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Abstract 
The analysis of multi-environment trials (MET) data is a critical component of plant 

breeding and agricultural research, providing essential insights into genotype-by-

environment (GxE) interactions. However, as the complexity of MET experiments grows, 

conversional analysis of variance (ANOVA)-based methods can exhibit limitations in 

accurately capturing the underlying variance-covariance structure of genetic and non-

genetic effects. This study presents a factor analytic mixed model (FAMM) approach to 

the analysis of MET data, using a dataset of grain yield from ten common bean variety 

trials conducted in Ethiopia. This study investigated the modeling of variance-covariance 

structure for genotype-by-environment (GxE) effects and residual error in a multi-

environment field trial. The inclusion of a model with heterogeneous error variance 

resulted in a significant improvement in model fit compared to a base GxE model with 

heterogeneous genetic variance and constant error variance. Factor Analytic (FA) 

models of increasing order were then fitted, and the first three orders (FA1, FA2, and 

FA3) showed remarkable improvements in the percentage of variance explained and 

statistical significance. The FA3 model, which explained 78.12% of the total variance, 

was determined to provide the best fit between model complexity and explanatory power. 

Across the ten trial environments, the estimates of genetic variance, error variance, and 

heritability ranged widely, from 0.008 to 0.984, 0.053 to 0.695, and 65.40 to 89.86, 

respectively. This highlighted the substantial variability in the underlying genetic and 

environmental factors influencing the traits of interest. The genetic correlations between 

environments also varied from negative to positive values, indicating differing levels of 

consistency in the genetic factors across experimental conditions. These results 

demonstrate the importance of properly modeling the variance-covariance structure and 

considering the complex genotype-by-environment interactions when analyzing multi-

environment trial data. It is strongly recommended to scale up the utilization of this 

efficient analysis method to enhance varietal evaluation across diverse environments, 

and  facilitating the identification of superior varieties..  
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Introduction 
 

Crop variety development is a 

fundamental component of modern 

agriculture. Advancements in this field 

over the past century have played a 

vital role in enhancing global food 

security, improving farmer 

livelihoods, and promoting sustainable 
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farming practices (Zenad et al., 2021; 

Begna  et al. 2020). By creating high-

performing, adaptable cultivars that 

are resilient to biotic and abiotic 

stresses, researchers have enabled 

stable and abundant crop yields, 

bolstered food supplies, and supported 

the economic well-being of farming 

communities, while also facilitating 

the adoption of other sustainable 

agricultural innovations (Renard et al., 

2022 ; Zsögön et al. 2022). 

 

Continued investment and innovation 

in crop variety development will be 

crucial as the world navigates the 

complex challenges of ensuring long-

term food security and environmental 

sustainability. This domain has been a 

driving force behind the remarkable 

progress in agricultural productivity 

observed over the past decades, and 

further advancements will be essential 

for addressing the growing global 

demand for food, feed, and other 

agricultural products (Atlin et al., 

2017) 

 

The analysis of multi-environment 

trials (METs) in plant breeding and 

variety testing presents a key 

challenge, which is the need to 

appropriately model and exploit 

genotype–environment interaction 

(Smith et al., 2001a and 2021b). 

METs are a crucial element of the crop 

variety development pipeline, where 

newly bred genotypes are evaluated 

across a range of agro-ecological 

environments to capture the influence 

of diverse environmental factors on 

genotypic performance. The 

assessment of genotype-by-

environment (G×E) effects is a critical 

consideration, as it allows researchers 

to identify superior and stable crop 

varieties that can perform well under a 

range of conditions (Verbyla, 2023; 

Lee et al., 2023). 

By testing new genotypes across 

multiple environments, breeders can 

gain valuable insights into how a 

variety's traits manifest and interact 

with the local environmental context. 

This information is essential for 

selecting cultivars that exhibit both 

high productivity and reliability, 

making them suitable for deployment 

across a wide geographical area. 

Classical ANOVA-based methods, 

such as AMMI and GGE analysis, 

have enabled researchers to obtain 

insights into MET data and this benefit 

must be acknowledged. However, 

these approaches exhibit several 

limitations, particularly in handling 

unbalanced and incomplete data 

structures (Beeck et al., 2010; Zhang 

et al., 2020). 

 

The linear mixed model (LMM) 

approach has emerged as a more 

efficient and versatile methodology for 

the analysis of various types of data, 

including multi-environment trial 

(MET) data. Compared to  

conventional statistical techniques, 

LMMs provide a flexible modeling 

framework that can effectively handle 

a wide range of data structures and 

assumptions. This flexibility is a key 

advantage of the LMM approach 

(Smith et al., 2001a). 

One critical aspect of the LMM 

framework is its ability to easily 

accommodate incomplete or 
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unbalanced data, which is a common 

issue in many research studies, 

including MET experiments. MET 

data often contains missing 

observations due to various reasons, 

such as loss of experimental units, 

failed measurements, or uncontrolled 

environmental factors (Piepho, 1997; 

Smith et al., 2001a; Kelly et al., 2007). 

The LMM approach can analyze this 

type of incomplete data without the 

need to discard entire observations or 

environments, leading to more 

efficient use of the available 

information.  Beyond handling 

missing data, the LMM framework 

also offers advantages in modeling 

complex variance structures (Piepho et 

al., 20012; Smith et al., 2005). 

Depending on the research context, 

LMMs can be extended to incorporate 

various random effects and covariance 

structures to appropriately model the 

sources of variability in the data. This 

flexibility is particularly useful in 

studies involving multiple levels of 

hierarchy or repeated measurements. 

One such advanced mixed model 

approach is the Factor Analytic 

Multiplicative Mixed (FAMM) model, 

which builds upon the general LMM 

framework. The FAMM model offers 

specific advantages in estimating the 

variance structure of genotype-by-

environment (GxE) effects, which is a 

crucial aspect in the analysis of MET 

data. The FAMM model can provide a 

more informative and interpretable 

visualization of the GxE patterns, 

enabling researchers to better 

understand and leverage the complex 

interactions between genotypes and 

environments ( Smith et al., 2001b and 

2005). 

Overall, the LMM approach, and its 

extensions like the FAMM model, 

have emerged as more efficient and 

effective methodologies for the 

analysis of a wide range of data types, 

including MET data, compared to  

commonly used statistical techniques. 

The flexibility and modeling 

capabilities of LMMs make them 

invaluable tools for researchers across 

various disciplines (Kelly et al., 2007). 

The objective of this research is to 

explore the potential of FAMM 

models for effectively analyzing MET 

data and extracting meaningful 

insights from the complex G×E 

interactions.  The application of 

FAMM models is explored, as these 

approaches provide advantages in 

estimating the variance structure of 

GxE effects and enabling more 

informative visualizations. The 

ultimate goal is to provide researchers 

and breeders with a robust and 

efficient analytical tool for extracting 

meaningful insights from MET data, 

ultimately supporting the development 

of superior and adaptable crop 

varieties. 

The remainder of the paper is 

structured as follows. Section 2 begins 

by describing the multi-environment 

trial (MET) dataset used in this study. 

It then introduces the statistical models 

employed, including ANOVA-based 

models, linear mixed models, and the 

formula for calculating heritability. 

This section also provides a detailed 

account of the data analysis 

procedures implemented. The results 

from the MET data analysis are 



Ethiop. J. Crop Sci. Vol 12 No.1, 2024 

 

[81] 

presented in Section 3. Section 4 

offers a comprehensive discussion of 

the results. Finally, the study is 

concluded in Section 5. 

 

Data and Methods 
 
Motivating data 
The FAMM model analysis is 

illustrated using grain yield data from 

the 2019 and 2020 common bean 

variety trials conducted across five 

locations (Arsinegele, Bako, Goffa, 

Hawasa, and Melkassa) by the 

Ethiopian lowland pulses research 

program. Table 1 presents a summary 

of 10 trials (location by year 

combination). All the remaining trials 

were set up as randomized complete 

block (RCB) experiments with three 

replications, arranged in a rectangular 

(row x column) plot layout. The level 

of trial connectedness, as indicated by 

the number of common entries across 

trials, is high (Table 2), enabling 

doable genotype-by-environment 

(GxE) analysis. 

 

 
Table 1. Summary of trials: Trial location, year replication, number of entries, trial mean yield (t/ha), and number of 

missing values 
 

Trial Name Location Year Replication Genotype Trial Mean Missing 

AN19CBN2 Arsinegele 2019 3 100 2.86 2 
AN20CBN2 Arsinegele 2020 3 66 2.82 0 
BK19CBN2 Bako 2019 3 40 1.63 0 
BK20CBN2 Bako 2020 3 30 1.28 0 
GF19CBN2 Goffa 2019 3 40 2.32 0 
GF20CBN2 Goffa 2020 3 30 4.1 7 
HW19CBN2 Hawasa 2019 3 40 2.47 1 
HW20CBN2 Hawasa 2020 3 30 2.08 0 
MK19CBN2 Melkassa 2019 3 100 3.18 0 
MK20CBN2 Melkassa 2020 3 66 3.68 1 

 
 
Table 2 Common entries between trials 
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AN19CBN2 100          
AN20CBN2 65 66         
BK19CBN2 40 66 40        
BK20CBN2 30 66 30 30       
GF19CBN2 40 66 40 30 40      
GF20CBN2 30 66 30 30 30 30     
HW19CBN2 40 66 40 30 40 30 40    
HW20CBN2 30 66 30 30 30 30 30 30   
MK19CBN2 100 66 40 30 40 30 40 30 100  
MK20CBN2 65 66 30 30 30 30 30 30 65 66 
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ANOVA based models 
The base-line statistical model for 

MET data analysis can be written as 

 

ijjiij

ikjkjijikjy








            (1) 

 

where ijky  is yield of the i
th

 entry of 

replicate block k in environment j (i=1, 

2…m,  j=1,2…t, k=1,2…r), ij  is the 

empirical/ least-square mean effect of 

entry i in environment j,   is an 

overall mean effect, i  is the main 

effect for genotype i, kj  is the block 

effect at trial j,  ij  is the interaction 

effect for genotype i in trial j, ikj  is 

the random error effect for genotype i 

in replicate block k of trial j, assumed 

to be ),0( 2N . The analysis of this 

model follow the approaches of two 

stage data analysis, in which the two-

way table means ηij are estimated first 

from the individual trial’s analysis, 

and then the G×E analysis using GGE 

or AMMI model. The models for the 

second stage analysis can be written as  

 

ij

c

i

jlilljiij   
1

ij ))((    (2) 

 

where l = 1, 2, . . . , c, l  is the 

singular value of the l
th

  multiplicative 

or principal component (PC), with c ≤ 

min(m−1, t), il  is the eigenvector of 

genotype i for PC l, jl  is the 

eigenvector of environment j for PC l, 

and ij  is the residual associated with 

genotype i in environment j, assumed 

to be NID(0, σ
2
/r) where r is the 

number of replications within an 

environment. The models are subject 

to the constraints λ1 ≥λ2, ..., λc ≥ 0 

and orthogonally constraints on the il  

scores, that is 


c

i
liill

1
'  = 1 if i = i′ and 




c

i
liill

1
'  = 0 if i ≠ i′  with similar 

constraints on the jl  scores by 

replacing symbols (i, m, τ ) with (j, s, 

θ). AMMI analysis uses the model in 

equation 2  

 

 Linear mixed models 
A general form of linear mixed model 

for the n×1 vector y of individual plot 

yields combined across trials can be 

written as 

 

  oogg uZuZXy    (3) 

 

where τ is the a × 1 vector of fixed 

effects, ug is an mt × 1 vector of 

random G×E effects with associated 

design matrix Zg, uo is a b x 1 vector of 

(non-genetic) random effect with 

corresponding design matrix Zo, ε is 

the n × 1 vector of residual error 

across all trials. Some statistical 

assumptions are made about the 

random terms of the general linear 

mixed models. Thus, we assume that 

ug, ue and ε are mutually independent 

and have a multivariate normal 

distribution with zero means vectors 

and variance matrices var(ug) = Gg, 

var(ue) = Go  and var(ε) = R.  

 

The random non-genetic effects uo can 

be considered as sub- vectors 
)1( jb

oju
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for each trial, where 
j

b  is the number 

of random terms for trial j.  These 

random terms are based on the terms 

for the blocking structure (e.g. 

replicate blocks or rows and columns 

of the field). In the analysis of MET 

data, the sub-vectors of uo are typically 

assumed to be mutually independent, 

with variance matrix ojG for trial j that 

has a block diagonal form. Thus, there 

is a variance matrix ojj
t

o GG   for 

the set of none-genetic effects at each 

trial j.  

 

Smith et al. (2001b, 2005) presented 

an alternative parsimonious model for 

gu using a factor analysis model to 

provide a variance structure for the 

genetic variance matrix gG . This 

approach aims to simplify the 

understanding of genetic variance by 

reducing the number of parameters 

while still effectively capturing the 

underlying relationships among 

genetic traits. By employing factor 

analysis, the we sought to identify 

latent factors that account for the 

observed genetic variance, thereby 

enhancing the interpretability of 

genetic data in their research. 

 

This model can adequately represent 

the nature of heterogeneous variances 

and covariances found to occur in 

most MET data. Thus, the gu can be 

modelled with multiplicative terms. 

That is 









fI

fIfIu

m

dmdmg

)(

)(...)( 11       (4) 

where h is the 1t  vector of 

loadings, hf is the 1m  vector of 

factor scores ( dh ...1 ),   is the 

1mt  vector of residuals,   is the 

dt  matrix of loadings { 1  . . . d } 

and f  is the 1md  vector of factor 

scores )'''...'( 21 dfff . The random 

effects f and   are assumed to follow 

a normal distribution with zero mean 

vector and variance-covariance matrix 














m

mf

I

IG

0

0
      (5) 

where   is a diagonal matrix of 

specific variances represents the 

residual variance not explained by the 

factor model, that is   = diag ( 1  . . . 

t ). The factor scores are commonly 

assumed to be independent and scaled 

to have unit variance, so that fG  = dI .   

The genetic effects gu  can be 

considered as a two dimensional 

(genotype by environment) array of 

random effects, and can be assumed to 

have a separable variance structure for 

the (mt × mt ) variance matrix gG

which can be written as  

gg GG  eG           (6) 

where eG  is the tt  genetic variance 

matrix representing the variances at 

each trial and covariances between 

trials, and gG is the mm  symmetric 

positive definite matrix represents 

variances of environment effects at 

each genotype and the covariances of 

environment effects between 

genotypes. It is typically assumed that 

the varieties are independent and that 
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mg IG  . However, if the pedigree 

information of the varieties is 

available, other forms of gG can be 

applicable (Smith et al., 2001b; Oakey 

et al., 2006 and 2007). Based on 

equation 2 the variance of genetic 

effects would be 

m

mg

I

Iu





eG

)'()var(
       (7) 

Thus, the FA model approach results 

in the following form for eG  

 'eG        (8) 

In the model, the variance parametric 

in these variance matrices are directly 

estimated using REML estimation 

method.  

 

Heritability formula 
According to the methodology 

outlined by Cullis et al. (2006), the 

heritability (
2
jH ) value for the j

th
 trial 

can be calculated from a generalized 

formula that is employed within the 

context of linear mixed model 

analysis. This formula is as follows: 

 

2

2

2
1

gj

j

j

A
H


           (9) 

where jA is the average pairwise 

prediction error variance of genetic 

effects for the j
th

 environment and 
2

gj is the genetic variance at 

environment j 

 

Statistical inferences, analysis 
procedures and software 
Fitting a linear mixed model involves 

estimating the values of the fixed 

effects (τ), a random GxE effects (ug), 

the random non-genetic effects (uo), as 

well as the variance-covariance 

parameters in Gg, Go, and R. This 

estimation process comprises two 

interconnected steps. First, the 

variance parameters of the model are 

estimated using Residual Maximum 

Likelihood (REML), an approach 

introduced by Patterson and 

Thompson (1971). Second, the fixed 

and random effects are estimated using 

distinct techniques - Best Linear 

Unbiased Estimation (BLUE) is 

employed for the fixed effects, while 

Best Linear Unbiased Prediction 

(BLUP) is used for the random effects.  

 

To assess the statistical significance of 

the random effects in the linear mixed 

model, the Residual Maximum 

Likelihood Ratio Test (REMLRT) can 

be utilized. However, it is important to 

note that the REMLRT is only 

applicable when comparing the fit of 

two nested models that share the same 

fixed effects structure. 

 

The modeling of genotype-by-

environment (G×E) effects was carried 

out using the model fitting procedures 

demonstrated by De Faveri (2013) and 

Smith (1999). In this analysis, a 

combined model was first fitted, which 

is a combined form of the individual 

trial models constructed in in the 

individual trials analysis. This 

combined model forms the basis of a 

sequence of models to be fitted for the 

G×E analysis, and it helps to organize 

the trial-specific models in a combined 

form and to confirm the presence of 

genetic variance in each trial. If any 
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trial is found to have no genetic 

variance, it would be excluded from 

the multi-environment trial (MET) 

data analysis. 

 

Factor Analytic (FA) models were 

then considered. The adequacy of the 

FA models with several factors (h) 

was formally tested, as they were 

fitted within a mixed model 

framework. A model with h factors, 

denoted as FA-h, is nested within a 

model with h+1 factors. The models 

were compared, such as FA-1 versus 

FA-2, FA-2 versus FA-3, and so on. 

Both the Residual Maximum 

Likelihood Ratio Test (REMLRT) and 

the total percentage of the G×E 

variance (%var) explained by factor 

components were used to identify the 

final plausible FA models. 

The licensed version of the ASReml-R 

statistical software package was used 

to fit all models analyzed in this study 

(Butler, 2009). ASReml-R is a 

specialized software application 

designed for fitting linear mixed 

models, which was well-suited for the 

data and research questions addressed 

here. 

 

Results and Discussion 
 
Modeling variance covariance 
structure for GxE effects and 
residual error 
The inclusion of a model with 

heterogeneous error variance on top of 

the base GxE model with 

heterogeneous genetic and constant 

error variance resulted in a significant 

improvement in model fit. The 

likelihood ratio test yielded a test 

statistic of 73.62 with a p-value less 

than 0.001, indicating strong statistical 

evidence to support the inclusion of 

the heterogeneous error variance 

component (Orellana et al.,  2024 ; 

Smith et al., 2019). We then 

proceeded to fit Factor Analytic (FA) 

models up to order 4, and the first 

three orders of the FA model showed 

remarkable improvements in the 

percentage of variance explained and 

statistical significance. 

 

The FA1 model accounted for 

approximately 62.65% of the total 

variance, with a highly significant p-

value of less than 0.001 (Argaw et al., 

2024). The FA2 model improved upon 

this, explaining around 70.85% of the 

total variance, with a p-value of 0.009. 

The FA3 model further enhanced the 

explanation, capturing approximately 

78.12% of the total variance, again 

with a p-value less than 0.001. While 

the FA4 model explained an 

impressive 96.89% of the total 

variance, the statistical significance of 

this model was not significant (p-value 

<0.169), suggesting that the additional 

latent factors in the FA4 model did not 

provide a substantial improvement in 

the model fit compared to the FA3 

model (Smith et al., 2005 ; Kelly et 

al., 2009). Ultimately, we determined 

that the FA model of order 3 with 

heterogeneous error variance provided 

the best fit to the data, as it offered a 

favorable balance between model 

complexity and explanatory power, 

with significant improvements in the 

percentage of variance explained and 

statistical significance. 
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By incorporating a model with 

heterogeneous error variance, we were 

able to achieve a significant 

improvement in the model fit, 

indicating that the assumption of 

constant error variance was not 

appropriate for such types of data 

(Smith et al., 2019). The Factor 

Analytic (FA) models of increasing 

order provided valuable insights into 

the underlying structure of the data. 

The first three orders of the FA model 

(FA1, FA2, and FA3) demonstrated 

significant improvements in the 

percentage of variance explained and 

statistical significance, suggesting that 

the data had a complex covariance 

structure that could not be adequately 

captured by the base model alone. 

 

Thus, the FA model of order 3 

effectively captures the genetic 

correlations between environments, 

leading to more accurate estimates of 

genotype performance. This capability 

greatly facilitates the selection of lines 

in breeding programs, enabling 

breeders to make more informed 

decisions that enhance the overall 

effectiveness of their selection 

strategies 

 
 
Table 3. Variance covariance model comparisons for GxE effects and residual error: the total percentage of the G×E 

variance (%var) explained by the FA components, residual log-likelihoods (LR), and residual maximum 
likelihood ratio tests (REMLRT) 

 

Variance covariance models  %var LR REMLRT Final model 

H.Gvar  and  C.Evar - -188.535   
H.Gvar  and  H.Evar - -73.6252 <0.001  

FA1 and H.Evar 62.65 -33.6854 <0.001  
FA2 and H.Evar 70.85 -26.422 0.009  
FA3 and H.Evar 78.12 -18.3014 0.001 FA3 and H.Evar 
FA4 and H.Evar 96.89 -16.021 0.169  

H.Gvar =Heterogeneous genetic variance; C.Evar=constant error variance; H.Evar=heterogeneous error variance 
 

Estimates of genetic 
parameters 
Across the trials, the estimates of 

genetic variance, error variance, and 

heritability ranged from 0.008 to 

0.984, 0.053 to 0.695, and 65.40 to 

89.86, respectively, as presented in 

Table 4. Notably, the trial GF20CBN2 

had relatively high genetic and error 

variance estimates compared to the 

other trials, while the trial BK20CBN2 

had relatively low genetic and error 

variance estimates. 

 

The results revealed a wide range of 

genetic variance, error variance, and 

heritability estimates across the trials, 

suggesting substantial variability in the 

underlying genetic and environmental 

factors influencing the traits of interest 

(Smith et al., 2001; Kelly et al., 2007). 

The high genetic and error variance 

observed in the GF20CBN2 trial 

indicates that this trial site has high 

potential for discriminating between 

genotypes, but also a high degree of 

residual or unexplained variation. The 

wide range of variance components 

and heritability estimates across trials 
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highlights the complex and context-

dependent nature of the genotype-by-

environment interactions influencing 

the target traits. 

 

Conversely, the low genetic and error 

variance estimates for the BK20CBN2 

trial suggest a more homogeneous 

genetic background and a more 

controlled experimental environment, 

leading to less pronounced genetic 

effects and lower residual variation. 

These highlight the importance of 

considering the specific trial 

conditions when interpreting the 

genetic and environmental 

contributions to the observed traits 

(Beeck et al., 2010,). 

 

The genetic correlations between 

environments, presented in Table 5, 

ranged from negative to positive 

values, indicating varying degrees of 

genetic relationships across the 

experimental conditions. The estimates 

also varied from strong to relatively 

weaker correlations, suggesting 

differing levels of consistency in the 

genetic factors influencing the traits. 

 
Table 4 Summary of genetic variance, error variance and heritability from the final fitted model 

Site Genetic variance Error variance Heritability 

AN19CBN2 0.209 0.684 69.24 
AN20CBN2 0.281 0.36 81.81 
BK19CBN2 0.062 0.125 78.06 
BK20CBN2 0.008 0.053 76.4 
GF19CBN2 0.166 0.105 89.86 
GF20CBN2 0.984 0.695 88.43 
HW19CBN2 0.28 0.394 88.71 
HW20CBN2 0.197 0.142 89.42 
MK19CBN2 0.117 0.279 65.4 
MK20CBN2 0.07 0.265 70.97 
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Table 5 Summary of genetic correlation from the final fitted model analysis 

Trial 
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AN19CBN2 1          
AN20CBN2 0.675 1         
BK19CBN2 -0.523 0.187 1        
BK20CBN2 -0.349 0.315 0.974 1       
GF19CBN2 0.622 0.946 0.182 0.277 1      
GF20CBN2 0.397 0.671 0.245 0.329 0.661 1     
HW19CBN2 0.473 0.894 0.383 0.481 0.891 0.65 1    
HW20CBN2 0.651 0.926 0.217 0.353 0.901 0.654 0.868 1   
MK19CBN2 0.431 0.077 -0.134 0.062 -0.09 0.043 -0.013 0.149 1  
MK20CBN2 0.479 0.668 0.397 0.595 0.545 0.504 0.645 0.711 0.68 1 
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The visualization techniques 
from the final fitted GxE model 
The visualization techniques from the 

final fitted GxE model analysis are 

presented in Fig. 1, Fig 2 and Fig. 3. 

These visualizations provide valuable 

insights into the underlying structure 

and patterns within the data (Tesfaye 

et al., 2023; Argaw et al., 2024). 

 

The genetic correlation heat map (Fig. 

1) provides a visualization of the 

correlations between trials. The 

coloration of the heat map indicates 

the strength and direction of the 

correlations. The deep red coloration 

corresponds to strong positive 

correlations among certain trials. This 

suggests a high degree of similarity in 

the genetic responses of these trials to 

the environmental factors, indicating a 

close relationship between them. In 

contrast, the yellow hues in the heat 

map represent weak positive and 

negative correlations between other 

trial pairings (Tesfaye et al., Beeck et 

al., 2010). This indicates more 

complex or nuanced relationships 

between these trials, where the genetic 

effects are less straightforward. 

Finally, the deep blue shading in the 

heat map highlights strong negative 

correlations between specific trials 

(Cullis  et al., 2010 ; Tesfaye et al., 

2023). This suggests that these trials 

have contrasting genetic responses to 

the environmental conditions, 

implying that they represent 

significantly different growing 

environments. 

The dendrogram representation of the 

dissimilarity matrix for the dataset is 

presented in Figure 4. This 

hierarchical clustering visualization 

groups the trials based on their 

similarity, providing insights into the 

underlying relationships between the 

environments (Cullis et al., 2010; 

Argaw et al., 2023). The key 

observation from the dendrogram is 

that a dissimilarity cut-off at 0.5 

delineates three distinct trial clusters. 

The first cluster comprises 

AN19CBN2, AN20CBN2, 

GF19CBN2, GF20CBN2, 

HW19CBN2, and HW20CBn2, the 

second cluster includes MK19CBN2 

and MK20CBN2, and the third cluster 

consists of BK19CBN2 and 

BK20CBN2. This suggests that the 

trials within each of these clusters 

exhibit relatively strong correlations, 

indicating a high degree of similarity 

in the genetic responses of the 

genotypes to the environmental factors 

(Cullis et al., 20210 ; Beeck et al. 

2010). The dendrogram visualization 

allows us to identify the most closely 

related trials, which can inform the 

selection of genotypes or varieties. By 

focusing on the trials within the tightly 

clustered groups, we can make more 

informed decisions about which 

genotypes or varieties to choose based 

on their consistent performance across 

the various environments. This 

information can be valuable for 

breeders and agronomists in 

developing and deploying well-

adapted cultivars (Beeck et al., 2010; 

Burgueño et al., 2011). 

 

The FAMM analysis also generates bi-

plots, which provide further insights 

into the relationships between the trial 
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environments (Cullis et al., 2010; 

Argaw et al., 2023). The bi-plot shown 

in Fig 3 reveals patterns of correlated 

trials and highlights the discriminating 

power of individual trials. Trials with 

longer arms extending from the center 

of the bi-plot had higher genetic 

variance compared to the others, 

indicating a greater ability to 

differentiate between genotypes 

(Tesfaye et al., 2023). In this case, the 

trials GF20CBN2, HW19CB2, and 

AN20CBN2 had the highest genetic 

variance and, consequently, the 

greatest discriminating power. 

Conversely, the trials BK20CBN2, 

BK19CBN2, and MK20CBN2 had 

relatively low genetic variance, and 

therefore exhibited lower 

discriminating power for genotypes 

(Beeck et al., 2010). This information 

can help researchers identify the most 

informative trial environments for 

evaluating and selecting superior 

genotypes. The insights gained from 

the bi-plot analysis, in conjunction 

with the dendrogram visualization, 

provide a comprehensive 

understanding of the relationships 

between the trial environments and 

their suitability for genotype 

assessment and selection (Burgueño et 

al., 2011). Leveraging these insights 

can lead to more efficient and effective 

breeding programs 

 

 Overall, the combination of the 

genetic correlation heat map (Fig. 1), 

the dendrogram visualization (Fig. 2) 

and the bi-plot (Fig. 3) provide a 

comprehensive understanding of the 

complex genotype-environment 

interactions within the data. These 

visualizations help reveal the 

underlying patterns and relationships, 

enabling more informed decision-

making regarding the selection of 

genotypes or varieties. 

 

  
Fig. 1 Heat map representation of the genetic correlation matrix from the final fitted GxE mode analysis 
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Fig. 2  Dendrogram representation of the dissimilarity matrix from final fitted GxE model analysis 
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Fig. 3 Bi-plot representation of FA components from final fitted GxE model
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Conclusion 
 

The study employed advanced 

statistical modeling approaches to 

investigate the genotype-by-

environment (GxE) effects and 

residual error structure in the data. The 

inclusion of a model with 

heterogeneous error variance resulted 

in a significant improvement in model 

fit. This indicated that the assumption 

of constant error variance was not 

appropriate for multi-environmental 

trials datasets. The Factor Analytic 

(FA) models of increasing order 

provided valuable insights into the 

underlying covariance structure of the 

data. The first three orders of the FA 

model (FA1, FA2, and FA3) 

demonstrated significant 

improvements in the percentage of 

variance explained and statistical 

significance, suggesting a complex 

covariance structure that could not be 

adequately captured by the base model 

alone. The FA3 model, explaining 

approximately 78.12% of the total 

variance, was determined to provide 

the best balance between model 

complexity and explanatory power. 

 

The genetic parameter estimates, 

including genetic variance, error 

variance, and heritability, revealed 

substantial variability across the 

different trial environments. This 

highlights the context-dependent 

nature of the genotype-by-

environment interactions and the 

importance of considering the specific 

trial conditions when interpreting the 

genetic and environmental 

contributions to the observed traits. 

The genetic correlations between 

environments also ranged from 

negative to positive values, indicating 

varying degrees of genetic 

relationships across the experimental 

conditions. The estimates varied from 

strong to relatively weaker 

correlations, suggesting differing 

levels of consistency in the genetic 

factors influencing the traits. Overall, 

the findings from this study emphasize 

the complex and nuanced nature of 

GxE interactions and the importance 

of using appropriate statistical models 

to capture the underlying structures in 

the data. The insights gained can 

contribute to a better understanding of 

the genetic and environmental factors 

influencing the traits of interest and 

inform future research and breeding 

strategies. 
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