0) = 𝐼𝑛14, 𝑅𝑝 =

𝑅𝑝15, 𝑅𝑛(0) = 𝑅𝑛16, 𝐴(0) = 𝐴17 

𝑑𝑆𝑝

𝑑𝑡
= (1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝 

𝑑𝑆𝑛

𝑑𝑡
=  𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛 

𝑑𝐼𝑝

𝑑𝑡
= Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇 + 𝑑)𝐼𝑝         (13)      

𝑑𝐼𝑛
𝑑𝑡

= Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇 + 𝑑)𝐼𝑛 

𝑑𝑇

𝑑𝑡
= 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇 

𝑑𝐴

𝑑𝑡
=  𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴 

𝑑𝑅𝑝

𝑑𝑡
= 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝                   

𝑑𝑅𝑛

𝑑𝑡
= 𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛                            
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For  𝑡1 ≤  𝑡 < 𝑇 , 𝑆𝑝(𝑡1) = 𝑆𝑝21, 𝑆𝑛(𝑡1) = 𝑆𝑛22, 𝐼𝑝(𝑡1) = 𝐼𝑝23, 𝐼𝑛(𝑡1) = 𝐼𝑛24, 𝑅𝑝(𝑡1) =

𝑅𝑝25, 𝑅𝑛(𝑡1) = 𝑅𝑛26, 𝐴(𝑡1) = 𝐴27  

𝑑𝑆𝑝 = ((1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝)𝑑𝑡 + 𝑣1(𝑆𝑝)𝑑𝐵1(𝑡) 

𝑑𝑆𝑛 = (𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛)𝑑𝑡 + 𝑣2(𝑆𝑛)𝑑𝐵2(𝑡)                 

𝑑𝐼𝑝 = (Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝)𝑑𝑡 + 𝑣3(𝐼𝑝)𝑑𝐵3(𝑡)          

             𝑑𝐼𝑛 = (Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛)𝑑𝑡 + 𝑣4(𝐼𝑛)𝑑𝐵4(𝑡)                (14) 

𝑑𝑇 = (𝑎6𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇 +)𝑑𝑡 + 𝑣5(𝐴)𝑑𝐵5(𝑡)      

𝑑𝐴 = (𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴)𝑑𝑡 + 𝑣6(𝐴)𝑑𝐵6(𝑡)      

𝑑𝑅𝑝 = (𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝)𝑑𝑡 + 𝑣7(𝐴𝑝𝑝)𝑑𝐵7(𝑡)                      

𝑑𝑅𝑛 = (𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛)𝑑𝑡 + 𝑣8(𝐴𝑝𝑛)𝑑𝐵8(𝑡)                                

The mathematical model  has a deterministic character and is extended to stochastic 13

models described in    by adding white noise type perturbations to the system. The 14

parameters 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 , and 𝑣7  are positive constants and the intensities of the 

random disturbance. 

𝐵(𝑡) = (𝐵1(𝑡), 𝐵2 (𝑡), 𝐵3 (𝑡), 𝐵4 (𝑡), 𝐵5 (𝑡), 𝐵6 (𝑡), 𝐵7 (𝑡), 𝐵8(𝑡)) is the white noise process. 

From fractal-fractional to random process 

For  0 ≤  𝑡 ≤  𝑡1 , 𝑆𝑝(0) = 𝑆𝑝11, 𝑆𝑛(0) = 𝑆𝑛12, 𝐼𝑝(0) = 𝐼𝑝13, 𝐼𝑛(0) = 𝐼𝑛14, 𝑇 = 𝑇15, 𝐴(0) =

𝐴16, 𝑅𝑝(0) = 𝑅𝑝17 , 𝑅𝑛(0) = 𝑅𝑛18  

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑆𝑝 = (1 − Q)ρ + a1Sn − (Ψ + a2 + μ)Sp                         

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑆𝑛 =  𝑄𝜌 − (Ψ + 𝑎1 + 𝑎3 + 𝜇)𝑆𝑛                                                       

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐼𝑝 = Ψ 𝑆𝑝  + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝                  (15) 

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐼𝑛 = Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛                                

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑇 = 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇                       

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐴 =  𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴                    

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑅𝑝 = 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝                                          

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑅𝑛 = 𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛                                             

We assume that stochastic perturbations of the variables around their interior equilibrium 

points are of the white noise type, which is proportional to the distances of 

𝑆𝑝, 𝑆𝑛 , 𝐼𝑝 , 𝐼𝑛 , 𝑇, 𝐴 , 𝑅𝑝, 𝑅𝑛 from values 𝑆𝑝
∗, 𝑆𝑛

∗ , 𝐼𝑝
∗ , 𝐼𝑛

∗ , 𝑇∗, 𝐴∗, 𝑅𝑝
∗ , 𝑅𝑛

∗ . Thus, system of model in 

 results in the following stochastic model. 15

For  𝑡1 ≤   𝑡 < 𝑡2 , 𝑆𝑝(𝑡1) = 𝑆𝑝21, 𝑆𝑛(𝑡1) = 𝑆𝑛22, 𝐼𝑝(𝑡1) = 𝐼𝑝23, 𝐼𝑛(𝑡1) = 𝐼𝑛24, 𝑇(𝑡1) =

𝑇25, , 𝐴(𝑡1) = 𝐴26, 𝑅𝑝(𝑡1) = 𝑅𝑝27, 𝑅𝑛(𝑡1) = 𝑅𝑛28   

𝑑𝑆𝑝 = ((1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝)𝑑𝑡 + 𝑣1(𝑆𝑝)𝑑𝐵1(𝑡) 

𝑑𝑆𝑛 = (𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛)𝑑𝑡 + 𝑣2(𝑆𝑛)𝑑𝐵2(𝑡)                 

𝑑𝐼𝑝 = (Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝)𝑑𝑡 + 𝑣3(𝐼𝑝)𝑑𝐵3(𝑡)          

𝑑𝐼𝑛 = (Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛)𝑑𝑡 + 𝑣4(𝐼𝑛)𝑑𝐵4(𝑡)             

𝑑𝑇 = (𝑎6𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇 +)𝑑𝑡 + 𝑣5(𝐴)𝑑𝐵5(𝑡)      

𝑑𝐴 = (𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴)𝑑𝑡 + 𝑣6(𝐴)𝑑𝐵6(𝑡)      
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𝑑𝑅𝑝 = (𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝)𝑑𝑡 + 𝑣7(𝐴𝑝𝑝)𝑑𝐵7(𝑡)                      

𝑑𝑅𝑛 = (𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛)𝑑𝑡 + 𝑣8(𝐴𝑝𝑛)𝑑𝐵8(𝑡)                   

Deterministic fractal-fractional-stochastic model 

For the following time interval and initial conditions, our model is deterministic: 

 For  0 ≤  𝑡 ≤  𝑡1 , 𝑆𝑝(0) = 𝑆𝑝11, 𝑆𝑛(0) = 𝑆𝑛12, 𝐼𝑝(0) = 𝐼𝑝13, 𝐼𝑛(0) = 𝐼𝑛14, 𝑅𝑝 =

𝑅𝑝15, 𝑅𝑛(0) = 𝑅𝑛16, 𝐴(0) = 𝐴17 

𝑑𝑆𝑝

𝑑𝑡
= (1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝 

𝑑𝑆𝑛

𝑑𝑡
=  𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛               

𝑑𝐼𝑝

𝑑𝑡
= Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇 + 𝑑)𝐼𝑝 

𝑑𝐼𝑛
𝑑𝑡

= Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇 + 𝑑)𝐼𝑛 

𝑑𝑇

𝑑𝑡
= 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇        

𝑑𝐴

𝑑𝑡
=  𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴 

𝑑𝑅𝑝

𝑑𝑡
= 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝                   

𝑑𝑅𝑛

𝑑𝑡
= 𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛                            

For  𝑡1 ≤   𝑡 < 𝑡2 , 𝑆𝑝(𝑡1) = 𝑆𝑝21, 𝑆𝑛(𝑡1) = 𝑆𝑛22, 𝐼𝑝(𝑡1) = 𝐼𝑝23, 𝐼𝑛(𝑡1) = 𝐼𝑛24, 𝑇(𝑡1) =

𝑇25, , 𝐴(𝑡1) = 𝐴26, 𝑅𝑝(𝑡1) = 𝑅𝑝27, 𝑅𝑛(𝑡1) = 𝑅𝑛28 , our model is fractal fractional order 

model with ABC operator.  

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑆𝑝 = (1 − Q)ρ + a1Sn − (Ψ + a2 + μ)Sp                         

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑆𝑛 =  𝑄𝜌 − (Ψ + 𝑎1 + 𝑎3 + 𝜇)𝑆𝑛                                                       

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐼𝑝 = Ψ 𝑆𝑝  + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝                  (15) 

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐼𝑛 = Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛                                

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑇 = 𝑎6 𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇                       

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝐴 = 𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴       

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑅𝑝 = 𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝   

𝐷0
𝐴𝐵𝐶

𝑡
𝜔,𝜉

𝑅𝑛 = 𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛      

For  𝑡2 ≤   𝑡 < 𝑇 , 𝑆𝑝(𝑡2) = 𝑆𝑝31, 𝑆𝑛(𝑡2) = 𝑆𝑛32, 𝐼𝑝(𝑡2) = 𝐼𝑝33, 𝐼𝑛(𝑡2) = 𝐼𝑛34, 𝑇(𝑡2) =

𝑇35, , 𝐴(𝑡2) = 𝐴36, 𝑅𝑝(𝑡2) = 𝑅𝑝37, 𝑅𝑛(𝑡2) = 𝑅𝑛38 the model transformed to stochastic 

model. 

𝑑𝑆𝑝 = ((1 − 𝑄)𝜌 + 𝑎1𝑆𝑛 − (Ψ + 𝑎2 + 𝜇)𝑆𝑝)𝑑𝑡 + 𝑣1(𝑆𝑝)𝑑𝐵1(𝑡) 

𝑑𝑆𝑛 = (𝑄𝜌 − (Ψ + 𝑎1  + 𝑎3 + 𝜇)𝑆𝑛)𝑑𝑡 + 𝑣2(𝑆𝑛)𝑑𝐵2(𝑡)                 

𝑑𝐼𝑝 = (Ψ 𝑆𝑝 + 𝑎4𝐼𝑛 − (𝑎6 + 𝑎8 + 𝜇)𝐼𝑝)𝑑𝑡 + 𝑣3(𝐼𝑝)𝑑𝐵3(𝑡)          

𝑑𝐼𝑛 = (Ψ 𝑆𝑛 − (𝑎4 + 𝑎5 + 𝑎9 + 𝜇)𝐼𝑛)𝑑𝑡 + 𝑣4(𝐼𝑛)𝑑𝐵4(𝑡)             

𝑑𝑇 = (𝑎6𝐼𝑝 + 𝑎5 𝐼𝑛 − (𝑎7 + 𝜇 + 𝑑)𝑇 +)𝑑𝑡 + 𝑣5(𝐴)𝑑𝐵5(𝑡)      
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𝑑𝐴 = (𝑎7 𝑇 + 𝑎8 𝐼𝑝 + 𝑎9 𝐼𝑛 − (𝜇 + 𝑑)𝐴)𝑑𝑡 + 𝑣6(𝐴)𝑑𝐵6(𝑡)      

𝑑𝑅𝑝 = (𝑎2 𝑆𝑝 + 𝑎10𝑅𝑛 − 𝜇 𝑅𝑝)𝑑𝑡 + 𝑣7(𝐴𝑝𝑝)𝑑𝐵7(𝑡)                      

          𝑑𝑅𝑛 = (𝑎3𝑆𝑛 − (𝑎10 + 𝜇)𝑅𝑛)𝑑𝑡 + 𝑣8(𝐴𝑝𝑛)𝑑𝐵8(𝑡)    

Numerical Simulation  

The values of the parameters used in the numerical simulations are estimated from the data 

for Ethiopia estimated by UNAIDS for twenty-three years. MATLAB R2020a was used to 

fit the data via least squares methods (Martcheva, 2015). We fit the data to the model with a 

minimum error of 9.5964𝑒 − 04 , and the estimated parameter values are given in Table 3. 

 Table 3: Parameter values and descriptions 

Parameter values sources Parameter  values  Sources 

1 − 𝑄 0.500 Estimated 𝑎3 0.0734 Fitted 

𝑄 0.500 Calculated 𝑎6 0.0368 Fitted 

𝜌 0.0758 Fitted  𝑎5 0.0368 Fitted 

𝑎1 0.140 Fitted 𝜇 0.0148 Calculated 

𝑎10 0.020 Fitted 𝑑 0.100 Estimated 

𝑎4 0.1400 Fitted 𝑎7 0.007 Fitted 

𝛽 0.1017 Fitted 𝑎8 0.0012 Fitted 

𝑎2 0.0734 Fitted 𝑎9 0.0012 Fitted 

 

 
Figure 3: Actual data fitted to the model to estimate the parameters in Table 3  

 Numerical methods for solving the deterministic model 

The deterministic model version was solved using the embedded Runge Kutta order four and 

five in MATLAB ode45 with the parameters in Table 3. Figure 4 shows that the recovered 
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productive population increases above the susceptible population after fifteen years, which 

is unrealistic. 

 
Figure 4: Solution of the deterministic HIV/AIDS model 

Numerical methods for solving fractal-fractional order models 

The fractal-fractional model of the HIV/AIDS model based on the working-class population 

in Ethiopia was solved by using the method of (Atangana & Qureshi, 2019) We plot Figure . 

5 by the parameter in Table3, with the fractal dimension (𝜏 =  0.8) and fractional order 

(𝜂 =  0.8). Unlike the deterministic model, the recovered productive class of the population 

is less than the susceptible productive class of the population, even after thirty years. We 

understand that the fractal-fractional model is more realistic than the deterministic model.  

 
Figure 5:  Fractal-fractional HIV/AIDS model solution 

Numerical scheme for solving the stochastic model 

The Euler-Maruyama method (Huang et al., 2023) is a simple and widely used numerical  

scheme for solving stochastic differential equations (SDEs) of the form:  

  𝑑𝑋(𝑡)  =  𝑓(𝑋(𝑡), 𝑡) 𝑑𝑡 +  𝑔(𝑋(𝑡), 𝑡) 𝑑𝑊(𝑡) 
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where 𝑋(𝑡) is the unknown solution, 𝑓 and 𝑔 are given functions, and 𝑊(𝑡) is a Wiener 

process. The idea of the method is to discretize the time interval [0, 𝑇] into 𝑁 equal 

subintervals of length 𝛥𝑡 =
𝑇

𝑁
 and approximate the solution 𝑋(𝑡) at the points 𝑡𝑛  =

 𝑛 𝛥 𝑡, 𝑛 =  0, 1, … , 𝑁. The method is based on the following approximation: 

  

 𝑋(𝑡𝑛+1) ≈  𝑋(𝑡𝑛)  +  𝑓(𝑋(𝑡𝑛), 𝑡𝑛) Δ𝑡 +  𝑔(𝑋(𝑡𝑛), 𝑡𝑛) Δ 𝑊𝑛 

where 𝛥 𝑊𝑛  =  𝑊(𝑡𝑛+1)  −  𝑊(𝑡𝑛) is the increment of the Wiener process, which can be 

sampled from a normal distribution with mean zero and variance 𝛥𝑡. The Euler-Maruyama 

method then defines the numerical solution 𝑋𝑛 as: 

  

 𝑋𝑛+1  =  𝑋𝑛  +  𝑓(𝑋𝑛 , 𝑡𝑛) Δ 𝑡 +  𝑔(𝑋𝑛, 𝑡𝑛) Δ𝑊𝑛 

with a given initial condition 𝑋0  =  𝑋(0). This recursive formula can be implemented in a 

loop to generate the numerical solution. The Euler-Maruyama method is easy to implement 

and has a strong convergence order of 0.5, which means that the error between the true 

solution and the numerical solution is proportional to √𝛥𝑡 as 𝛥𝑡 approaches zero (Higham, 

2001; Wu, 2023) 

By using the selected methods, we find the solution of the stochastic model, as shown in 

Figure 6. In the stochastic version of the model, the susceptible productive and recovered 

productive classes of the population cross each other for approximately ten years, but the 

productive recovered class of the population looks like a sigmoid graph. The fully blown 

AIDS class population approaches zero very quickly when we compare it with the above 

two versions of the models. 

 
Figure 6:  Solution of the stochastic HIV/AIDS model 

Simulations of deterministic model to stochastic model 

In this simulation, the deterministic characteristics and assumptions of the model were 

applied for fifteen years, followed by the stochastic characteristics and assumptions for the 

other fifteen years. 
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Figure 7: Deterministic to stochastic distributions with different values of the intensities of 

the random disturbance 

Here, our model changes from a deterministic model to a stochastic model. As  shown in 

Figure 7, the number of susceptible individuals decreased and then increased. The number of 

Recovered populations of both productive and non-productive population increases and 

reduces the number of susceptible populations.  The AIDS class decreases and approaches 

zero. 

Simulations of fractal-fractional order ABC model to stochastic model 

In this case, the model changed from the fractal-fractional order model to stochastic by 

losing memory effects and holding the random process of epidemic nature. 
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Figure 8: From fractal fractional to stochastic, with different values of fractional order and 

fractal dimension, including different intensities of random disturbance   

The piecewise model explains the problem and shows the chance of disease extinction. In 

Figure 8, the numbers of susceptible productive, infected productive, and pre-AIDS 

productive populations increased. However, the number of susceptible non-productive, 

infected non-productive, and pre-AIDS non-productive decreased in a stochastic model 

where the full-blown AIDS class approaches zero. 
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Transformation of the model from deterministic-fractal-fractional ABC-Stochastic 

process 

The trajectory of the dynamical systems changes from one form of model to another, which 

increases the relative accuracy of the representation of a real problem by using a 

mathematical model. Here, we solve the group of three interconnected models via piecewise 

mathematical modeling. For the first fifteen years, we used a deterministic model; for the 

next fifteen years, we used a fractal-fractional order model; and for the last thirty years, we 

used a stochastic model, including the randomness property of HIV/AIDS infection. Infected 

productive and non-productive class population decrease due to treatments as shown in 

Figure 9. 

 
Figure 9: Migration of the system from deterministic to fractal-fractional order then to 

stochastic 

As shown in Figure 10, the nature of HIV/AIDS in the population approaches zero after fifty 

years from the starting point of our data (2000). According to these numerical simulations 

and as per plan of World Health Organizations both infected and full-blown AIDS class 

population approaches to zero.    
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Figure 10:  Migration of the system from deterministic to fractal-fractional order then to 

stochastic 

The effect of contact rate 

HIV/AIDS infection is transmitted from infected HIV/AIDS patients to susceptible 

individuals through contact via sexual intercourse made without any protection. Increasing 

the contact rate increases the number of individuals infected with HIV/AIDS, and decreasing 

the contact rate reduces the number of susceptible individuals. Accordingly, in Figure 11, 

decreasing the contact rate before the estimated time and increasing the contact rate 

prolonged the estimated time, as shown in Figure 10. 

 
 Figure 11: Effect of contact rate to end the HIV/AIDS epidemic 
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The effect of HIV/AIDS on working class 

In this section, we show the effects of decreasing non-productivity and increasing 

productivity to control the spread and transmission of HIV/AIDS. As the rate at which non-

productive classes become productive increases (Figure 12), the productivity force of the 

population increases, and the non-productive class of the population decreases and is 

inversely proportional to the AIDS class. Increasing productivity of working class reduce the 

number of populations infected by HIV/AIDS infections.  

 
 Figure 12: Effect of the rate at which the non-productive class becomes productive 

CONCLUSION 

In this paper, we examined HIV/AIDS models that are based on the Ethiopian working-class 

population and applied the concept of piecewise operators. Thus far, research has been 

conducted on the use of piecewise operators for stochastic models in epidemiology and 

deterministic, fractal-fractional Atangana-Baleanu-Caputo sense models. Additionally, 

several corresponding numerical simulations have been created for various parameter 

values. It is confirmed that the disease-free equilibrium point is regionally asymptotically 

stable. This novel piecewise model takes into account data fitting for working-class 

HIV/AIDS cases for the period 2000-2022 G.C.  The numerical simulation results 

graphically show that increasing the contact rate increases the number of individuals 

infected with HIV/AIDS, and decreasing the contact rate reduces the number of infected 

individuals, decreasing the contact rate eradicate HIV/AIDS before the estimated time to end 

HIV/AIDS infection. And increasing the contact rate prolonged the HIV/AIDS more than 

time estimated by WHO.  As the rate at which non-productive classes become productive 

increases, the productive class population increases, then non-productive class of the 

population decreases, similar to the AIDS class. Hence, the productivity of infected   

working-class population increases and reduce the effect of HIV/AIDS on working-class 

populations. The novel idea of piecewise model yields better results to support the 
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theoretical solutions. Working on working-class populations used to reduce the non-

productivity of infected population and reduce inequality due to economic crisis. Reducing 

inequality reduce the number of populations infected by   HIV/AIDS infection. Our result 

confirms the result reported by Sia and colleques (Sia et al., 2020), who suggested that 

reducing inequalities is a potential strategy to reduce HIV incidence in the sub-Saharan 

Africa region. 
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