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Abstract 
This study examines the yield stability and adaptability of large red bean genotypes 

across various bean-growing regions in Ethiopia. Sixteen genotypes were tested in 

fourteen different environments over four years (2015-2018) using a triple lattice 

design. Grain yield data were analyzed using several methods: Additive Main Effect and 

Multiplicative Interaction (AMMI), Genotype Main Effects plus Genotype × 

Environment Interaction (GGE), AMMI Stability Value (ASV), and Yield Stability Index 

(YSI). The results showed that grain yields were significantly influenced by the 

environment (77.03%), genotype (3.18%), and their interaction (10.26%) (P ≤ 0.01). 

GGE biplot analysis identified four mega-environments, with MS16 (MEISO in 2016) 

being the most discriminative and representative site. Genotypes G4, G14, G15, and G9 

were the most stable and high-yielding according to GGE biplot, while G12, G13, and 

G8 were stable but low-yielding based on ASV analysis. YSI identified G15, G10, G13, 

G14, and G9 as high-yielding and stable. Overall, GGE biplot stability statistics and 

YSI highlighted G9 (DAB 544) and G14 (DAB 481) as superior genotypes, suitable for 

commercial cultivation in Ethiopia. 

 

Keywords: Adaptability, AMMI, GGE, stability, yield stability index 

 

Introduction 
 

In Ethiopia, common beans 

(Phaseolus vulgaris L.) are vital for 

generating foreign exchange and 

serve as a key staple legume in the 

national agricultural system (Habte et 

al., 2021).  Their high protein, iron 

(Fe), and zinc (Zn) content 

significantly enhance human health 

and well-being (Huertas et al., 2023; 

Stevens et al., 2013). Over 4.3 

million smallholders cultivate 

common beans on more than 256,000 

hectares, accounting for about 2 % of 

all land planted to grain crops during 

the main season 2019 (CSA, 2020). 

Despite its importance, common 
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bean production and yield have not 

reached their full potential due to 

various limiting factors. 

  

The common bean (Phaseolus 

vulgaris L) was domesticated 

independently in South America and 

Central America/Mexico, resulting in 

two distinct gene pools: the Andean 

and Mesoamerican (Debouck et al., 

1993). Genetic and morphological 

studies across various agroecological 

zones have highlighted clear 

differences between these gene 

pools. Andean beans typically have 

larger seeds, whereas Mesoamerican 

beans are characterized by smaller 

seeds (Blair et al., 2009; Sicard et al., 

2005). Today, both gene pools 

of Phaseolus vulgaris L. hold 

commercial value. Mesoamerican 

beans are primarily produced in 

North and Central America, while 

Andean beans are more common in 

parts of Africa, Europe, and South 

America (Cichy et al., 2015). The 

introduction of the common bean to 

Ethiopia is likely linked to 

Portuguese exploration in the 16th 

century (IRMU, 1985 in Kefyalew, 

1990). Although Ethiopia mainly 

grows beans from the Mesoamerican 

gene pool (Abebe & Lema, 2019), 

detailed information on the 

proportions and distribution of the 

two gene pools is lacking. This is 

because official statistics only 

classify beans as 'small red' and 

'small white, without considering 

other seed colors and sizes (CSA, 

2020). Small bean cultivars have 

shown superior agronomic 

performance in Ethiopia, leading to 

their widespread cultivation due to 

their high yield potential, in contrast 

to the lower productivity of larger 

bean varieties. 

 

Several factors limit common bean 

production and productivity in 

Ethiopia. Climate variability, 

including temperature extremes, 

erratic rainfall, and increased disease 

and pest incidence, significantly 

affects common bean productivity 

and quality (Botero & Barnes, 2022; 

Diaz et al., 2018; Ntukamazina et al., 

2017). These environmental 

challenges with poor agronomic 

practices, contribute to the 

persistently low national average 

yield of 1.7 tons per hectare (CSA, 

2020), which falls significantly 

below the potential yield of over 3 

tons per hectare achievable with most 

small bean cultivars (Amsalu et al., 

2018). This gap is further 

pronounced for large bean genotypes. 

Due to a lack of high-yielding 

cultivars and various biotic and 

abiotic constraints for large beans, 

the average yield of this gene pool is 

expected to fall short of the national 

average of 1.7 tons per hectare. The 

interaction between genotypes and 

environmental factors is crucial in 

determining how beans respond to 

these challenges. Certain bean 

varieties may show better resilience 

or adaptability to specific 

environmental stresses. Therefore, 

developing high-yielding and stress-

tolerant large bean cultivars is 

essential to improve productivity. 

The national research program has 

released only three large red bean 
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varieties (Amsalu et al., 2018). These 

beans significantly underperform 

compared to their potential, mainly 

due to the lack of well-adapted 

cultivars and the negative impact of 

genotype-environment interactions 

(GEI).  

 

Genotype by Environment 

Interaction (GEI) complicates the 

selection of superior varieties due to 

its interference with superior 

genotype selection and its negative 

impact on heritability (Ebdon & 

Gauch, 2002; Ramburan et al., 

2011). Bean varieties exhibit 

different responses to environmental 

changes (Pereira et al., 2018), 

necessitating extensive multi-

environment field trials to develop 

agronomically superior and stable 

new varieties. Conducting multi-

location trials across diverse, 

representative environments helps 

identify ideal bean genotypes that 

perform well in target environments 

and have superior agronomic traits, 

potentially enhancing productivity 

(Castiano et al., 2023). Numerous 

studies on common beans have 

shown significant differences in 

grain yield and GEI (Firew et al., 

2019; Mutari et al., 2022; Philipo et 

al., 2021). Therefore, screening 

various large red bean genotypes is 

crucial to identify high-yielding and 

stable varieties across different 

growing environments. This study 

aimed to evaluate the performance of 

different large red bean genotypes in 

various environments and identify 

those with superior yield stability 

across agroecologies for use in plant 

breeding programs focused on bean 

varietal development and release. 

 

Materials and Methods 
 
Study materials and 
experimental design 
Table 1 lists fourteen large red 

common bean genotypes received 

from the Alliance of Bioversity 

International and CIAT, along with 

two nationally released varieties, 

‘Melkadima’ and ‘ACOS Red,’ used 

as checks in this study. The multi-

environment trial was conducted 

across 14 different environments 

(combinations of locations and years) 

during the main cropping seasons 

from 2015 to 2018. That is i.e 

AT16=Alemtena_2016; AT17= Alemtena_2017; 

GF16=Goffa_2016; HU16=Haramaya_2016; 

KB16=Kobo_2016; MK16= Melkassa_2016; 

MK17=Melkassa_2017; MK18=Melkassa_2018; 

MS16=Meiso_2016; NA15=Negelle Arsi_2015; 

NA17=Negelle Arsi_2017; NA18=Negelle 

Arsi_2018; PW16=Pawe_2016; 

SK17=Sirinka_2017 
(Figure 1). Information on test 

environments is given in Table 2. 

 

Table 2 
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Table 1 - Description of 16 large red bean genotypes evaluated in 14  
environments during the 2015 – 2018 cropping season. 

Geno_Code Genotype Pedigree 

G1 DAB 497 BEAN5879/SAB679 
G2 DAB 317 AS16334/AS16311 
G3 DAB 482 BEAN5874/AS16309 
G4 DAB 523 RMX8/AS16374 
G5 DAB 512 ICA QUIMBAYA/AS16314 
G6 DAB 513 BEAN5885/SAB686 
G7 DAB 496 BEAN5886/ICA QUIMBAYA 
G8 DAB 478 AS16321/SAB626 
G9 DAB 544 BEAN5919/AS16309 
G10 DAB 525 AS16334/AS16316 
G11 DAB 545 AS16334/AS16311 
G12 DAB 540 BEAN5919/AS16309 
G13 DAB 532 AS16334/AS16311 
G14 DAB 481 AS16321/SAB626 
G15 Melkedima G17661/BAT1297 
G16 ACOS red NA 

The experiment utilized a 4 × 4 triple 

lattice design. Each experimental unit 

comprised 6 rows, each 4 meters 

long, with 40 cm spacing between 

rows and 10 cm between plants. All 

other management practices, 

including fertilization, followed the 

recommendations specific to each 

location. Data were collected from 

the middle 4 rows, and grain yields 

were measured per plot and 

converted to tons per hectare for 

statistical analysis.” 

 
Table 2 -  Description of the 9 locations used for the evaluation of 16 large red bean genotypes in Ethiopia 

 
 

Location 

 
 

Growing season 

Geographical position Altitude 
(m.a.s.l) 

Average 
rainfall 
(mm) 

Temperature 
(°C) 

Latitude Longitude Min Max 

Alemtena 2016 - 2017 8018’N 38057’E 1610 728 12.9 29.8 
Negelle Arsi 2015 & 2017 - 2018 7035’N 38065’E 1890 807 13.8 23.3 
Melkassa 2016 - 2018 8o30’N 39o21’E 1550 763 14 33 
Sirinka 2017 11008’N 39028’E 1880 876 13.6 27.3 
Pawe 2016 11°19'N 36°24'E  1120 1587 16 32 
Meiso 2016 9028' N 38008’E 1332 787 14.9 28.2 
Goffa 2016 7015’N 37004’E 1750 964 14.4 25.9 
Haramaya 2016 9026’N 42003’E 1980 790 3.5 25 
Kobo 2016 12008’N 39018’E 1450 673 13 34 
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Figure 1. Map of Ethiopia showing the field experimental sites 

 
Statistical analysis 
The grain yield data were subjected to 

a combined analysis of variance and 

the G × E interaction was estimated 

using the AMMI model (Zobel et al ., 

1988). Analysis of variance is used to 

partition variance into three 

components: how much genotypes 

differ on average, how much 

environments contribute to the 

differences, and how much a 

genotype's performance depends on 

the specific environment in GEI. 

Subsequently, a multiplication effect 

analysis further dissects them into 

independent components called 

interaction principal component axes 

(IPCAs), which can be evaluated for 

significance through ANOVA. The 

Genstat 18 edition (VSN International 

Ltd., 2014) software was used for 

combined analysis of variance and 

AMMI analysis. 

 

GGE biplots summarize genotype and 

genotype-environment interaction 

effects on yield data using singular 

value decomposition (Yan, 2002; Yan 

et al., 2000). The study employed a 

GGE biplot to rank yield and stability 

genotypes. Also, vector length and 

cosine value of the angle between the 

location and the average location were 

used to measure location 

discrimination and representativeness. 

The GGE biplot analysis produced 

graphs that identified winning 
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genotypes in specific environments, 

revealing whether distinct mega-

environments (groups of similar 

environments) were present (Yan, 

2001; Yan & Rajcan, 2002). The 

CIMMYT’s GEA-R software was used 

for GGE biplot analysis. 

 

The yield stability of common bean 

genotypes was assessed using the 

AMMI Stability Value (ASV) 

described by Purchase et al. (2000). 

This approach allowed the 

quantification and ranking of 

genotypes based on their performance 

consistency across varied 

environments. 

𝐴𝑆𝑉 

=  √[
𝑆𝑆𝐼𝑃𝐶1

𝑆𝑆𝐼𝑃𝐶2
(𝐼𝑃𝐶1)]

2

+  (𝐼𝑃𝐶2)2 

Where SSIPC1 is the interaction 

principal component one sum of the 

square, SSIPC2 is the interaction 

principal component two sum of the 

square, IPC1 and IPC2 are interaction 

principal components 1 and 2 

respectively. 

 

The yield Stability Index (YSI) of each 

common bean genotype in terms of 

yield was calculated based on the rank 

of the ith genotype across 

environments based on AMMI 

Stability Value (RASVj) and rank of 

the ith genotype based on mean yield 

across environments (RYi) (Adjebeng-

Danquah et al., 2017; Bose et al., 

2014) as 

𝑌𝑆𝐼 = 𝑅𝐴𝑆𝑉𝑖 + 𝑅𝑌𝑖 

Results and Discussion 
 

GEI interaction and genotypic 
mean performance 
The combined analysis of variance 

revealed significant variability in grain 

yield, with highly significant 

differences (p < 0.001) observed 

across environments, genotypes, and 

their interaction (Table 3). This 

variability highlights the influence of 

genes, environment, and their 

interaction on grain yield in common 

bean seeds, presenting a prime 

opportunity for selection efforts. 

Consistent with previous studies by 

Philipo et al. (2021), Ligarreto–

Moreno and Pimentel–Ladino (2022), 

and Castiano et al. (2023), this study 

observed significant variation 

attributable to the main effects of 

genotype (G), environment (E), and 

their interaction on common bean 

grain yield. The environment was the 

major contributor to this variation, 

accounting for 77.03% of the total 

variance, suggesting the significant 

influence of diverse environmental 

factors on grain yield. Environmental 

factors such as soil type, temperature, 

rainfall patterns, and sunlight exposure 

are major contributors to crop grain 

yield (Adams et al., 1999). For 

instance, certain common bean 

genotypes may perform exceptionally 

well in moderate temperatures and 

consistent rainfall, while others may 

thrive in higher temperatures and less 

rainfall (Suárez et al., 2020). This 

indicates a high sensitivity of common 

bean grain yield to environmental 

conditions, with the environment 
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playing a dominant role in determining 

overall performance. This study 

findings, which highlight the 

significant impact of environmental 

effects on variation, are consistent 

with previous GEI studies on common 

bean (Firew et al., 2019; Mekbib, 

2003), faba bean (Tolessa T, 2015), 

and wheat (Roostaeia et al., 2014). 

Consequently, breeding efforts aiming 

to develop common bean varieties 

must carefully consider environmental 

variability to ensure stable 

performance across diverse growing 

regions. 

 

Although genotype effects contributed 

to grain yield, their impact was 

relatively minor (3.18%), indicating 

moderate inherent differences among 

the genotypes evaluated. The most 

notable discovery, however, was the 

significant Genotype by Environment 

Interaction (GEI), which accounted for 

10.26% of the variance. This finding 

reveals that genotypes exhibit varying 

performances across different 

environments, underscoring the 

complex relationship between genetic 

makeup and environmental conditions. 

Remarkably, the GEI effect was nearly 

three times greater than the genotype 

effect, highlighting the importance of 

environment-specific performance in 

selecting superior genotypes. These 

results emphasize the need to consider 

both high mean grain yield and 

adaptability to diverse environments 

during the selection process. Relying 

solely on average performance across 

various environments may obscure 

genotypes that excel in specific 

conditions (Pour-Aboughadareh et al., 

2022). Therefore, incorporating 

stability measures alongside mean 

yield is essential for identifying 

superior and broadly adaptable 

genotypes that consistently perform 

well across different environmental 

contexts. 

 

Table 4 presents the average grain 

yield performance of 16 genotypes 

across 14 environments.  The 

environmental impact was substantial, 

with average yields ranging from 

764.2 kg ha
-1

 in SK17 to a maximum 

of 3336 kg ha
-1

 in NA17 with a mean 

of 2053.9 kg ha
-1

. For grain yield, the 

best environments were NA17 and 

MK17 with 3336 kg ha
-1

 and 3158.1 

kg ha
-1

, respectively which showed a 

significant difference to the other 

environments. Among the studied 

environments GF16, HU16, and SK17 

exhibited yield of below 1 ton ha
-1

. 

Variation in productivity across 

diverse environments is driven by the 

complex interaction of climate, 

cultivar-specific responses, and non-

linear relationships (Delerce et al., 

2016). The findings underscore the 

significant influence of environmental 

factors on grain yield, with 

considerable variation observed across 

different locations and years
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Table 3 - AMMI analysis of variance for grain yield (kg ha-1) of 16 large red common bean genotypes at 14 environments. 

Source of variation Degrees of freedom Sum of Square Mean square Total Variation explained (%) G × E explained (%) 

Total 671 663270713 988481      
Treatments 223 600061883 2690860   
Genotypes 15 21061531 1404102*** 3.18  
Environments 13 510937570 39302890*** 77.03  
Block 28 13830111 493933*** 2.09  
Interactions 195 68062782 349040*** 10.26  
 IPCA 1  27 26543442 983090***  39 
 IPCA 2  25 14151992 566080***  20.79 
 IPCA 3  23 6750567 293503***  9.92 
 IPCA 4  21 5498642 261840**  8.08 
 IPCA 5  19 4319288 227331*  6.35 
Error 420 49378718 117568 7.44   

Table 4 - Mean grain yield (kg ha-1) of the sixteen large red bean genotypes across 14 environments during (2015-2018) main cropping season 

Genotype Environments Mean 

AT16 AT17 GF16 HU16 KB16 MK16 MK17 MK18 MS16 NA15 NA17 NA18 PW16 SK17 

DAB 497  1922.7 2367.0 884.2 630.2 861.5 1666.2 3420.5 2317.4 1904.2 2006.9 3352.3 3355.0 1143.7 730.1 1897.3efg 

DAB 317  2444.8 2078.3 939.5 965.9 844.0 2766.7 2519.6 2521.7 2703.4 2781.4 3037.0 2064.4 1373.3 1274.6 2022.5de 
DAB 482  2083.0 1991.9 943.5 986.0 797.3 2742.1 1946.0 2773.1 1969.1 1580.5 2563.5 3192.6 1227.7 294.2 1792.2g 
DAB 523  2519.9 2314.1 831.5 859.4 556.1 1920.3 2843.2 2860.8 3201.7 2679.8 3433.0 2612.2 1191.0 650.9 2033.9de 

DAB 512  2346.8 2064.3 607.9 695.6 940.7 2181.5 3758.1 2663.1 2744.2 2044.8 2500.1 3228.3 1184.4 660.8 1972.9def 
DAB 513  2389.3 2963.5 1106.3 1082.6 751.9 2599.1 4222.4 2631.3 2940.5 2320.2 3575.7 2782.4 1333.8 908.6 2257.7ab 
DAB 496  2737.5 3243.3 1093.2 957.2 876.9 1750.7 4244.6 1982.1 2837.7 2519.9 3439.6 2801.9 1443.6 628.7 2182.6bc 
DAB 478  2473.2 2673.1 763.3 906.1 882.4 2238.1 3212.1 2521.6 2116.3 2299.4 3415.7 3004.4 1002.4 805.8 2022.4de 
DAB 544  2793.9 3203.0 1027.3 1112.5 1400.1 2392.0 3198.9 2666.9 3316.5 2450.5 4073.0 2410.7 1308.4 1357.1 2336.5a 
DAB 525  2879.4 2595.3 1143.6 833.5 1111.5 2749.7 3036.5 3099.2 2616.9 2289.9 3586.3 2817.0 1317.4 995.8 2219.4abc 

DAB 545  2537.6 1618.1 901.2 907.7 1305.4 2078.0 2148.1 2668.8 1851.1 1987.2 2636.1 3607.6 1454.9 801.5 1893.1efg 
DAB 540  1769.8 2488.0 1044.4 647.2 694.2 1814.9 2766.1 2611.8 2449.9 1974.0 3301.9 2917.5 1146.0 514.1 1867.1fg 
DAB 532  2818.1 2365.1 805.5 1087.5 1365.9 2378.5 3265.0 2630.7 2165.6 2453.7 3271.1 2875.4 936.9 653.1 2076.6cd 
DAB 481  2360.2 2384.0 999.7 969.9 1158.4 2024.8 3220.1 2827.2 3350.2 2776.2 3993.9 3177.3 1222.3 804.2 2233.5ab 
Melkedima  2571.2 2859.5 839.7 769.1 1526.7 2759.9 3482.2 2803.4 3138.1 2674.7 3639.4 2861.0 1514.6 636.9 2291.2ab 
Red kideny  1561.2 2083.2 579.9 691.2 1044.0 1767.9 3246.4 1949.6 2198.2 2237.6 3557.0 2422.1 840.2 510.5 1763.5g 

Mean 2388.0 2455.7 906.9 881.4 1007.3 2239.4 3158.1 2595.5 2594.0 2317.3 3336.0 2883.1 1227.5 764.2   

AT16=Alemtena in 2016; AT17 = Alemtena in 2017; GF16 = Goffa in 2016; HU16=Haramaya in 2016; KB16=Kobo in 2016; MK16= Melkassa in 2016; MK17=Melkassa in 2017; 
MK18=Melkassa in 2018; MS16=Meiso in 2016; NA15=Negelle Arsi in 2015; NA17=Negelle Arsi in 2017; NA18=Negelle Arsi in 2018; PW16=Pawe in 2016; SK17=Sirinkain2017    
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Genotypes G6 (DAB 513) and G7 

(DAB 496) emerged as top performers 

in Melkassa (2017), achieving 

exceptional yields of 4222.4 and 

4244.6 kg/ha, respectively. 

Conversely, the check cultivar ACOS 

red displayed poor performance, 

recording the lowest yield (580 kg/ha) 

at Goffa in 2016. Seven genotypes 

(G9, G15, G6, G14, G10, G7, and 

G13) yielded above the average mean 

(2053.9 kg ha
-1

) and the remaining 

nine were below the average yield. 

Overall, G9 (2336.5) records the 

highest in terms of average yield 

across environments followed by G15 

(2291.2), G6 (2257.7), and G14 

(2233.5) (Table 4). Notably, the yield 

of four genotypes was statistically 

indistinguishable from the leading 

genotype G9 (DAB544). In contrast, 

G16 (ACOS red) and G3 (DAB 482) 

consistently produced the lowest 

yields across all environments. A study 

by Philipo et al., (2021), Mutari et al. 

(2022), and Firew et al. (2019) 

revealed that genotypes of common 

beans displayed varying grain yield 

performance across different locations. 

 

GGE biplot analysis 
The GGE biplot graphically depicts 

the genotype main effect plus 

genotype-by-environment interaction 

G + (G × E), and simultaneously 

represents the mean performance and 

stability and facilitates the 

identification of suitable genotypes for 

specific mega-environments in multi-

environment trial analysis (Yan et al., 

2000; Yan WeiKai, 2011). The first 

two principal components extracted 

from the singular value decomposition 

of the environment-centered genotype 

data captured 62.14% of the total 

variation, of which the first principal 

component explained 42.21% while 

the second principal component 

explained 19.93%. 

 

Mean performance and 
stability of genotypes seed yield 
The "mean vs. stability" view in a 

GGE biplot helps assess genotypes 

based on both average performance 

(mean) and consistency across 

environments (stability) (Yan & Kang, 

2003). The biplot visualizes 

performance and stability graphically 

with the help of Average Environment 

Coordinates (AEC). The line passing 

through the arrowhead and origin is 

AEC abscissa and the line 

perpendicular to it at the origin is 

ordinate (Bishwas et al., 2021). 

Genotypes with higher yield per 

hectare positioned themselves to the 

right of a vertical line, indicating 

above-average performance. 

Conversely, those positioned to the left 

fell below the average. The length of 

the line connecting them to the AEC 

reflects stability. Shorter lines indicate 

stable genotypes with consistent 

performance, while longer lines 

suggest higher instability with 

fluctuating performance across 

environments.  

Figure 2 shows genotypes G4, G14, 

G15, and G9 are above average 

yielders with more stability whereas 

G2, G6, G7, and G2 are above average 

yielders with lower stability. 

Moreover, G12, G5, and G8 are stable 
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but are below average yielders and G1, 

G3, G11, and G16 are both less stable 

and below average yielders. Firew et 

al. (2019) also evaluated genotypes 

using the Mean vs stability GGE biplot 

and identified a genotypes that had 

high-yielding and stable performance 

by deploying AEC. 

  

Experimental sites 
discriminating power and 
representativeness on 
genotypes seed yield 
Figure 3 shows the discriminating 

power and representativeness of the 

experimental sites on the grain yield of 

the common bean genotypes. 

Environments with longer vectors 

from the origin indicated stronger 

discrimination of high yielding 

genotypes, while shorter vectors 

implied weaker discriminating power 

(Yan and Kang, 2013). Among 

environments, MK17 has a 

comparatively longer length ensuring 

it has a higher discriminating ability 

followed by MS16, AT17, NA17, and 

MK16 as shown in Figure 3.  The 

experimental site vector with a small 

angle from the average environmental 

axis (AEA) provides a more 

representative environment for 

evaluating the seed yield of different 

genotypes. MS16, NA15, and NA18 

vectors had a small angle with the 

AEA, thus more representative 

compared to the other sites, whereas 

MK16, MK17, and MK18 had a larger 

angle with the AEA and therefore the 

least representative sites among the 

experimental sites.  

 

Test environments should be selected 

based on their ability to differentiate 

genotypes and represent the target 

environments (Aruna et al., 2016; 

Bhartiya et al., 2017). MS16 was 

identified as a perfect test environment 

in this study due to its longer vector 

and smallest angle with the ideal 

environment, signifying its superior 

discriminatory power and strongest 

representativeness of the overall test 

environment set.  

 

Which-won-where model 
The GGE-biplot's polygon offers a 

visual representation of GEI patterns 

in multi-environment seed yield trial 

data. This view explicitly highlights 

the "which-won-where" scenario, 

identifying the top-performing 

genotype for each specific 

environment. The polygon view of the 

GGE biplot was drawn by joining the 

markers located farthest from the 

origin such that all other markers are 

included within the polygon (Bishwas 

et al., 2021; Yan, 2011). Perpendicular 

lines are drawn from the origin, 

intersecting each side of the polygon 

and extending beyond its perimeter. 

This partitions the biplot space into 

distinct sectors, effectively segregating 

the various environments (Wolde et 

al., 2020). In this polygon, the 

environments fell into four sections 

and the genotypes into five sections. 

Environments that fall into different 

sectors have different best genotypes. 

Genotypes positioned near the biplot 

origin are less responsive to 

environmental changes (Yan & 

Rajcan, 2002). The vertex genotypes 
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in this trial were G1, G2, G3, G7 and 

G9. These genotypes were the best or 

the poorest in some or all 

environments since they had the 

furthest position from the biplot's 

center (Yan & Kang, 2003). Castiano 

et al. (2023) and Mutari et al., (2022) 

also conducted a GGE biplot analysis 

in common bean cultivars and 

identified mega environments. 

From Figure 4, G9 was more adapted 

to the NA17, GF16, NA15, AT16, 

SK17, MS16, KB16, and HU16 

environments. The G2 performed well 

PW16, MK16, and MK18 

environments. G7 was adapted to 

MK17 and AT17 environments, and 

G3 performed well in the NA18 

environment. When genotypes form 

the vertices of polygons without any 

environments clustered in their 

corresponding sectors, they are 

considered unadapted to all test 

environments (Goa et al., 2022), as 

seen with genotype G1. Genotypes 

positioned near the origin, such as 

G13, G8, and G4, displayed a more 

stable performance across 

environments. These genotypes may 

be preferable for breeding programs 

seeking broad adaptation, especially if 

environmental variation is 

unpredictable.  

 

                                 
Figure 2. “Mean vs. Stability” view of the GGE biplot of 16 common bean genotypes across 14 test environments. 
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Figure 3. “Discriminativeness vs. representativeness” view of test locations based on GGE biplot of 16 common bean 

genotypes across 14 test environments. 

 

                                        
Figure 4. “Which-won-where” view of the GGE biplot of 16 common bean genotypes across 14 test environments. 



Ethiop. J. Crop Sci. Vol 12 No.1, 2024 

 

[42] 

AMMI Stability Value (ASV) 
AMMI model excels at analyzing GEI 

but lacks a quantitative stability 

measure for genotype ranking. To 

overcome this limitation, Purchase et 

al. (2000) introduced the ASV 

measure. This allows researchers to 

quantify and rank genotypes based on 

their stability, providing a crucial tool 

for informed selection in breeding 

programs.  

 

The ASV method, as described by 

Purchase et al. (2000), uses principal 

components (IPCA1 and IPCA2) 

derived from a statistical technique 

called Principal Component Analysis 

(PCA) to evaluate genotype stability. It 

calculates an ASV score based on the 

distance from zero in a two-

dimensional graph where each axis 

represents an IPCA score. Genotypes 

with lower ASV scores are considered 

more stable, meaning their 

performance is less affected by 

environmental variations. In this study, 

genotypes G12, G13, and G8 

displayed the lowest ASV scores, 

indicating the most stable performance 

across environments (Table 5). 

Conversely, the check variety G16 

(ACOS red) had the highest ASV 

score, suggesting it was the most 

influenced by environmental changes 

and therefore the least stable genotype.  

 

Yield Stability Index (YSI) 
Genotype stability, as assessed by 

ASV, focuses on consistent 

performance across environments, 

independent of yield performance 

(Mohammadi & Amri, 2008; Rono et 

al., 2016). Consequently, some 

genotypes identified as stable by ASV 

may exhibit relatively low overall 

yields. Recognizing the importance of 

balancing high seed yield with 

genotypic stability in breeding, various 

authors used the yield stability index 

(Adjebeng-Danquah et al., 2017; 

Milioli et al., 2018).  This index 

integrates these two key selection 

criteria into a single metric, enabling 

the identification of superior bean 

genotypes that demonstrate desirable 

yield potential and consistent 

performance across environments. 

ASV incorporates information from 

both IPCA1 and IPCA2, which capture 

most of the genotype-environment 

interaction (GEI) variation, it 

effectively reflects genotypic stability. 

YSI combines the rank of ASV (with 

the lowest value indicating the most 

stable genotype) with the rank of the 

genotype's mean yield (the highest 

yield gets rank one). YSI creates a 

single metric for simultaneous 

selection based on yield and stability 

by summing these ranks. 

Consequently, genotypes with the 

lowest YSI score are considered the 

most desirable, demonstrating high 

grain yield and consistent performance 

across environments. Based on YSI the 

most stable genotypes with high grain 

yield were G15, G10, G13, G14, and 

G9 which follow the result of AMMI 

stability value (Table 5). 
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Table 5. First and second IPCA, mean yield, ASV, and YSI 

Genotypes IPCA1 IPCA2 Grain yield ASV YSI 

G1 -1.784 20.628 1897 20.621 23 

G2 7.170 -24.800 2022 24.498 22 

G3 29.009 1.047 1792 152.69 31 

G4 -3.490 -14.048 2034 14.155 16 

G5 1.062 14.010 1973 14.013 18 

G6 -15.563 4.575 2258 28.335 16 

G7 -23.895 11.875 2183 31.749 20 

G8 -0.470 5.439 2022 5.437 12 

G9 -11.313 -17.415 2336 19.657 11 

G10 5.979 -8.020 2219 6.137 9 

G11 30.094 9.339 1893 54.823 28 

G12 1.089 3.016 1867 3.086 15 

G13 3.563 2.904 2077 4.900 9 

G14 -5.741 -5.415 2233 8.016 10 

G15 -5.396 -5.960 2291 7.866 7 

G16 -10.315 2.824 1763 19.510 25 

 

Conclusion and 
Recommendation 
 

The study revealed that genotype, 

environment, and GEI significantly 

impact the yield of large red bean 

genotypes. The fourteen environments 

examined in this study can be grouped 

into four mega environments. Notably, 

nine of these environments fall into 

one mega environment, where 

genotype G9 exhibited the highest 

yield. The environment MS16 

(Meiso_2016) was identified as an 

ideal test environment due to its 

discriminating ability and 

representativeness. Given the 

exceptional yields from NA17 and 

MK17, further investigation is needed 

to understand the specific factors 

contributing to their superiority. 

Generally, selecting stable large red 

bean genotypes with high yields based 

on a single stability model is 

challenging. However, YSI and GGE 

biplot models identified three 

genotypes G9 (DAB544), G14 

(DAB481), and G15 (Melkadima) as 

superior and stable for grain yield. 

Therefore, these two genotypes are 

recommended for verification trials 

and release in tested and similar 

agroecologies. 
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