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Abstract 
The concept of relativistic multipole expansion is applied to determine the multipole 
moments of the electric potential of a charged system moving at constant velocity with 
respect to a stationary observer. A system of discrete point charges and a charged plate of 
uniform surface charge density were considered for analysis. For relativistic 
considerations, two reference frames: namely S and Sˊ were chosen. Sˊ, which contains the 
charged system, is moving with constant velocity relative to frame S, to which stationary 
observer is attached. For easy comparison, both multipole expansions are expressed in 
terms of the coordinates of the Sˊ frame. The two observers in S and Sˊ, in general, 
calculate different expressions of multipole expansion for the same charged system 
because of Lorentz contraction effect. The multipole terms of the potential evaluated by 
the observer in S is time dependent. This shows that there are also magnetic effects, which 
are not observed by an observer in Sˊ. 

Keywords: Charge Density; Electric Potential; Magnetic Vector Potential; Multipole     
                    Expansion 
_________________________________________________________________________ 

INTRODUCTION 
The connection between electromagnetism and relativity is not as well understood as we 
would like to believe. Multipole expansion is one of the most important special techniques 
for solving electrostatic problems (Griffiths, 1999; Jackson, 1999; Neyfeh and Brussel, 
2015). Its importance originates from the fact that it gives more informative non-zero value 
of electrostatic potential even if the total charge of a given localized charge distribution is 
zero. Beyond electrostatics, multipole expansion has also a wide range of applications in 
various aspects of physics and mathematics such as magic cubes (Rogers and Loly, 2005), 
magnetostatics (Griffiths, 1999; Jackson, 1999; Neyfeh and Brussel, 2015), gravitational 
field (Blanchet, 1998), radiation (Nieminen et al., 2003), and others (Paolis et al., 1995; 
Gonzalez, 1998; Esbensen and Bertulani, 2002; Qian and Krimm, 2005; Taylor and Love, 
2009; Anandakrishnan et al., 2013; Zhou et al., 2016; Frutos-Alfaro and Soffel, 2018). 
Therefore, careful understanding of its concept and the possibility of its applications in 
various fields are crucial for scholars working in the area of electromagnetic theory. 
Multipole expansion of electric potential has been limited to cases in which the observer is 
at rest relative to the charged system and relativistic consideration of its multipole 
expansion has not been reported in literature. However, determination of the potential of a 
moving charged system with respect to an observer at rest in another frame of reference in 
a more informative way is quite interesting. Further concepts of multipole expansion such 
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as relativistic multipole moments of stationary space-times (Frutos-Alfaro and Soffel, 
2018) and multipole expansion for relativistic Coulomb excitation (Esbensen and 
Bertulani, 2002) have been reported in literature. However, the present problem is still not 
addressed in the reported research works.   

The retarded potential of a point charge q that is moving on a specified trajectory (Lienard-
Wiechert potentials) has been reported and even included on main reference books for 
electromagnetic theory (Griffiths, 1999; Jackson, 1999). Even though point charge can be 
regarded as the limit of an extended charge when the size goes to zero, Lienard-Wiechert 
potentials cannot be really applied when there is a system of moving point charges or 
extended charge distribution of significant size (Griffiths, 1999). 

Therefore, a simple and reliable technique of determining the relativistic multipole 
expansion of the electric potential is presented in this work. This gives the most important 
experience of computing multipole moments of the potential of a system of point charges 
or a uniformly charged rigid object moving at constant velocity with respect to an observer 
at rest. It is important to use the term ‘retarded potential’ if one is dealing with changing 
charge density, for example, the charge density prevailed at some retarded time 𝑡𝑡𝑟𝑟. 
However, throughout this article, non-changing charge density is considered and the term 
‘retarded potential’ is used. First, the theoretical model and method is presented and the 
mathematical formulation of the problem follows.  

THEORETICAL MODEL AND METHOD  
Consider two reference frames S and 𝑆𝑆ˊ with origins at O and Oˊ, respectively, as shown 
below (Fig.1) and where we have 𝑆𝑆ˊmoving with constant velocity v with respect to S. 
Suppose that, in the frame 𝑆𝑆ˊ, there is a charge distribution that is localized in a volume V 
and characterized by a constant density 𝜌𝜌 at any time t.  
The displacements 𝐫𝐫ˊ and 𝐫𝐫ˊˊ locate an element of charge relative to Oˊ and O, respectively.  
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 Fig. 1: Two reference frames S and 𝑆𝑆ˊ with origins at O and Oˊ, respectively. 𝑆𝑆ˊ, 
containing a charge distribution that is localized in a volume V and characterized by a 
density 𝜌𝜌, is moving with constant velocity v with respect to S.  
The displacements R and 𝐑𝐑ˊ locate a point in space outside the charge distribution, where 
we wish to determine the scalar potential ϕ. If one attaches two observers at points O and 
Oˊ, then the observer at point Oˊ is stationary relative to the charge distribution. Therefore, 
the multipole expansion of the potential evaluated by this observer is the same as that 
reported in literature (Griffiths, 1999; Jackson, 1999; Neyfeh and Brussel, 2015). 
However, one may ask the question that: what is the multipole expansion of the potential 
as evaluated by and observer at point O? This is particularly interesting if v approaches the 
speed of light and hence the name relativistic multipole expansion is used in this context. 
Answering this question really advances electromagnetic theory one step forward and has a 
high contribution in broadening the conceptual understanding of both undergraduate and 
postgraduate students. Just to follow common approaches of solving problems in 
electromagnetic theory, both discrete and continuous charge distributions are used for 
analysis of the problem. 
    

RESULTS  
Consider Fig. 1, let us evaluate the multipole expansion of the potential with respect to 
point Oˊ for the arbitrary charge distribution localized in a rather small region of space in 
frame 𝑆𝑆ˊ. This problem is discussed in detail (Neyfeh and Brussel, 2015). In this case, the 
potential ϕ(R) is given by: 

ϕ(R) = 1
4πε0

∫ dq
|𝐑𝐑 − 𝐫𝐫ˊ|  .                                                                           (1) 
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Assuming |𝐫𝐫
ˊ|

|𝑹𝑹| ≪ 1, the term in the integrand can be expanded as follows.  

1
|𝐑𝐑 − 𝐫𝐫ˊ| = 1

|𝐑𝐑| {1 − 2𝐑𝐑. 𝐫𝐫ˊ
|𝐑𝐑|2 + [𝐫𝐫

ˊ

𝐑𝐑]
2
}
1
2

 .                                                      (2) 

Let us now write the binomial expansion,  

(1 + x)−
1
2 = [1 − 1

2 x − 1
2 (−

3
2)

x2
2! + ⋯ ] , |x| < 1.                             (3) 

In equation (2), using  x = 2𝐑𝐑.𝐫𝐫ˊ
|𝐑𝐑|2 + [𝐫𝐫

ˊ

𝐑𝐑]
2
 and grouping the powers of  |𝐫𝐫

ˊ|
|𝑹𝑹| in ascending order,  

1
|𝐑𝐑 − 𝐫𝐫ˊ| = 1

|𝐑𝐑| {1 + 𝐑̂𝐑. 𝐫𝐫ˊ
|𝐑𝐑| + 1

2 [3 (
𝐑̂𝐑. 𝐫𝐫ˊ
|𝐑𝐑| )

2

− [𝐫𝐫
ˊ

𝐑𝐑]
2

] + ⋯ },                  (4) 

Therefore, the potential becomes,  

ϕ(𝐑𝐑) = 1
4πє0

1
|𝐑𝐑|∫dq + 1

4πє0
1

|𝐑𝐑|2 𝐑̂𝐑.∫ 𝐫𝐫ˊdq

+ 1
4πє0

1
|𝐑𝐑|3 ∫ [3(𝐑̂𝐑 − 𝐫𝐫ˊ)2 − (𝐫𝐫ˊ)2

2 ] dq.                    (5) 

ϕ(𝐑𝐑) = (ϕ(0))ˊ + (ϕ(1))ˊ + (ϕ(2))ˊ + ⋯,                                               (6) 

Where (ϕ(0))ˊ, (ϕ(1))ˊand (ϕ(2))ˊare the monopole, dipole and quadrupole terms, 
respectively. This is the multipole expansion of the potential calculated by an observer at 
point Oˊ at rest relative to the localized charge distribution and is an obvious result reported 
in several reference books of electromagnetic theory (Griffiths, 1999; Jackson, 1999; 
Neyfeh and Brussel, 2015). Now consider an interesting situation in which the observer at 
point O evaluates the multipole expansion for the same localized charge distribution, 
which however, is moving with constant velocity v along positive x-axis. For the observer 
attached with Sˊ (at point Oˊ), the  displacement vector between the localized charge dq and 
a point in space outside the charge distribution where we wish to determine the scalar 
potential ϕ is 𝐑𝐑 − 𝐫𝐫ˊ. But, for an observer attached with S (at point O), this displacement 
vector measures 𝐑𝐑ˊ − 𝐫𝐫ˊˊ and is different from 𝐑𝐑 − 𝐫𝐫ˊ due to length contraction
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For an observer at point O, equation (5) becomes,  

ϕ(𝐑𝐑ˊ) = 1
4πє0

1
|𝐑𝐑ˊ|∫dq + 1

4πє0
1

|𝐑𝐑ˊ|2 𝐑𝐑
ˊ̂. ∫ 𝐫𝐫ˊˊdq

+ 1
4πє0

1
|𝐑𝐑ˊ|3 ∫ [3(𝐑𝐑

ˊ̂ − 𝐫𝐫ˊˊ)2 − (𝐫𝐫ˊˊ)2

2 ] dq.               (7) 

ϕ(𝐑𝐑ˊ) = ϕ(0) + ϕ(1) + ϕ(2) + ⋯.                                                               (8) 

 
Where ϕ(0), ϕ(1) and  ϕ(2) are the monopole, dipole and quadrupole terms, respectively, 
as evaluated by this observer. This is not much interesting since the effect of the Lorentz 
contraction on the multipole expansion is not observed here. Moreover, it is difficult to 
compare the two expansions (5) and (7). Hence, let us take another illustrative view by 
focusing on the displacement vector 𝐑𝐑ˊ − 𝐫𝐫ˊˊ. For an observer at point Oˊ, 

𝐑𝐑 = Rxi + Ryj + Rzk,                                                                                  (9) 

𝐫𝐫ˊ =  rˊx i + rˊy j + rˊz k,                                                                           (10) 

However, for an observer at point O,  

𝐑𝐑 = Rx
γ i + Ryj + Rzk,                                                                                 (11) 

𝐫𝐫ˊ =  rˊx
γ  i + rˊy j + rˊz k,                                                                           (12) 

Where γ = 1

√1−v
2

c2

. 

Note that only the components of the vectors parallel to the velocity v of the Sˊ frame are 
Lorentz contracted. Therefore,  

𝐑𝐑ˊ − 𝐫𝐫ˊˊ = (Rx
γ i + Ryj + Rzk) − ( rˊx

γ  i + rˊy j + rˊz k).                (13) 

Moreover, at any time t,  

𝐫𝐫ˊˊ𝑥𝑥 = rˊx
γ + vt,                                                                                          (14) 

Therefore, 𝐫𝐫ˊˊ = (r
ˊx
γ + vt) i + rˊy j + rˊz k,                                         (15) 

Hence 𝐑𝐑ˊ can be expressed as  

𝐑𝐑ˊ = [(Rx
γ i + Ryj + Rzk) − (rˊx

γ  i + rˊy j + rˊz k)] + 𝐫𝐫ˊˊ.             (16) 
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𝐑𝐑ˊ = [(Rx
γ i + Ryj + Rzk) − ( rˊx

γ  i + rˊy j + rˊz k)] + (rˊx
γ + vt) i + rˊy j + rˊz k.      (17) 

𝐑𝐑ˊ = (Rx
γ + vt) i + Ryj + Rzk.                                                                                                    (18) 

Now, with the obtained expressions of 𝐫𝐫ˊˊ and  𝐑𝐑ˊ, equation (7) can readily be expressed in 
terms of the coordinates of the Sˊ frame and this allows us easily compare the two 
expansions. Hence, the monopole, dipole, and quadrupole terms of equation (5) are given 
by 

(ϕ(0))ˊ = 1
4πє0

1
|𝐑𝐑|∫dq = 1

4πє0
1

|𝐑𝐑| Q,                                                                                  (19) 

Where Q is the total net charge of the discrete charge distribution. 

(ϕ(1))ˊ = 1
4πє0

1
|𝐑𝐑|2 𝐑̂𝐑. ∫ 𝐫𝐫ˊdq.                                                                                                (20) 

(ϕ(2))ˊ = 1
4πє0

1
|𝐑𝐑|3 ∫ [3(𝐑̂𝐑 − 𝐫𝐫ˊ)2 − (𝐫𝐫ˊ)2

2 ] dq.                                                                (21) 

Similarly, the monopole, dipole, and quadrupole terms of equation (7) are given by, 

ϕ(0) = 1
4πє0

1
|𝐑𝐑ˊ|∫dq = 1

4πє0
1

√(Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2
∫dq.                         (22) 

= 1
4πє0

1

√(Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2
Q,                                                                          (23) 

Where Q is also the total net charge of the discrete charge distribution. 

ϕ(1) = 1
4πє0

1
|𝐑𝐑ˊ|2 𝐑𝐑

ˊ̂. ∫ 𝐫𝐫ˊˊdq.                                                                                               (24) 

 

= 1
4πє0

1

(Rx
γ + +vt)

2
+ (Ry)

2 + (Rz)2

×
(Rx
γ + vt) i + Ryj + Rzk

√(Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2
. ∫((rˊx

γ + vt) i + rˊy j + rˊz k)dq                   (25) 
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ϕ(2) = 1
4πє0

1
|𝐑𝐑ˊ|3 ∫ [3(𝐑𝐑ˊ̂ − 𝐫𝐫ˊˊ)2 − (𝐫𝐫ˊˊ)2

2 ] dq.                                                              (26) 

 

= 1
4πє0

1

((Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2)
3
2

× ∫

[
 
 
 
 
 
 
 
 
 
 
 
 
 

3

(

 
 
 
 (Rx

γ + vt) i + Ryj + Rzk

√(Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2

− ((rˊ
x

γ + vt) i + rˊ
y j + rˊ

z k)

)

 
 
 
 

2

− ((rˊ
x

γ + vt) i + rˊ
y j + rˊ

z k)
2

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 

dq  (27) 

 

DISCUSSION 
From the above results, it can be clearly seen that the expressions of the monopole, dipole, 
and quadrupole terms calculated by the two observers at O and Oˊ are in general different 
from one another. The multipole terms are only position dependent for an observer at point 
Oˊ, but they are both position and time dependent for an observer at O. In both cases, the 
presence of the monopole term indicates that far enough away the charge distribution in 
the lowest-order approximation looks like a point charge. Therefore, it is clearly observed 
that there is time dependence in the potential expansion for one observer and not for the 
other. This suggests that there are also magnetic effects observed in one frame not 
observed in the other. In particular, the time dependence of the multipole terms for an 
observer at O shows the observation of magnetic effects and this is not seen for an 
observer at Oˊ. For an observer at O, the magnetic field can be evaluated form the 
expression 𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀, where A is the magnetic vector potential which can further be 
calculated form the following expression (Griffiths, 1999). 

𝐀𝐀 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝐉𝐉(𝒓𝒓ˊˊ)𝑑𝑑𝑑𝑑

|𝑹𝑹ˊ−𝒓𝒓ˊˊ| ,                                                                                       (28) 

Where, 
𝐉𝐉 = ρ0

𝐯𝐯

√1 − v2

c2

.                                                                                              (29) 

and ρ0 is the proper charge density (Griffiths, 1999). 
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= 1
4πє0

1

((Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2)
3
2

× ∫

[
 
 
 
 
 
 
 
 
 
 
 
 
 

3

(

 
 
 
 (Rx

γ + vt) i + Ryj + Rzk

√(Rx
γ + vt)

2
+ (Ry)

2 + (Rz)2

− ((rˊ
x

γ + vt) i + rˊ
y j + rˊ

z k)

)

 
 
 
 

2

− ((rˊ
x

γ + vt) i + rˊ
y j + rˊ

z k)
2

2

]
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𝐀𝐀 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝐉𝐉(𝒓𝒓ˊˊ)𝑑𝑑𝑑𝑑
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𝐯𝐯

√1 − v2

c2
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Let us consider the case where there is a continuous charge distribution within the volume 
V. In particular, imagine a thin plate of length L and width W with charge per unit area 
(surface charge density) 𝜎𝜎0 at rest in frame 𝑆𝑆ˊ with its length oriented parallel to the 
velocity v of the frame 𝑆𝑆ˊ. Since charge is invariant, the two observers at points O and 𝑂𝑂ˊ 
measure the same charge both for the case of discrete and continuous surface charge 
distributions within the volume V. This means that the two observers measure the same 
charge on the thin plate of length L and width W. Wait a minute! Do they still measure the 
same charge density on the plate? Obviously, no. This is because of the fact that the two 
observers measure different lengths of the thin plate. For observer at point O, the length L 
is Lorentz contracted by a factor of:  

γ = 1

√1 − v2

c2
.                                                                                                      (30) 

Therefore, for this observer, the charge per unit area is increased by a factor of 𝛾𝛾. The 
charge density of the plate as viewed from point O is,   

σ = γσ0, or Q = σA = γσ0A.                                                                        (31) 

Where A is the area as measured from point O. If Qˊ is the charge on the plate as measured 
by observer at Oˊ, then Qˊ = σ0Aˊ = γσ0A, since Aˊ = γA. Therefore,  Qˊ = Q and this 
confirms that equation (7) holds true for any arbitrary charge distribution.  
 

CONCLUSION   
Using relativistic multipole expansion, the 
multipole moments of the electric potential 
of a charged system moving at constant 
velocity with respect to a stationary 
observer are determined. The two observers 
attached to points O and Oˊ, in general, 
calculate different expressions of multipole 
expansion for the same charged system 
because of Lorentz contraction effect. It is 
clearly observed that there is time 
dependence in the potential expansion for 
one observer and not for the other. This 
suggests that there are also magnetic effects 
observed in one frame not observed in the 
other.  

In summary, the manuscript tried to 
address a very problematic and subtle 
subject of the multipole moments of the 
electric potential of a charged system 
moving at constant velocity with respect to 
a stationary observer. In particular, 

different expressions of multipole 
expansion for the charged system are 
examined using non-trivia mathematical 
steps. Therefore, we strongly recommend 
scholars working in the field of 
electromagnetic theory to further 
investigate this subtle issue and include it 
in their postgraduate lessons.  
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