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ABSTRACT

The Jacobi and Gauss-Seidel algorithms are among the stationary iterative methods for solving linear system
of equations. Obtaining an approximation for the majority of sparse linear systems found in engineering
and applied sciences requires efficient iteration approaches. Solving such linear systems using iterative
techniques is possible, but the number of iterations is high. To acquire approximate solutions with
rapid convergence, the need arises to redesign or make changes to the current approaches. In this
study, a modified approach, termed the "third refinement Generalized" of the Jacobi algorithm, for
solving linear systems is proposed. The primary objective of this research is to optimize for
convergence speed by reducing the number of iterations and the spectral radius. Decomposing the
coefficient matrix using a standard splitting strategy and performing an interpolation operation on the
resulting simpler matrices led to the development of the proposed method. The study points out that,
using the third refinement generalized of Jacobi method, we obtain a solution of a problem with a
minimum number of iteration and obtain a greater rate of convergence than other previous methods
like Jacobi, refinement Jacobi, refinement generalized Jacobi and second refinement generalized
Jacobi.

Keywords and phrases: Generalized of Jacobi (GJ); Refinement of generalized Jacobi (RGJ) method; Second-
refinement of generalized Jacobi (SRGJ) iterative method; Third-refinement of generalized Jacobi (3RGJ)
iterative method.

INTRODUCTION

We consider third-refinement of generalized Jacobi iterative method (3"RGJ). It is a refinement of second-
refinement of generalized Jacobi iterative method (RSRGJ), hence here after we call third- refinement
generalized Jacobi iterative method (3"RGJ). In many application one face with the problem of large and sparse
linear systems of the form

Ax=b Q)
where A = (a; ;) is nonsingular real matrix of order n, b is a given n dimensional real vector and x is an n dimensional
vector to be determined. Iterative methods, based on splitting A into A = T, — E,, — F,, where Ty, is a banded matrix
withband width2m+1, &, = 0 and Ej, and F, are strictly lower and upper triangular part of T,,~ A respectively,

can compute successive approximations to obtain more accurate solutions to a linear system at each iteration step n.
Third-refinement of generalized Jacobi (3"RGJ) iterative method is used to accelerate the convergence of basic
Jacobi iterative method. It has been proved that, if A is strictly diagonally dominant (SDD) or irreducibly
diagonally dominant (IDD), then the associated Jacobi iteration converges for any initial guess.

The Jacobi iteration (J) for first degree is

x™D = D YL +U)x™ +D o %)
PRELIMINARY

Let A = (& ;) be an nxn matrix and Ty, = (t; ;) be a banded matrix of bandwidth 2m + 1
defined as :

ey i jl<m
" 0, otherwise
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We consider the decomposition A=T,, —E,, —F,, where —E_ and —F, arethe
strict lower and upper part of the matrix A Ty, respectively.

a, . . . a,, 0 .. 0
0
T,=|-8nw - - - . S -
0
0 0. a,, a,,
0 0
Em = '_am+2,1 0
—a,; . . . —Q 54, 0
0 . . . -, a,,
I:m = an—m—l,n
o . . . . .. 0

Definition 1: (varga,2000). For n x n real matrices A, M, and N, A =M - N is a regular splitting of the
matrix A if M is nonsingular with M " >0 andN " >0 . Similarly, A =M - N is weak regular
splitting of the matrix A if M is nonsingular with M ~* > 0 and M N > 0.

The following definitions, lemmas and theorems are important for our study used (Young, 1971, Varga,2000,
Datta,1995, Hackbusch,2016 and Saad,2003).

Definition 2: If a matrix A is strictly diagonally dominant or irreducibly diagonally dominant, then it is
nonsingular.

Definition 3: A complex matrix A e C ™ js reducible if and only if there exist a permutation matrix
P (i.e., P is obtained from the identity | by a permutation of the rows of I) and an integer such
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PAPT :[All Ale
0 A,

Where Ay, is kxk and A, is (n-k)x(n-k) . If A is not reducible, then A is said to be irreducible.
Definition 4: An nxn marix A = (a;;) is said to be strictly diagonally dominant (SDD) if

n
laq|> Dla

j=lj#l

i
Definition 5: If an nxn marix A = (a;;) is said to be diagonally dominant (DD) if

n
la;|> >la

j=Lj=1

ij

Definition 6: A is irreducibly diagonally dominant (IDD) if A is irreducible and diagonally dominant, with
strict inequality holding in definition 2 for at least one i.

Definition 7: An nxn matrix A = (a;;) is said to be symmetric positive definite (SPD) if A is symmetric, (A =
AT) and positive definite X" Ax > 0 forall x = 0.

Definition 8: A matrix is said to be an M-matrix if it satisfies the following four properties:
(1) a; >0 fori=1..,n
(2)a; <0fori=j,i, j=1..,n
(3) Aisnonsin gular
(4)A*=0
Alternatively, A matrix A e R™" , nis said to be an M-matrix if A can be written as A = sl - B, where

B>0and s>o(B) .
Definition 9: The spectral radius matrix A is the largest absolute value of the eigenvalues of A:

o(A) =max{1: 1 e a(A)}

Lemma 1: The spectral radius satisfies the following rules
L p(kA)=1k|p(A) for allk € C and A € C™.

. p(AY=(p(A)) forallk € N and A € C™

. p(A) = p(A") = p(AT) for all A € C™,

Theorem 1: A linear iteration ®(x,b) = Mx +Nb with the iteration matrix

M = M[A] is convergent if and only if p(M) <1.

Theorem 2: Let A =M - N be a regular splitting of the matrix A. Then p(M—'N) < 1 if and only if A is
nonsingular and A~ > O.

Theorem 3: Let A= (a;), B = (b;) be two matrices such that A< Band b;;< O foralli # j. Thenif Ais

an M-matrix, so is the matrix B.

GENERALIZED JACOBI (GJ) ITERATIVE METHOD

The system of linear equation (1) is solved by different iterative methods. One of them is GJ iterative method. This
method was first proposed by D.K. Salkuyeh, 2007.

If equation (1) can be written as (T, —E,—Fy)x=b
= X" =T Y(E, +F)x" +T,7b
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XD =T 7(E, +F,)x™ +T,7'b €)
This scheme is called Generalized Jacobi (GJ) iterative method form =0, 1, 2,

Ifm=0, then GJ =1J.

Refinement Generalized Jacobi (RGJ) Method

Generalized Jacobi (GJ) iterative method is a few modification of Jacobi iterative method and refinement of
generalized Jacobi (RGJ) iterative method is similarly a few modification of generalized Jacobi iterative method.
It is a method with a few computations. This method was first introduced by V. B. Kumar Vatti and G. G. Gonfa
,2011. Equation (1) with A =T,— E,,—F, can be written as:

= (T,—E,—F,)x=b

=T x=(E,+F,)x+b

=T x=(T,—A)Xx+b,whereE,, +F,=T,—A

=T, x=T,xb— Ax

= x=x+T, " (b— Ax)

= X" =X 4T (b — AX"V) where X =T, (E, + F,)x™ + T,
= x" =T YE, +F)x™+T, "b+T “(b— AT, '(E, + F)x™ +T "'b)
collect like terms and after simplification ,we get

X =[x T A(E, +F )X+ (1 +T,(E, + F,)T, 'b)

The above equation is called refinement of generalized Jacobi (RGJ) iterative method form =0, 1, 2,... Ifm
= 0, then RGJ = RJ. One can get by similar method (step) the second refinement generalized Jacobi
(SRQGJ) iterative method

X0 [T (E, + F) X +[1 4T, M (E, + F) + (T, N(E, + F))IT, b (4)

Third-Refinement Generalized Jacobi (3™RGJ) Method
In this paper we need to introduce third-refinement of generalized Jacobi (3™ RGJ) iterative method. By taking

equation X"V =X ™ 4T “(h— AX™Y)
Substitute equation (4) on x*™, We get
= XD 2 [1 E, + )X (14T, (E, + )+ (T, (B, + Fo )T, b+
T, 0= AT, (B, + F) X + (14T, (€, + F,) + (T, (E, + F, )T, 'b)
= xD [T E, + )X (14T, (E, + o)+ (T (B, + F))?)T, b+

T, 0T, —Ey — F (T B+ F) X+ (14T, 6, + B+ (T, (6, + F )T, ),
where A=T, -E, —F, ,After some like term collectionand simplificaion ,
we get the following formula

= X = [T, (E, + F) X [T, By + F) + (T, + F))? + (T, (B + F))TT, b

Let G=T, "(E, +F,) ,thenonecan putthe above equation as follow
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X" =Gx™ +[1+G+G*+G*IT, b )
The above equation (5) is called third refinement generalized Jacobi (3“RGJ) method for m = 0,1,2,... If m
=0, then 3¥RGJ = 3"RJ.

Convergence of Third-Refinement Generalized Jacobi (3"'RGJ) Method
Theorem 4: If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the
associated Jacobi iterations converge for any x©.

See the proof inR. S. Varga,2000.

Theorem 5: If A and 2D - A are symmetric and positive definite matrices, then the Jacobi method is convergent
for any initial guess.

Given:- A and 2D - A are symmetric and positive definite matrices.

Required:- the Jacobi method is convergent for any initial guess.

Proof: et Aand 2D - A be SPD. We know X~ AX > 0 and X' (2D-A)x>0,
where A=D-L-L".

= D'(L+L")x=Ax

= (L+L")x = ADx

= X (L+L)x = Ax"Dx
= X Dx—x Ax = Ax Dx
= X Ax=(1-1)x Dx
=1-1>0

=A<l

And welconsider ... *

X' (2D-A)x>0

= 2X Dx—Xx Ax>0

= X Ax < 2x"Dx

= @1-A)XDx<2xDx=1-1<2
=>A>-1

A>T

From * and **, we get —1< A <1.Where 1 is the eigenvalues of D*(L + L") .

Hence, o(D (L +L")) <1.

Theorem 6: (Salkuyeh,2007 ): If A is an M-matrix, then the Jacobi iterative method is convergent for any
initial guess x°.

Given:- A is an M-matrix.

Required:- The Jacobi iterative method is convergent for any initial guess x°.

Proof:- Given A is M-matrix. Lee A=M-N. A=D-L-U=>M=D

and N=L+U = A<M so by theorem 8 M is M-matrix.

— M ™ >0.0ntheotherhand N * >0.

.. A=M — N isaregular splitting of the matrix A. Having in mind that At>0
and by theorem 7, we deduce thatg(c;J )<1.
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Theorem 7: Let A be an SDD matrix. Then for any natural number m < n the generalized Jacobi (GJ)

iterative method is convergent for any initial guess x©.

Given:- A be an SDD matrix.

Required:- For an(g natural number m < n the generalized Jacobi (GJ) iterative method is convergent for
any initial guess x®.

Proof:- See the proof in D. K. Salkuyeh,2007.

Theorem 8: If A and 2Tm — A are symmetric and positive definite matrices, then the Generalized Jacobi
(GJ) iterative method converges for any initial guess x©.

Given:- Aand 2T, — A are symmetric and positive definite matrices.

Required:- The Generalized Jacobi (GJ) iterative method converges for any initial guess x©.

Proof: LetAand 2T,, — A be SPD.

We know that X' Ax >0 and X (2T, —A)x>0 ,where A=T_-E,-E'

=T, (E, +E, )x=Ax
= (E, +E, )x=AT x

= X' (E, + E," )x=AXT,x
= XT,Xx—X AX=AXT X
= X Ax = (1-)XT x
=1-1>0

=A<l
A<l s XEE

And we consider

X (2T, - A)x>0

=S 2X T, Xx-X Ax>0
= X AX<2X'T, X

= L-A)XT, X< 2XT, X
=1-1<2

=>A>-1

SLA>-1 L KRR

From *** and **** we get —1 <A <1. where 1 is the eigenvalues of Tm’l(Em + Emt)
Hence, o (T, (E, +E,")) <1

Theorem 9: Let A be an M-matrix. Then for a given natural number m <n, the GJ method is convergent for
any initial guess x©.
Given:- A be an M-matrix.

Required:- For a given natural number m <n, the GJ method is convergent for any initial guess x°.
Proof: (Salkuyeh, 2007). Let M n=Tn and N,=E, +F, in the GJ method.
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Obviously, in this case we have A < M ., - Hence by Theorem 3, we conclude that the matrix M,, is an M-
matrix. On the other hand we have N, > O. Therefore,
A=M, — N, isaregular splitting of the matrix A. Having in mind that A~1>0 and by theorem 2, we

deduce that o(Bg,™) <1.

Theorem 10: If A is strictly diagonally dominant matrix, then the refinement generalized Jacobi method
converges for any choice of the initial approximation x©.
Given:- A is strictly diagonally dominant matrix.
R(e)quired:- The refinement generalized Jacobi method converges for any choice of the initial approximation
()
X,
Proof: (Vatti and et al, 2011 ). Assuming X is the real solution of (1), as A is SDD by Theorem 7, generalized
Jacobi method is convergent.
H(b _ Ax(n+l) ‘

Let X" — X (exact solution). Then we have
From the fact X" —X| —0 . we have Hb— Ax (™D

Hx(n+1) _ YH < X(n+1) v +”Tm4

‘ —>0 . Therefore,

HX(M) - YH —> 0. Hence refinement of generalized Jacobi method is convergent.

Theorem 11: If A and 2T, — A are SPD matrix, then the refinement generalized Jacobi iterative method is
convergent for any initial guess , (0)

Given:- Aand 2T — A are SPD matrix.
Required:- The refinement generalized Jacobi iterative method is convergent for any initial guess , (0)

Proof: Using equation (3) and by theorem 8, we have 0'(Tm*1(Em + Emt ) <1.

Theorem 12: Let A = (a; ;) be an M-matrix. Then for a given natural number m < n, the refinement of
generalized Jacobi method converges for any choice of initial approximation x2.

Given:- A = (a;;) be an M-matrix.

Required:- For a given natural number m < n, the refinement of generalized Jacobi method converges for any
choice of initial approximation x©.

Proof: It follows from theorem 9. See Vatti and et al,2011.

Theorem 13: If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the
second-refinement generalized Jacobi iterations converge for any x©.

Given:- Ais a strictly diagonally dominant or an irreducibly diagonally dominant matrix.

Required:- The second-refinement of generalized Jacobi iterations converge for any x©.

Proof: Let X be the real solution of (1). Given that A is SDD, using theorem 4, 7, and 10, the J,GJ and
RGJ methods are convergent and hence x™? X (exact Solution). As we mentioned above by theorem 10 one
can prove the second-refinement of generalized Jacobi iterations method (SRGJ) converge for any x©.
Theorem 14: If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the third-
refinement of generalized Jacobi iterations (3RGJ) converge for any x©.

Given:- A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix.

Required:- The third-refinement of generalized Jacobi iterations converge for any x©.

Proof: Let X be the real solution of (1). Given that A is SDD, using theorem 4, 7, 10 and 13, the J,GJ,
RGJ and SRGJ methods are convergent and hence x" — x (exact Solution). As we mentioned above by

theorem 13,
X0 =1 AE, + F)] KO [+ TN E, + Fo) + (T, En + Fo))? + (T, (B + Fo)) ot
(T (E, +F,)"T "b.
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XM =KD LT HEb— AXP) or x™ —x =X —x+T_(b— AX™?).
Then,

||x("*1) - x|| = Hi(“*“ —x+T H(b— AX"™)

<[ s
T, (b - AXC)
T+ |- AR =0+

. fo-o

o)
- A

Tm’l“.o ,since AX™ 0

=[x —xf<[x " =+ <[xe o+

= e - <[z o +

= ||x‘”*1) - x||£ 0+

= x™" _x=0

(n+1)

Hence x - X

x (M — [I'm’l(Em +F)PX™ +[I +Tm71(Em +F,)+ (Tnfl(Em + Fm)thmflb is convergent, so
XM 5 x.

ol €, + F) |= (0T, (E, + F) <1

Therefore, the SRGJ iterative method is convergent.

Theorem 15: If A and 2T - A are SPD matrices, then the third refinement generalized Jacobi (3"RGJ)

iterative method is convergent for any initial guess x©.
Given:- A and 2T, — A are SPD matrices.

Requir?oc)i:- The third refinement generalized Jacobi (3"RGJ) iterative method is convergent for any initial
guess X

Proof:- Using equation (3) and by theorem 8, we have o-(Tm’l(Em + Em‘) <1.
Let x be the exact solution of (1). Then the generalized Jacobi iterative method can be written as

x=0-T, (E, +F )T, "bif x™ —mx. Using equation (5):

XD [T (E, + F )XV 401 4T, (E, + F,)+ (1, (B, + F ) + (T, (E, + F)FTT, b,
Now using equation (4) and the exact solution x, we have:

= x= (1= (T, (B, + F)") '[N+ (T, (B, + Fo) + (T, (B + o)) +
(T (B + F))IT, b
= x=[(1+ T, (E, +F))' + (T, (B + )’ 4.0 + (T, (B +F) + (T, (B, +F)) +
(T, (E, +F,))°IT. 'b. since 1—x) " =1+ +x° +....
= x=[1+(T, (Ey + F) + (T, (Ep + F)) + (T, (B + F))P + (T (B + Fy))* +..1T, b,
= x=[1-(T, *(E, + F,)T, "'b. isconsistent to (1) and generalized Jacobi method. On the other hand,
KD [T, + )| X0 04T, (B, + F) + (1,(By + F)) 41, (B, + FFTT, .
We are given that A is SPD then G(Tm_l(Em +En') <1.

X0 [T HE, + F) XD 4 [1 4T, (B, + Fo) + (T, (B + F))? + (T, (B + Fy)) ot
(T, (B, + F,)IT, b,

X = A(E, + F)[ X 4 [+ T + Fy) o+ (T (B + F))2 o (T (B Fo)) ot
(T, (E, + F,))"°IT, b.
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Thus
lim[T_*(E, +F)]"** =0

lim x® = imfT, (€, + F,)] " @ 4 [1 4T, (E,, + F) + (T, M, + F,))2 +

X—0

(Mo (En +F))’ +ot (T, (B, +F,) ™I, b,

limx=0+(1-T, (E, +F, )T, "

X—00

limx=(1-T, " (E, +F,)) T, "
(1-T, (E, +F,) T, b > x
ol(T, (B +Fu)1=[o(T, *(E, + FI' <1

Therefore, the third-refinement of generalized Jacobi (3"RGJ) iterative method is convergent.

Theorem 16:- If A is an M-matrix, then the third-refinement generalized Jacobi iterative method is convergent
for any initial guess x©.

Given:- Aisan M-matrix.

Requir?oc)i:- The third refinement generalized Jacobi (3“RGJ) iterative method is convergent for any initial
guess X

Proof: We are given that A is an M-matrix. We want to show that 3"RGJ iterative method is convergent.
From theorem 9 one can see that GJ iterative method is convergent.

o(T, (E, +F,) <1. Using theorem 1 and 12,
O-(BRG.]) = G([Tm_l(Em + Fm)]z) = [O-(Tm_l(Em + I:m ))]2 <1l

0 (Bgey) <1. ) .,

0 (Byige,) =0Ty (B, +F)IN) =[o(T, (B, + F,))]* <L.
Using  theorem
12,

~.o(B <1.

3" RGJ )

Therefore 3"RGJ iterative method is convergent if A is an M-matrix.

Theorem 17:-The third-refinement generalized Jacobi method converges faster than the generalized Jacobi,
refinement of generalized Jacobi method and second refinement generalized Jacobi method when generalized
Jacobi method is convergent.

Given:- when generalized Jacobi method is convergent.

Required:- The third-refinement generalized Jacobi method converges faster than the generalized Jacobi,
refinement generalized Jacobi method and second refinement generalized Jacobi method.

Proof: We have by equation 3, x™*? = Gx™ +k , by equation 4, x(" =G? x™ +k, and by equation5,
xMD — g4 x™ 4 k, where
G=T,"(E,+F,) .k=Tn'b ,k,=(1+G)T, b and k, =(1 +G+G? +G*)T, 'b. Given
that HGH <1

Let x be the exact solution of (1), so we have

x =Gx™ +k ,x =G*x™ +k, and x =G*x™ +k,



Third Refinement Generalized Jacobi Iterative Method Eneyew 27

Let us consider generalized Jacobi method:
Now let us consider refinement generalized Jacobi method:

ie. x™ =Gx™ +k

= XM _x =6x™ —x+k
= XM _x =G(Xx™ = x) +Gx+k —x
= x" —x =G(x" —x)

X _x H = HG(X(") - x)H <|g||

G"[[lx® =) =[c"

Gn

xM — xH < HGZHH(X(H) - x)H <..<

= (x® — X)H

=

XD _x H <

o)

ie X" =G2x™ 4k,

= XM —x =G*x™W —x+k
= X" —x =G’ (x™ - x) + G*x +k, — X
= XM _x =G?*(x —x)

X =x [ =[6* (" x| < |6

-]

= G

o)

A <fo o).

o)

. GZn GZn

X(n+1) —x H S‘

Again let us consider third-refinement generalized Jacobi method:

According to the coefficients of the above inequalities, we have

6] <[l6]™ <[l6]" since [G] <1.

H 1] 4

ie x™ =G*x™ +k,

= X" —x =G*x™ —x+Kk,

= X" —x =G*(x™ = x) + G*x+k, —x

=xM" _x =G*(x" -x)

0 - o -] ok x| < oo - .. e
S o e o )

Therefore, the third-refinement generalized Jacobi method converges faster than the generalized Jacobi method and
refinement generalized Jacobi method.

= (x® —x)H

=

Numerical Examples
Example 1: Consider the following system of linear equations whose coefficient matrix is both SDD and SPD
with tolerance 0.0001.

6X, +2X,+2X;= 5
2X, +8X, +2X;= 6
2X +2X%, +10x; = 7
Given:- The matrix SDD and SPD with tolerance 0.0001.

Required:- Find the spectral radius and the iteration of the given matrix.
Solution:- Let us consider spectral radius and solution
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Table 1. Spectral Radius
Method J GJ RGJ SRGJ 3“RGJ
Spectral 0.5146 | 0.2972 | 0.0884 0.0263 0.0078
Radius

Table 1 shows that the 3RGJ method has small spectral radius than J, GJ,RGJ and SRGJ whereas Table 2 shows
that the third- refinement of generalized Jacobi (3“RGJ) iterative method is much better than generalized Jacobi
(GJ) method, refinement generalized Jacobi (RGJ) method and second refinement generalized Jacobi (SRGJ)

method.

Example 2: Consider the following system of linear equations whose coefficient matrix is SDD but not SPD

with tolerance 0.0001.
6X, +4X,—X,= 9
X +TX, +2%, = 12
—4X +3X%, +8%, = 7

Given:- The matrix SDD but not SPD with tolerance 0.0001.
Required:- Find the spectral radius and the iteration of the given matrix.

Solution:- Let us consider spectral radius and solution:
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Table 2. Numerical results of example 7.1 and comparison between GJ, RGJ, SRGJ and 3"RGJ.
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Table 3. Spectral radius

Method J GJ RGJ SRGJ 3RGJ
Spectral 0.7937 0.4844 0.2346 0.1136 0.050
Radius

Table 3 shows that the 3RGJ has small spectral radius than J, GJ,RGJ and SRGJ whereas Table 4 shows that the
third- refinement of generalized Jacobi (3"RGJ) iterative method is much better than Jacobi method, generalized
Jacobi (GJ) method , refinement generalized Jacobi (RGJ) method and second refinement generalized Jacobi
(SRGJ) method . We can also compare the iteration number, i.e, GJ at 14, RGJ at 7, SRGJ at 5 and 39RGJ at 4.
So our new method is better than others.
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Table 4. Numerical results of example 7.2 and comparison between GJ, RGJ, SRGJand 3"RGJ.
GJ RGJ SRGJ 3RGJ
n xl(”) XZ(”) XS(”) Xl(n) XZ(”) X3(n) xl(n) xz(n) XS(H) xl(") XZ(”) XB(H)
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.5980 1.3529 0.3676 0.7820 1.1690 0.7357 0.9010 1.0824 0.8601 0.9500 1.0398 0.9356
2 0.7820 0.1690 0.7357 0.9502 1.0398 0.9356 0.9884 1.0093 0.9847 0.9973 1.0022 0.9964
3 0.9010 1.0824 0.8601 0.9884 1.0093 0.9847 0.9987 1.0011 0.9982 0.9999 1.0001 0.9998
4 0.9502 1.0398 0.9356 0.9973 1.0022 0.9964 0.9999 1.0001 0.9998 1.0000 1.0000 1.0000
5 0.9764 1.0193 0.9699 0.9994 1.0005 0.9992 1.0000 1.0000 1.0000
6 0.9884 1.0093 0.9847 0.9999 1.0001 0.9998
7 0.9944 1.0045 0.9925 1.0000 1.0000 1.0000
8 0.9973 1.0022 0.9964
9 0.9987 1.0011 0.9982
10 | 0.9994 1.0005 0.9992
11 | 0.9997 1.0002 0.9996
12 | 0.9999 1.0001 0.9998
13 | 0.9999 1.0001 0.9999
14 | 1.0000 1.0000 1.0000

Example 3: Consider the following system of linear equations whose coefficient matrix is SPD but not SDD with tolerance 0.0001.

6X, +4X, +3X,; =
4X, +5X, +2X, =
3X, +2X, + 2%, =

13
11
7

Given:- The matrix SPD but not SDD with tolerance 0.0001.

Required:- Find the spectral radius and the iteration of the given matrix.

Solution:- Let us consider spectral radius and solution:-
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Table 5. Spectral radius

Method J GJ RGJ SRGJ 3RGJ
Spectral 1.4900 12.8739 | 165.7364 2133.6854| 2.74x10"
Radius

The iterative solution of the above equation diverges from the exact solution. The system has no solution when we
apply Jacobi, Generalized Jacobi method, refinement of generalized Jacobi method, second refinement of
generalized Jacobi method and third refinement of generalized Jacobi method. Since the eigenvalues of iteration
matrix is greater than one. We know that the Jacobi method to be convergent the matrix should satisfy the
following conditions:

(1) A must be SPD, and

(2) 2T,—A must be SPD

Example 4: Consider the following system of linear equations whose coefficient matrix is SDD but not PD and
SPD with tolerance 0.0001.

5% +3%,+X,= 9
4%, —6X, +X; = -1
2X + X, +4%, = 7

Given:- The matrix SDD but not PD and SPD with tolerance 0.0001.
Required:- Find the spectral radius and the iteration of the given matrix.
Solution:- Let us consider spectral radius and solution

Table 6. Spectral radius

Method J GJ RGJ SRGJ 3RGJ
Spectral 0.6227 0.2939 0.0863 0.0254 0.0175
Radius

Table 6 shows spectral radius of the methods whereas Table 7 shows that the Third- Refinement of Generalized Jacobi
(3RGJ) iterative method is much better than Jacobi(J),Generalized Jacobi (GJ) method, Refinement of
Generalized Jacobi (RGJ) method and Second Refinement of Generalized Jacobi (SRGJ) method. We can
also conclude that 3™RGJ method minimizes iteration number to half as compared to GJ method.

Example 5: Consider the following system whose coefficient matrix is an M-matrix (or 2-cyclic matrix), which
arises from the discretization

of the Poisson equation, on the unit ﬁJrﬂ: f square as considered
ox2 ayz

by Vatti and Genanew,2011, Datta,1995 and Dafchahi,2008, Wlth tolerance 0.00001. Now consider Ax = b
wherem=1, X=(X; Xo X3 X4 X5 xe) andb=(10 000 0o

4 -1 0 -1 0 0}Yx
-1 4 -1 0 -1 0 |x
0 -1 4 0 0 -1x
-1 0 0 4 -1 O0]|x,
0 -1 0 -1 4 -1|x
0 0 -1 0 -1 4 )X

O O O O O -
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Table 7. Numerical results of example 7.4 and comparison between GJ, RGJ SRGJand 3"RGJ.
GJ RGJ SRGJ 3'RGJ
n xl(n) XZ(”) x3(n) Xl(n) Xz(n) XS(”) xl(n) Xz(”) x3(n) xl(”) xz(n) XB(H)
0|0 0 0 0 0 0 0 0 0 0 0 0
1 | 1.1098 1.1503 1.4624 0.9370 0.9509 0.9574 1.0040 1.0076 1.0296 0.9959 0.9970 0.9988
2 | 0.9370 0.9509 0.9574 0.9959 0.9970 0.9988 0.9997 0.9998 1.0000 1.0000 1.0000 1.0000
3 | 1.0040 1.0076 1.0296 0.9997 0.9998 1.0000 1.0000 1.0000 1.0000
4 | 0.9959 0.9970 0.9988 1.0000 1.0000 1.0000
5 | 1.0000 1.0004 1.0020
6 | 0.9997 0.9998 1.0000
7 | 1.0000 1.0000 1.0001
8 | 1.0000 1.0000 1.0000
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Table 8. Spectral radius

Method J GJ RGJ SRGJ 3"RGJ

Spectral 0.6036 0.3867 0.1496 0.0578 0.0224

Radius

Table 9. (a) Numerical results of Example 5 and comparison between GJ, RGJ and SRGJ.

(b)

©).

GJ,form=1
PO NI ) RO ) RSO ) R () RN ()
0 0 0 0 0 0
0.2679 0.0714 0.0179 0 0 0
0.2679 0.0714 0.0179 0.0772 0.0408 0.0147
0.2917 0.0897 0.0261 0.0772 0.0408 0.0147
0.2917 0.0897 0.0261 0.0850 0.0483 0.0186
0.2944 0.0926 0.0278 0.0850 0.0483 0.0186
0.2944 0.0926 0.0278 0.0860 0.0495 0.0193
0.2948 0.0931 0.0281 0.0860 0.0495 0.0193
0.2948 0.0931 0.0281 0.0861 0.0497 0.0194
0.2948 0.0932 0.0281 0.0861 0.0497 0.0194
0.2948 0.0932 0.0281 0.0861 0.0497 0.0195
0.2948 0.0932 0.0282 0.0861 0.0497 0.0195
RGJ lterative method, form =1
B I ORI ) RN ) RN )R () R ()
0 0 0 0 0 0 0
1| 0.2679 0.0714 0.0179 0.0772 0.0408 0.0147
2| 0.2917 0.0897 0.0261 0.0850 0.0483 0.0186
3| 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193
4| 0.2948 0.0931 0.0281 0.0861 0.0497 0.0194
5| 0.2948 0.0932 0.0281 0.0861 0.0497 0.0195
6| 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195
SRGJ Iterative method, for m =1
B B O RS ) RN () O ) R () RN ()
0 0 0 0 0 0 0
1| 0.2917 0.0897 0.0261 0.0772 0.0408 0.0147
2| 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193
3| 0.2948 0.0932 0.0281 0.0861 0.0497 0.0194
4| 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195
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(d)

3RGJ Iterative method, for m = 1

x1 M xo(M) xg(") xa( xs(M xg(M
0 0 0 0 0 0

0.2917 0.0897 0.0261 0.0850 0.0481 0.0156

0.2948 0.0931 0.0271 0.0860 0.0497 0.0194

0.2948 0.0932 0.0282 0.0861 0.0497 0.0195

WIN B OS5

Table 8 shows spectral radius of the methods whereas Table 9(a)-(d) shows that the third- refinement of
generalized Jacobi (3RGJ) iterative method is much better than Jacobi method (J), generalized Jacobi (GJ)
method, refinement of generalized Jacobi (RGJ) and second refinement of generalized Jacobi (SRGJ) method. So
our new method is better than the others.

CONCLUSION

In this study, the third refinement generalized of Jacobi method using the properties of “refinement
Jacobi method” and “generalized Jacobi method” applied successfully to get the third refinement
generalized Jacobi method. Convergence of the method is verified with the help of successive iterations
and spectral radius. The validity of the result is also verified by comparing them with previous results
using the rate of convergence of stationary iterative process depends on spectral radius of the iterative matrix,
any reasonable modification of iterative matrix that will reduce the spectral radius and increases the rate of
convergence of that method. We can give the general conclusion by using table:
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Table 10. Summary for Examples 1 to 5
1 5

Number Spectral Number Spectral | Number Spectral |  Number Spectral Number Spectral

Methods |  of Radius of Radius | of Radius of Radius of Radius

Iterations Iterations Iterations Iterations Iterations

J 15 0.5146 37 0.7937 | - 1.4900 23 0.6227 19 0.6036
RJ 8 0.2649 18 0.6294 | - 2.2202 12 0.3879 10 0.3643
SRJ 5 0.1362 12 0.5000 | - 3.3082 8 0.2415 7 0.2199
GJ 8 0.2972 14 0.4844 | - 12.874 8 0.2939 11 0.3867
RGJ 4 0.0884 7 0.2346 | - 165.74 4 0.0863 6 0.1496
SRGJ 3 0.0263 0.1136 | - 2133.7 3 0.0254 4 0.0578
3“RGJ 2 0.0078 0.050 | - 27400 2 0.0175 3 0.0224
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In this paper, we found for m = 1 that third-refinement of generalized Jacobi iterative method for solving linear
system of equations which uses to minimize the number of iteration almost by half as compared to refinement
generalized Jacobi iterative method and the rate of convergence of third-refinement of generalized Jacobi method is
more better than the others method and it has smallest spectral radius. This means that the new method that we
found is much fastest than Jacobi, generalized Jacobi and second refinement generalized Jacobi method. More
overonecanfindform=2,3, ...
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