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ABSTRACT 

The Jacobi and Gauss-Seidel algorithms are among the stationary iterative methods for solving linear system 

of equations. Obtaining an approximation for the majority of sparse linear systems found in engineering 

and applied sciences requires efficient iteration approaches. Solving such linear systems using iterative 

techniques is possible, but the number of iterations is high. To acquire approximate solutions with 

rapid convergence, the need arises to redesign or make changes to the current approaches. In this 

study, a modified approach, termed the "third refinement Generalized" of the Jacobi algorithm, for 

solving linear systems is proposed. The primary objective of this research is to optimize for 

convergence speed by reducing the number of iterations and the spectral radius. Decomposing the 

coefficient matrix using a standard splitting strategy and performing an interpolation operation on the 

resulting simpler matrices led to the development of the proposed method. The study points out that, 

using the third refinement generalized of Jacobi method, we obtain a solution of a problem with a 

minimum number of iteration and obtain a greater rate of convergence than other previous methods 

like Jacobi, refinement Jacobi, refinement generalized Jacobi and second refinement generalized 

Jacobi. 

Keywords and phrases: Generalized of Jacobi (GJ); Refinement of generalized Jacobi (RGJ) method; Second-

refinement of generalized Jacobi (SRGJ) iterative method; Third-refinement of generalized Jacobi (3rdRGJ) 

iterative method. 

INTRODUCTION 
We consider third-refinement of generalized Jacobi iterative method (3rdRGJ). It is a refinement of second-
refinement of generalized Jacobi iterative method (RSRGJ), hence here after we call third- refinement 
generalized Jacobi iterative method (3rdRGJ). In many application one face with the problem of large and sparse 
linear systems of the form 

                Ax = b                     (1) 

where A = (ai j) is nonsingular real matrix of order n, b is a given n dimensional real vector and x is an n dimensional 
vector to be determined. Iterative methods, based on splitting A into A = Tm — Em — Fm, where Tm is a banded matrix 

with band width 2m+1 , 0iia  and Em and Fm a   r  e      strictly lower and upper triangular part of Tm- A  respectively, 

can compute successive approximations to obtain more accurate solutions to a linear system at each iteration step n. 
Third-refinement of generalized Jacobi (3rdRGJ) iterative method is used to accelerate the convergence of basic 
Jacobi iterative method. It has been proved that, if A is strictly diagonally dominant (SDD) or irreducibly 
diagonally dominant (IDD), then the associated Jacobi iteration converges for any initial guess.  

The Jacobi iteration (J) for first degree is 

                             x(n+1) = D—1(L + U )x(n) + D—1b              (2) 

PRELIMINARY 

Let A = (ai j) be an nxn matrix and Tm = (ti j) be a banded matrix of bandwidth 2m + 1 
defined as : 
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   We consider the decomposition 
mmMMM FandEwhereFETA    are the 

strict lower and upper part of the matrix A Tm, respectively. 
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Definition 1: (varga,2000). For n x n real matrices A, M, and N, A = M - N is a regular splitting of the 

matrix A if M is nonsingular with 01 M  and 01 N  .   Similarly, A = M - N is weak regular 

splitting of the matrix A if M is nonsingular with 01 M  and 01  NM . 

The following definitions, lemmas and theorems are important for our study used (Young, 1971, Varga,2000, 

Datta,1995, Hackbusch,2016 and Saad,2003). 

Definition 2: If a matrix A is strictly diagonally dominant or irreducibly diagonally dominant, then it is 
nonsingular. 

Definition 3: A complex matrix 
nxnCA    is reducible if and only if there exist a permutation matrix 

P (i.e., P is obtained from the identity I by a permutation of the rows of I) and an integer such 
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Where A11 is kxk and A22 is (n-k)x(n-k) . If A is not reducible, then A is said to be irreducible. 
Definition 4: An nxn marix A = (ai j) is said to be strictly diagonally dominant (SDD) if   
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Definition 5: If an nxn marix A = (ai j) is said to be diagonally dominant (DD) if 

 

       

 

 

Definition 6: A is irreducibly diagonally dominant (IDD) if A is irreducible and diagonally dominant, with 
strict inequality holding in definition 2 for at least one i. 
Definition 7: An nxn matrix A = (ai j) is said to be symmetric positive definite (SPD) if A is symmetric, (A = 

AT ) and positive definite xT Ax > 0 for all 0x . 
 

Definition 8: A matrix is said to be an M-matrix if it satisfies the following four properties: 
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Alternatively, A matrix  
nxnA   ,   n is said to be an M-matrix if A can be written as A = sI - B, where 

0B  and )(Bs   . 

Definition 9: The spectral radius matrix A is the largest absolute value of the eigenvalues of A: 

 )(:max)( AA     

Lemma 1: The spectral radius satisfies the following rules 

• ρ(kA) = |k|ρ(A) for all k ∈ C and A ∈ Cnxn. 

• ρ(Ak) = (ρ(A))k for all k ∈ N and A ∈ Cnxn. 

• ρ(A) = ρ(AH) = ρ(AT ) for all A ∈ Cnxn. 

Theorem 1: A linear iteration Φ(x, b) = Mx + Nb with the iteration matrix  

M = M[A] is convergent if and only if ρ(M) < 1. 

Theorem 2: Let A = M - N be a regular splitting of the matrix A. Then ρ(M—1N) < 1 if and only if A is 

nonsingular and A—1 ≥ O. 

Theorem 3: Let A = (ai j), B = (bi j) be two matrices such that A ≤ B and bi j ≤ O for all ji  . Then if A is 

an M-matrix, so is the matrix B. 

 

GENERALIZED JACOBI (GJ) ITERATIVE METHOD 

The system of linear equation (1) is solved by different iterative methods. One of them is GJ iterative method. This 
method was first proposed by D.K. Salkuyeh, 2007. 

If equation (1) can be written as (Tm — Em — Fm)x = b 
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This scheme is called Generalized Jacobi (GJ) iterative method for m = 0, 1, 2,  

 If m = 0, then GJ = J. 

Refinement Generalized Jacobi (RGJ) Method 

Generalized Jacobi (GJ) iterative method is a few modification of Jacobi iterative method and refinement of 

generalized Jacobi (RGJ) iterative method is similarly a few modification of generalized Jacobi iterative method. 

It is a method with a few computations. This method was first introduced by V. B. Kumar Vatti and G. G. Gonfa 

,2011. Equation (1) with A = Tm — Em — Fm can be written as: 
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The above equation is called refinement of generalized Jacobi (RGJ) iterative method for m = 0, 1, 2,… If m 
= 0, then RGJ = RJ. One can get by similar method (step) the second refinement generalized Jacobi 
(SRGJ) iterative method  

 

 

Third-Refinement Generalized Jacobi (3rdRGJ) Method 
In this paper we need to introduce third-refinement of generalized Jacobi (3rd RGJ) iterative method. By taking 
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The above equation (5) is called third refinement generalized Jacobi (3rdRGJ) method for m = 0,1,2,… If m 
= 0, then 3rd RGJ = 3rdRJ. 

 

Convergence of Third-Refinement Generalized Jacobi (3rdRGJ) Method 
Theorem 4: If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the 
associated Jacobi iterations converge for any x(0). 

See the proof in R. S. Varga,2000. 
Theorem 5: If A and 2D - A are symmetric and positive definite matrices, then the Jacobi method is convergent 
for any initial guess. 
Given:- A and 2D - A are symmetric and positive definite matrices. 
Required:- the Jacobi method is convergent for any initial guess. 

Proof: et A and 2D - A be SPD. We know 0* Axx  and 0)2(*  xADx , 
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And we consider 

 

 

 

 

   

 

 

 

 

From * and **, we get 11   .Where λ is the eigenvalues of )(1 tLLD   . 

Hence, 1))(( 1  tLLD . 

Theorem 6: (Salkuyeh,2007 ): If A is an M-matrix, then the Jacobi iterative method is convergent for any 
initial guess x0. 
Given:- A is an M-matrix. 
Required:- The Jacobi iterative method is convergent for any initial guess x0. 

Proof:- Given A is M-matrix. Let A = M - N. DMULDA   

 and MAULN   s o  by theorem 8 M is M-matrix. 

01  M . On the other hand 01 N . 

NMA  is a regular splitting of the matrix A. Having in mind that 01 A   
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Theorem 7: Let A be an SDD matrix. Then for any natural number m < n the generalized Jacobi (GJ) 

iterative method is convergent for any initial guess x(0). 

Given:- A be an SDD matrix. 
Required:- For any natural number m < n the generalized Jacobi (GJ) iterative method is convergent for 
any initial guess x(0). 

Proof:- See the proof in D. K. Salkuyeh,2007. 

Theorem 8: If A and ATm 2  are symmetric and positive definite matrices, then the Generalized Jacobi 

(GJ) iterative method converges for any initial guess x(0). 

Given:- A and ATm 2  are symmetric and positive definite matrices. 

Required:- The Generalized Jacobi (GJ) iterative method converges for any initial guess x(0).  

Proof: Let A and ATm 2  be SPD. 

We know that 0)2(0 **  xATxandAxx m
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Theorem 9: Let A be an M-matrix. Then for a given natural number m < n, the GJ method is convergent for 

any initial guess x(0). 

Given:- A be an M-matrix. 

Required:- For a given natural number m < n, the GJ method is convergent for any initial guess x(0). 

Proof: (Salkuyeh, 2007). Let 
mm TM  and 
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Obviously, in this case we have
mMA   . Hence by Theorem 3, we conclude that the matrix Mm is an M-

matrix. On the other hand we have Nm ≥ O. Therefore, 

 
mm NMA   is a regular splitting of the matrix A. Having in mind that A—1 ≥ 0 and by theorem 2, we 

deduce that  .1)( 
m

GJB  

Theorem 10: If A is strictly diagonally dominant matrix, then the refinement generalized Jacobi method 
converges for any choice of the initial approximation x(0). 
Given:- A is strictly diagonally dominant matrix. 

Required:- The refinement  generalized Jacobi method converges for any choice of the initial approximation 

x(0). 

Proof: (Vatti and et al,2011 ). Assuming x~  is the real solution of (1), as A is SDD by Theorem 7, generalized 

Jacobi method is convergent.  

Let xx n ~)1( 
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Theorem 11: If A and ATm 2  are SPD matrix, then the refinement generalized Jacobi iterative method is 

convergent for any initial guess x(0). 

Given:- A and ATm 2  are SPD matrix. 

Required:- The refinement generalized Jacobi iterative method is convergent for any initial guess x(0). 

Proof: Using equation (3) and by theorem 8, we have 1))((
1


 t

mmm EET . 

 
Theorem 12: Let A = (ai j) be an M-matrix. Then for a given natural number m < n , the refinement of 
generalized Jacobi method converges for any choice of initial approximation x(0). 
Given:- A = (ai j) be an M-matrix. 
Required:- For a given natural number m < n, the refinement of generalized Jacobi method converges for any 
choice of initial approximation x(0). 

Proof: It follows from theorem 9. See Vatti and et al,2011. 

Theorem 13: If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the 
second-refinement generalized Jacobi iterations converge for any x(0). 
Given:- A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix. 
Required:- The second-refinement of generalized Jacobi iterations converge for any x(0). 
Proof: Let X be the real solution of (1). Given that A is SDD, using theorem 4, 7, and 10, the J,GJ and 

RGJ methods are convergent and hence x(n+1) X (exact Solution). As we mentioned above by theorem 10 one 

can prove the second-refinement of generalized Jacobi iterations method (SRGJ) converge for any x(0).  

Theorem 14: If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the third-

refinement of generalized Jacobi iterations (3rdRGJ) converge for any x(0). 

Given:- A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix. 
Required:- The third-refinement of generalized Jacobi iterations converge for any x(0). 

Proof: Let X be the real solution of (1). Given that A is SDD, using theorem 4, 7, 10 and 13, the J,GJ , 

RGJ and SRGJ methods are convergent and hence xx n  )1(  (exact Solution). As we mentioned above by 

theorem 13,  
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Therefore, the SRGJ iterative method is convergent. 

Theorem 15: If A and ATm 2   are SPD matrices, then the third refinement generalized Jacobi (3rdRGJ) 

iterative method is convergent for any initial guess x(0). 

Given:- A and ATm 2  are SPD matrices. 

Required:- The third refinement generalized Jacobi (3rdRGJ) iterative method is convergent for any initial 
guess x(0). 

Proof:- Using equation (3) and by theorem 8, we have   1)((
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Thus  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
Therefore, the third-refinement of generalized Jacobi (3rdRGJ) iterative method is convergent. 

Theorem 16:- If A is an M-matrix, then the third-refinement generalized Jacobi iterative method is convergent 

for any initial guess x(0).  

Given:- A is an M-matrix. 

Required:- The third refinement generalized Jacobi (3rdRGJ) iterative method is convergent for any initial 

guess x(0). 

Proof: We are given that A is an M-matrix. We want to show that 3rdRGJ iterative method is convergent. 

From theorem 9 one can see that GJ iterative method is convergent. 
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 Therefore  3rdRGJ iterative method is convergent if A is an M-matrix. 

Theorem 17:-The third-refinement  generalized Jacobi method converges faster than the generalized Jacobi, 

refinement of generalized Jacobi method and second refinement generalized Jacobi method when generalized 

Jacobi method is convergent. 

Given:- when generalized Jacobi method is convergent. 

Required:- The third-refinement  generalized Jacobi method converges faster than the generalized Jacobi, 

refinement  generalized Jacobi method and second refinement  generalized Jacobi method.  
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Let us consider generalized Jacobi method: 

Now let us consider refinement generalized Jacobi method: 

 

 

 

 

 

 

Again let us consider third-refinement generalized Jacobi method: 

 
According to the coefficients of the above inequalities, we have  

.1sin
24

 GceGGG
nnn  

Therefore, the third-refinement generalized Jacobi method converges faster than the generalized Jacobi method and 

refinement generalized Jacobi method. 

Numerical Examples 

Example 1: Consider the following system of linear equations whose coefficient matrix is both SDD and SPD 

with tolerance 0.0001. 
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Given:- The matrix SDD and SPD with tolerance 0.0001. 

Required:- Find the spectral radius and the iteration of the given matrix. 

Solution:-  Let us consider spectral radius and solution 
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Table 1. Spectral Radius 

Method J GJ RGJ SRGJ 3rdRGJ 

Spectral 

Radius 

0.5146 0.2972 0.0884 0.0263 0.0078 

 

Table 1 shows that the 3rdRGJ method has small spectral radius than J, GJ,RGJ and SRGJ whereas Table 2 shows 

that the third- refinement of generalized Jacobi (3rdRGJ) iterative method is much better than generalized Jacobi 

(GJ) method, refinement  generalized Jacobi (RGJ) method and second refinement  generalized Jacobi (SRGJ) 

method.  

Example 2: Consider the following system of linear equations whose coefficient matrix is SDD but not SPD 
with tolerance 0.0001. 
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Given:- The matrix SDD but not SPD with tolerance 0.0001. 

Required:- Find the spectral radius and the iteration of the given matrix. 

Solution:-  Let us consider spectral radius and solution: 
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Table 2. Numerical results of example 7.1 and comparison between GJ, RGJ , SRGJ   and 3rdRGJ. 
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Table 3. Spectral radius 

Method J GJ RGJ SRGJ 3rdRGJ 

Spectral 

Radius 

0.7937 0.4844 0.2346 0.1136 0.050 

Table 3 shows that the 3rdRGJ has small spectral radius than J, GJ,RGJ and SRGJ whereas Table 4 shows that the 

third- refinement of generalized Jacobi (3rdRGJ) iterative method is much better than Jacobi method, generalized 

Jacobi (GJ) method , refinement  generalized Jacobi (RGJ) method and second refinement  generalized Jacobi 

(SRGJ) method . We can also compare the iteration number, i.e, GJ at 14, RGJ at 7 , SRGJ at 5 and 3rdRGJ at 4. 

So our new method is better than others. 
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Table 4. Numerical results of example 7.2 and comparison between GJ, RGJ , SRGJ and 3rdRGJ. 

 GJ RGJ SRGJ 3rdRGJ  

n X1
(n) X2

(n) X3
(n) X1

(n) X2
(n) X3

(n) X1
(n) X2

(n) X3
(n) X1

(n) X2
(n) X3

(n) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0.5980 1.3529 0.3676 0.7820 1.1690 0.7357 0.9010 1.0824 0.8601 0.9500 1.0398 0.9356 

2 0.7820 0.1690 0.7357 0.9502 1.0398 0.9356 0.9884 1.0093 0.9847 0.9973 1.0022 0.9964 

3 0.9010 1.0824 0.8601 0.9884 1.0093 0.9847 0.9987 1.0011 0.9982 0.9999 1.0001 0.9998 

4 0.9502 1.0398 0.9356 0.9973 1.0022 0.9964 0.9999 1.0001 0.9998 1.0000 1.0000 1.0000 

5 0.9764 1.0193 0.9699 0.9994 1.0005 0.9992 1.0000 1.0000 1.0000    

6 0.9884 1.0093 0.9847 0.9999 1.0001 0.9998       

7 0.9944 1.0045 0.9925 1.0000 1.0000 1.0000       

8 0.9973 1.0022 0.9964          

9 0.9987 1.0011 0.9982          

10 0.9994 1.0005 0.9992          

11 0.9997 1.0002 0.9996          

12 0.9999 1.0001 0.9998          

13 0.9999 1.0001 0.9999          

14 1.0000 1.0000 1.0000          
 
 

Example 3: Consider the following system of linear equations whose coefficient matrix is SPD but not SDD with tolerance 0.0001. 

 

 

 

 

 

 

Given:- The matrix SPD but not SDD with tolerance 0.0001. 

Required:- Find the spectral radius and the iteration of the given matrix. 

Solution:-  Let us consider spectral radius and solution:- 
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Table 5. Spectral radius 

Method J GJ RGJ SRGJ 3rdRGJ 

Spectral 

Radius 

1.4900 12.8739 165.7364 2133.6854 2.74x104 

The iterative solution of the above equation diverges from the exact solution. The system has no solution when we 

apply Jacobi, Generalized Jacobi method, refinement of generalized Jacobi method, second refinement of 

generalized Jacobi method and third refinement of generalized Jacobi method. Since the eigenvalues of iteration 

matrix is greater than one. We know that the Jacobi method to be convergent the matrix should satisfy the 

following conditions: 

(1) A must be SPD, and 

(2) 2Tm — A must be SPD 

Example 4: Consider the following system of linear equations whose coefficient matrix is SDD but not PD and 
SPD with tolerance 0.0001. 

 

 

 

Given:- The matrix SDD but not PD and SPD with tolerance 0.0001. 

Required:- Find the spectral radius and the iteration of the given matrix. 

Solution:-  Let us consider spectral radius and solution 

Table 6. Spectral radius 

Method J GJ RGJ SRGJ 3rdRGJ 

Spectral 

Radius 

0.6227 0.2939 0.0863 0.0254 0.0175 

 

Table 6 shows spectral radius of the methods whereas Table 7 shows that the Third- Refinement of Generalized Jacobi 

(3rdRGJ) iterative method is much better than Jacobi(J),Generalized Jacobi (GJ) method, Refinement of 

Generalized Jacobi (RGJ) method and Second Refinement of Generalized Jacobi (SRGJ) method. We can 

also conclude that 3rdRGJ method minimizes iteration number to half as compared to GJ method. 

Example 5: Consider the following system whose coefficient matrix is an M-matrix (or 2-cyclic matrix), which 

arises from the discretization 

 
of the Poisson equation, on the unit square as considered                                                                                                                                                                                                              
 
 
by Vatti and Genanew,2011, Datta,1995 and Dafchahi,2008, with tolerance 0.00001. Now consider Ax = b 
where m = 1, X = (x1 x2 x3 x4 x5 x6)

T and b = (1 0 0 0 0 0)T or    
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Table 7. Numerical results of example 7.4 and comparison between GJ, RGJ ,SRGJ and 3rdRGJ. 

 

 

 

 

 

 

 

 

 GJ RGJ SRGJ 3rdRGJ  

n X1
(n) X2

(n) X3
(n) X1

(n) X2
(n) X3

(n) X1
(n) X2

(n) X3
(n) X1

(n) X2
(n) X3

(n) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1.1098 1.1503 1.4624 0.9370 0.9509 0.9574 1.0040 1.0076 1.0296 0.9959 0.9970 0.9988 

2 0.9370 0.9509 0.9574 0.9959 0.9970 0.9988 0.9997 0.9998 1.0000 1.0000 1.0000 1.0000 

3 1.0040 1.0076 1.0296 0.9997 0.9998 1.0000 1.0000 1.0000 1.0000    

4 0.9959 0.9970 0.9988 1.0000 1.0000 1.0000       

5 1.0000 1.0004 1.0020          

6 0.9997 0.9998 1.0000          

7 1.0000 1.0000 1.0001          

8 1.0000 1.0000 1.0000          
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Table 8. Spectral radius 

Method J GJ RGJ SRGJ 3rdRGJ 

Spectral 

Radius 

0.6036 0.3867 0.1496 0.0578 0.0224 

Table 9. (a) Numerical results of Example 5 and comparison between GJ, RGJ and SRGJ. 

GJ, for m = 1 

n x1
(n) x2

(n) x3
(n) x4

(n) 
x5

(n) x6
(n) 

0 0 0 0 0 0 0 

1 0.2679 0.0714 0.0179 0 0 0 

2 0.2679 0.0714 0.0179 0.0772 0.0408 0.0147 

3 0.2917 0.0897 0.0261 0.0772 0.0408 0.0147 

4 0.2917 0.0897 0.0261 0.0850 0.0483 0.0186 

5 0.2944 0.0926 0.0278 0.0850 0.0483 0.0186 

6 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193 

7 0.2948 0.0931 0.0281 0.0860 0.0495 0.0193 

8 0.2948 0.0931 0.0281 0.0861 0.0497 0.0194 

9 0.2948 0.0932 0.0281 0.0861 0.0497 0.0194 

10 0.2948 0.0932 0.0281 0.0861 0.0497 0.0195 

11 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195 

 

( b) 

RGJ Iterative method, for m = 1 

n x1
(n) x2

(n) x3
(n) x4

(n) 
x5

(n) x6
(n) 

0 0 0 0 0 0 0 

1 0.2679 0.0714 0.0179 0.0772 0.0408 0.0147 

2 0.2917 0.0897 0.0261 0.0850 0.0483 0.0186 

3 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193 

4 0.2948 0.0931 0.0281 0.0861 0.0497 0.0194 

5 0.2948 0.0932 0.0281 0.0861 0.0497 0.0195 

6 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195 

(c). 

 

SRGJ Iterative method, for m = 1 

n x1
(n) x2

(n) x3
(n) x4

(n) 
x5

(n) x6
(n) 

0 0 0 0 0 0 0 

1 0.2917 0.0897 0.0261 0.0772 0.0408 0.0147 

2 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193 

3 0.2948 0.0932 0.0281 0.0861 0.0497 0.0194 

4 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195 
 
 
 



Third Refinement Generalized Jacobi Iterative Method                                                    Eneyew      35 

( d)       

3rdRGJ Iterative method, for m = 1 

n x1
(n) x2

(n) x3
(n) x4

(n) 
x5

(n) x6
(n) 

0 0 0 0 0 0 0 

1 0.2917 0.0897 0.0261 0.0850 0.0481 0.0156 

2 0.2948 0.0931 0.0271 0.0860 0.0497 0.0194 

3 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195 

Table 8 shows spectral radius of the methods whereas Table 9(a)-(d) shows that the third- refinement of 

generalized Jacobi (3rdRGJ) iterative method is much better  than Jacobi method (J), generalized Jacobi (GJ) 

method, refinement of generalized Jacobi (RGJ) and second refinement of generalized Jacobi (SRGJ) method. So 

our new method is better than the others. 

CONCLUSION 

In this study, the third refinement generalized of Jacobi method using the properties of “refinement 

Jacobi method” and “generalized Jacobi method” applied successfully to get the third refinement 

generalized Jacobi method. Convergence of the method is verified with the help of successive iterations 

and spectral radius. The validity of the result is also verified by comparing them with previous results 

using the rate of convergence of stationary iterative process depends on spectral radius of the iterative matrix, 

any reasonable modification of iterative matrix that will reduce the spectral radius and increases the rate of 

convergence of that method. We can give the general conclusion by using table: 
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Table 10. Summary for Examples 1 to 5 

 

 1 2 3 4 5 

Methods 
Number  

of 

Iterations 

Spectral 

Radius 

Number  

of 

Iterations 

Spectral 

Radius 

Number  

of 

Iterations 

Spectral 

Radius 

Number 

 of 

Iterations 

Spectral 

Radius 

Number 

of 

Iterations 

Spectral 

Radius 

J 15 0.5146 37 0.7937 - 1.4900 23 0.6227 19 0.6036 

RJ 8 0.2649 18 0.6294 - 2.2202 12 0.3879 10 0.3643 

SRJ 5 0.1362 12 0.5000 - 3.3082 8 0.2415 7 0.2199 

GJ 8 0.2972 14 0.4844 - 12.874 8 0.2939 11 0.3867 

RGJ 4 0.0884 7 0.2346 - 165.74 4 0.0863 6 0.1496 

SRGJ 3 0.0263 5 0.1136 - 2133.7 3 0.0254 4 0.0578 

3rdRGJ 2 0.0078 4         0.050 - 27400 2 0.0175 3 0.0224 
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In this paper, we found for m = 1 that third-refinement of generalized Jacobi iterative method for solving linear 

system of equations which uses to minimize the number of iteration almost by half as compared to refinement 

generalized Jacobi iterative method and the rate of convergence of third-refinement of generalized Jacobi method is 

more better than the others method and it has smallest spectral radius. This means that the new method that we 

found is much fastest than Jacobi, generalized Jacobi and second refinement generalized Jacobi method. More 

over one can find for m = 2, 3, ... 
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