# Performance Evaluation and Stability Study of Field Pea (*Pisum sativum* L.) Genotypes for Potential Production Areas in the Highlands of Ethiopia

Asnakech Tekalign Beyene<sup>1\*</sup>, Sisay Argaye<sup>1</sup>, Mesfin Tadele<sup>1</sup>, Nigat Tilahun<sup>1</sup>, and Mussa Jarso<sup>1</sup>,

<sup>1</sup>Ethiopian Institute of Agricultural Research, Holetta Agricultural Research Centre, Ethiopia; \***Corresponding auther**: asnakechtek@yahoo.com

## Abstarct

Field pea is an important crop for Ethiopian farmers, but its national average yield of 1.7 t  $ha^{-1}$  is much lower than its potential, primarily due to the low yield of local cultivars and their vulnerability to various stresses. This study aimed to identify highyielding, stable genotypes with disease resistance and other desirable traits. Fifteen genotypes, including two standard checks (Bursa and Jeldu), were evaluated across ten environments during the 2021 and 2022 growing seasons using a randomized complete block (RCB) design with four replications. Significant differences ( $P \leq 0.01$ ) were found for genotype, environment, and their interaction for most traits. The bestperforming genotype, G7 (EH014011-4), showed an 8% to 17% increase in seed weight and a 19% to 35% yield advantage over the standard checks. The second-best genotype, G14 (EH014007-1), exhibited a 10% increase in seed weight and an 11% to 28% yield advantage. Both genotypes were stable across environments, as shown by the genotype-by-environment (GGE) biplot analysis. Based on these results, G7 and G14 were recommended for further variety verification and evaluation, alongside the standard checks, for potential release as high-yielding, stable varieties in Ethiopia. The variety EH014011-4 outperformed all tested genotypes, including standard checks, in yield, stability, and showed moderate resistance to Ascochyta blight and powdery mildew. Farmers also favored this variety for its overall performance and market suitability. As a result, field pea variety EH014011-4 was approved for national release in 2024 for use in the tested areas and similar agroecological zones.

Keyword: Biotic stresses, field pea, genotype-by-environment, yield, stability,

## Introduction

Field pea (*Pisum sativum* L., 2n = 14) is a crucial annual legume crop, originally domesticated in the Mediterranean region, particularly in the Middle East (Smýkal *et al.*, 2012). Ethiopia is considered the center of diversity for this crop, with wild and primitive forms found in its highland regions. Field pea is grown across various Ethiopian regions at altitudes ranging from 1,800 to 3,000 masl with annual rainfall between 700 -1,000 mm. It is the fourth most important legume in the country, following faba bean, common bean, and chickpea, covering 219,927.59 ha and producing 376,236.9 tons (CSA, 2021).

The crop offers significant economic and ecological benefits to Ethiopian farming communities. It provides a valuable source of food and feed, offering an affordable protein source, and plays a vital role in restoring soil fertility through nitrogen fixation. Additionally, field pea serves as a cash crop, contributing to foreign currency generation for the country. However, the national average yield remains low at around 1.7 t ha-1, far below its potential, with research indicating yields ranging from 2.5 to 3.5 t ha<sup>-1</sup> in Ethiopia (Mussa et al., 2006) and 7 to 8 t ha<sup>-1</sup> in countries like England and France (Smykal et al., 2012). Yield constraints include the low productivity of local cultivars. susceptibility to biotic stresses (e.g., Ascochyta blight, powdery mildew), and abiotic stresses (e.g., frost, moisture stress, poor soil fertility). Poor cultural practices, including marginal land use, inadequate tillage, lack of fertilization, also and contribute to low yields.

Addressing these challenges requires robust breeding programs to develop varieties with improved yield potential, resistance to biotic and abiotic stresses, and suitability for different agro-ecologies. Over the past decades, Ethiopia's National Highland Pulse Breeding Program has released more than 18 superior field pea

varieties for various environments. Given the high genotype-environment interaction (GEI), it is crucial to multi-location trials conduct to identify genotypes with broad or specific adaptability, stability, and high yield potential. This experiment aimed to select and release highyielding, stable, and disease-resistant field pea genotypes with desirable agronomic traits for the highlands of Ethiopia.

# Materials and Methods

## National varity trials

Fifteen field pea genotypes, including two standard checks (Bursa and Jeldu). were evaluated across ten environments (Asassa 2021, Asassa 2022, Areka 2021, Bekoji 2022, Dabat 2021, Holetta 2021, Holetta 2022, Haramaya 2021, Jeldu 2021, and Sinana 2022) for seed yield and other agronomic traits during the 2021 and 2022 Meher growing seasons (Table 1). The experiment was arranged in a randomized complete block (RCB) design with four replications, consisting of four rows (4 m long) with 0.2 m spacing between rows and 5 cm between plants (80 seeds/row). There was a 1.0 m distance between adjacent plots. NPS fertilizer was applied at a rate of 121 kg ha<sup>-1</sup> at planting. Weeding and other management practices were conducted according to standard research recommendations, uniformly across all treatments.

|                  |               |                 |            |       | Pedigree   |           |  |
|------------------|---------------|-----------------|------------|-------|------------|-----------|--|
| Genotype<br>code | Genotype name | Flower<br>color | Seed shape | Туре  | Female     | Male      |  |
| G1               | EH 014005-4   | purple          | Dented     | Shiro | Burkitu    | IFPI 5136 |  |
| G2               | EH 014007-3   | purple          | Dented     | Shiro | Bilallo    | IFPI 3208 |  |
| G3               | EH 014011-3   | purple          | Dented     | Shiro | Letu       | IFPI 5136 |  |
| G4               | EH 014007-4   | White           | Round      | Kik   | Bilallo    | IFPI 3208 |  |
| G5               | Jeldu         | White           | Round      | Kik   | EH099003-8 | IFPI 5136 |  |
| G6               | EH 014006-4   | Purple          | Dented     | Shiro | Bilallo    | Cooke     |  |
| G7               | EH 014011-4   | Purple          | Dented     | Shiro | Letu       | IFPI 5136 |  |
| G8               | EH 014008-2   | Purple          | Dented     | Shiro | Bilallo    | IFPI 5136 |  |
| G9               | EH 014006-5   | Purple          | Dented     | Shiro | Bilallo    | Cooke     |  |
| G10              | EH 014006-2   | White           | Round      | Kik   | Bilallo    | Cooke     |  |
| G11              | EH 014004-5   | White           | Round      | Kik   | Burkitu    | IFPI 3208 |  |
| G12              | Bursa         | Purple          | Dented     | Shiro | EH04053    | EH04051   |  |
| G13              | EH 015001     | White           | Round      | Kik   | EH014001   | EH014002  |  |
| G14              | EH 014007-1   | Purple          | Dented     | Shiro | Bilallo    | IFPI 3208 |  |
| G15              | EH 014010-1   | Purple          | Dented     | Shiro | Letu       | IFPI 3208 |  |

Table 1: Description of the test genotypes

#### Data collection and analysis

Data on phenological, disease, grain yield, and yield-related traits were collected. The grain yield from each plot was harvested, cleaned, dried, measured, and then converted to kilograms per hectare for analysis. A combined analysis of variance across environments was conducted to assess differences between genotypes, among environments, and their interaction effects, using the following statistical model:

 $Yij = \mu + Gi + Bj + eij$  and  $Yijk = \mu + Gi + Ej + GEij + Bk (j) + eijk$ .

Where, Yij = observed value of genotype i in block j, Yijk = observed value of genotype i in block k of environment j,  $\mu$  = grand mean of the experiment, Gi = the effect of genotype i, Bj = the effect of block j, Bk(j) = the effect of block k in environment j, eij = error effect of genotype i in block j , Ej = environment effect, GEij = the interaction effect of genotype i with environment j, eijk = error (residual) effect of genotype i in block k of environment j. The analysis of variance and adjusted means were calculated using R software version 4.2.2 (R Core Team, 2022). GGE Biplot analysis was performed to evaluate the stability and performance of the tested entries across years and locations. The GGE Biplot model (Yan *et al.*, 2007; Yan and Hunt, 2001; Yan and Kang, 2002) was implemented using the GGE Biplot graphical user interface package in R (R Core Team, 2022).

### Varitye verification trial

From the national varity trials field pea candidate genotypes (EH 014011-4 and EH 014007-1) were selected for variety verification trial. In 2023, varity verification trial was conducted at four locations in Ethiopia (Holeta, Bekoji, Dabat, and Areka ) and the two candidate varities were evaluated with Bursa (Standared check), and Mieso (regionally recently registered) checks. On a single plot of 10 m x 10 m at each research sites on - station and replicated in two on farmers' fields. All agronomic practices were applied at all trial sites according to recommendations, and necessary data, including farmers' assessments, were collected. The candidate varieties were evaluated by the National Variety Releasing Committee at the twelve field sites.

# **Results and Discussions**

The combined analysis of variance indicated significant differences for genotype, environment, and genotype by environment interaction for most of the traits ( $P \le 0.01$ ). The results showed that genotypes responded differently to grain vield across various environments, highlighting the importance of multi-location trials to specific assess the or broader adaptability of genotypes (Table 2).

## **Effect of Genotypes**

Genotypes showed significant differences for several traits, including days to flowering, days to maturity, aschochyta blight, plant height, pods per plant, seeds per pod, thousand seed weight, and grain yield. However, there were no significant differences for powdery mildew (Table 2). The significant genotype effects indicated notable variability among the tested genotypes.

The earliest genotype to flower was G1, taking 70 days, while G7 took 79 days. The earliest maturity was observed in G4, which matured in 136 days, while G1 matured in 140 days. The lowest aschochyta blight score (3.38) was recorded for G8, while G4, G11, and G13 had the highest score (4.12). For powdery mildew, G8 had the lowest score (2.4), while G10 and G12 recorded the highest (3.3). The highest plant height (164-170 cm) was found in G3, G7, and G14, while the lowest (146.2 cm) was recorded in G5. The highest number of pods per plant (11.56-12.45) was observed in G4, G5, G6, G11, G12, and G13, while G7 had the lowest (10.25) (Table 3). Early maturing genotypes may help escape drought stress, especially in regions with limited rainfall or terminal moisture stress. These genotypes are also less likely to be affected by aschochyta blight, powdery mildew, and aphids, which typically emerge later in the season. Significant variation for flowering, maturity, pods per plant, seeds per pod, and plant height across locations and years has also been reported (Fikere et al., 2010; Argaye et al., 2023).

The lowest thousand seed weight was 193 grams for G4, while the highest was 236 grams for G7, with an

average of 217 grams. The most promising genotype, G7 (EH 014011-4), showed an 8% to 17% advantage in thousand seed weight and a 19% to 35% yield advantage over the standard checks, Jeldu and Bursa (Table 3). Genotype G14 (EH 014007-1) also demonstrated a 10% advantage in thousand seed weight and a yield advantage of 11% to 28% over Jeldu and Bursa. Significant variation for grain yield was also observed across locations and years (Fikere *et al.*, 2010; Argaye *et al.*, 2023). Focusing on yield in breeding programs is crucial to developing varieties that support sustainable agricultural productivity, farmer livelihoods, and food security. According to Yang (2022), comprehensive cross-breeding efforts that incorporate key traits for abiotic stress tolerance will facilitate the evaluation of genotypes, enhancing yield testing.

Table 2.. Combined analysis of variance showing mostly significant main effects (genotype environment and interaction terms in 15 field pea genotypes evaluated across 10 environments

| Mean square <sup>1</sup> |            |             |            |         |           |
|--------------------------|------------|-------------|------------|---------|-----------|
| characters1              | Geno       | Env         | Geno:Env   | Env:Rep | Residuals |
| DF                       | 355***     | 4178***     | 24***      | 13***   | 4         |
| DM                       | 57***      | 6650***     | 11**       | 22***   | 7         |
| AB                       | 0.91*      | 133.86ns    | 0.61ns     | 1.70**  | 0.51      |
| PM                       | 0.99ns     | 82.23***    | 0.69ns     | 0.56ns  | 0.67      |
| PLH                      | 2103***    | 34934***    | 377**      | 582**   | 253       |
| PPL                      | 28***      | 597***      | 9ns        | 25***   | 9         |
| SPP                      | 1.4***     | 14.1***     | 0.5ns      | 0.5ns   | 0.4       |
| TSW                      | 5109***    | 55156***    | 567**      | 479ns   | 388       |
| GYLD                     | 4032149*** | 12714112*** | 1175777*** | 474464* | 277952    |

Where: DF = number of days to 50% flowering, DM = number of days to 90% maturity, PHT = plant height (cm), PPP = number of pods per plant, SPP = number of seeds per pod, AB = aschochyta blight (in 1-9 scale), PM = powdery mildew diseases (in 1-9 scale), TSW=thousand seeds weight (g), GYLD = grain yield (Kg ha-1) \*\* = highly significant (P 0.05).

## Effect of environment

Significant differences were observed across most locations for traits such as days to flowering, days to maturity, *Aschochyta blight*, plant height, pods per plant, seeds per pod, thousand seed weight, and grain yield. However, no significant differences were found for *Aschochyta blight* (Table 2). The overall means for the combined environments are presented in Table 3. In terms of grain yield, genotypes G7 and G14 significantly outperformed the best check, Bursa, while nine genotypes (G4, G6, G7, G9, G10, G11, G13, G14, and G15) showed significantly higher yields than the second check, Jeldu (Table 3). For thousand seed weight, genotypes G1, G7, G9, and G11 had significantly higher mean values compared to the two standard checks.

The individual environment mean performances for thousand seed weight and grain yield are presented in Tables 4 and 5. The highest grain yields were recorded in Holeta (2021 and 2022), Jeldu 2021, Areka 2021, and Haramaya 2021 (Table 5), and the highest thousand seed weights were

observed in the same environments (Tables 4 and 5). These results suggest that these locations are potentially suitable for field pea production, with favorable agro-ecological, edaphic, and climatic conditions that support the expression of the genetic potential of different genotypes. Conversely, lower grain yields were recorded in and 2022), Bekoji Asassa (2021 (2022), Dabat (2021), and Sinana (2022). Specifically, Asassa showed consistently poor grain yields over the two seasons, which may indicate that the environment was not ideal for field pea production, or that genotype responses varied. Further research is needed to explore these results.

Genotype by location interaction effects were significant for traits such as days to flowering, days to maturity, plant height, thousand seed weight,

and grain yield, but non-significant for Aschochyta blight, powdery mildew, pods per plant, and seeds per plant. genotype-by-location high The interaction (G×E) effects for several traits are expected, as the study involved diverse genotypes from eco-geographical origins different evaluated in distinct environments. High G×E interaction typically calls for breeding efforts focused on specific adaptation rather than broad adaptation. However, non-significant G×E interactions for certain traits suggest that some genotypes may perform consistently well across diverse environments. Genotypes with low  $G \times E$  interaction tend to exhibit stable performance, making them reliable for breeding programs and beneficial for farmers in various locations.

| Table 3. Over environments combined mean performances of nine traits tested in field pea national | varieties trai |
|---------------------------------------------------------------------------------------------------|----------------|
| conducted at 10 environments in 2021 and 2022                                                     |                |

|      | 001100000 |           |        |        |          |         |         |         |         |
|------|-----------|-----------|--------|--------|----------|---------|---------|---------|---------|
| Geno | DF        | DM        | AB     | PM     | PLH      | PPP     | SPP     | TSW     | GYLD    |
| G1   | 70h       | 140a      | 3.6bcd | 3.1ab  | 162.2bcd | 9.8d    | 4.7abc  | 230.ab  | 2754ef  |
| G2   | 72fg      | 139.4a-d  | 3.6bcd | 2.9abc | 164.4abc | 10.7cd  | 4.5b-f  | 219cde  | 2702f   |
| G3   | 79a       | 139.9abc  | 3.7a-d | 2.8abc | 170.6a   | 10.5cd  | 4.75ab  | 217de   | 2771ef  |
| G4   | 69i       | 135.7f    | 4.1ab  | 2.6bc  | 155.4d   | 11.7abc | 4.5b-f  | 193f    | 2968cde |
| G5   | 72g       | 137.04e   | 3.7a-d | 2.9abc | 146.2e   | 12.01ab | 4.2fg   | 216e    | 2455g   |
| G6   | 73ef      | 138.9cd   | 3.8a-d | 2.8abc | 164.8abc | 11.6abc | 4.6a-d  | 218de   | 2826def |
| G7   | 78ab      | 138.5d    | 3.7a-d | 3.1ab  | 168.2ab  | 10.3d   | 4.7ab   | 236a    | 3769a   |
| G8   | 75d       | 139.9abc  | 3.4d   | 2.4c   | 164.8abc | 10.5cd  | 4.4d-g  | 217de   | 2683fg  |
| G9   | 75d       | 139.5a-d  | 3.5cd  | 2.8abc | 164.7abc | 10.9bcd | 4.5bc-f | 224bcd  | 30631c  |
| G10  | 77c       | 139.9abc  | 3.9abc | 3.3a   | 155.7d   | 10.9bcd | 4.3efg  | 223bcde | 2900c-f |
| G11  | 74e       | 139.03bcd | 4.12a  | 3.2ab  | 147.7e   | 12.5a   | 4.2g    | 227bc   | 2957cde |
| G12  | 73ef      | 138.4d    | 3.7a-d | 3.3a   | 165.9abc | 11.7abc | 4.6a-e  | 195f    | 3038cd  |
| G13  | 70h       | 138.8cd   | 3.6cd  | 2.8abc | 159.8cd  | 12.7a   | 4.4c-g  | 215e    | 2766ef  |
| G14  | 70hi      | 139.9abc  | 3.8a-d | 2.9abc | 164.3abc | 10.7cd  | 4.8a    | 217de   | 3419b   |
| G15  | 77bc      | 140.2ab   | 4.1ab  | 3abc   | 167.9ab  | 10.7cd  | 4.4c-g  | 216de   | 2883c-f |
| Mean | 74        | 139       | 4      | 3      | 162      | 11      | 5       | 217     | 2930    |
| CV   | 3         | 2         | 19     | 28     | 10       | 26      | 15      | 9       | 18      |
| LSD  | 0.95      | 1.22      | 0.5    | 0.57   | 6.99     | 1.28    | 0.3     | 8.66    | 231.7   |

Where: DF = number of days to 50% flowering, DM = number of days to 90% maturity, PHT = plant height (cm), PPP = number of pods per plant, SPP = number of seeds per pod, AB = aschochyta blight (in 1-9 scale), PM = powdery mildew diseases (in 1-9 scale), TSW=thousand seeds weight (g), GYLD = grain yield (Kg ha 1) \*\* = highly significant (P 0.05).

Table 4. Mean thousand seed weight (gm) performance of 15 field pea genotypes tested in NVT at 10 environments in 2021 and 2022

|      | 2021 and | 1 ZUZZ |      |      |      |      |      |      |      |      |      |
|------|----------|--------|------|------|------|------|------|------|------|------|------|
| Geno | AA21     | AA22   | AR21 | BE22 | DA21 | HL21 | HL22 | HU21 | JL21 | SN22 | Mean |
| G1   | 201      | 190    | 303  | 243  | 229  | 240  | 219  | 229  | 251  | 200  | 230  |
| G2   | 187      | 179    | 278  | 256  | 208  | 227  | 218  | 211  | 212  | 214  | 219  |
| G3   | 181      | 173    | 293  | 233  | 217  | 228  | 213  | 178  | 254  | 198  | 217  |
| G4   | 176      | 174    | 254  | 196  | 175  | 192  | 187  | 201  | 210  | 160  | 193  |
| G5   | 184      | 180    | 302  | 214  | 220  | 234  | 217  | 185  | 229  | 192  | 216  |
| G6   | 194      | 182    | 265  | 232  | 221  | 220  | 217  | 202  | 244  | 201  | 218  |
| G7   | 204      | 193    | 307  | 254  | 244  | 230  | 233  | 221  | 257  | 215  | 236  |
| G8   | 174      | 177    | 285  | 237  | 223  | 224  | 214  | 193  | 242  | 201  | 217  |
| G9   | 183      | 173    | 299  | 240  | 228  | 233  | 219  | 202  | 269  | 201  | 224  |
| G10  | 187      | 186    | 305  | 242  | 230  | 227  | 224  | 202  | 234  | 191  | 223  |
| G11  | 203      | 199    | 298  | 226  | 223  | 228  | 228  | 218  | 239  | 204  | 227  |
| G12  | 236      | 143    | 258  | 202  | 177  | 191  | 192  | 192  | 199  | 164  | 195  |
| G13  | 182      | 182    | 277  | 214  | 208  | 222  | 218  | 223  | 222  | 199  | 215  |
| G14  | 183      | 182    | 302  | 231  | 209  | 217  | 211  | 228  | 231  | 182  | 217  |
| G15  | 189      | 182    | 295  | 233  | 228  | 219  | 207  | 197  | 222  | 192  | 216  |

Where: AA21(Asassa 2021), AA22(Asassa 2022), AR21(Areka 2021), BE22(Bekoji 2022), DA21(Dabat 2021), HL21(Holetta 2021), HL22(Holetta 2022), HU21(Haramaya 2021), JL21(Jeldu 2021) and SN22(Sinana 2022)

|  | Table 5: Mean grain yield (Kg ha-1 | ) performance of field | pea varieties tested in NVT | at 10 environments 2021 and 2022 |
|--|------------------------------------|------------------------|-----------------------------|----------------------------------|
|--|------------------------------------|------------------------|-----------------------------|----------------------------------|

| Geno | AA21 | AA22 | AR21 | BE22 | DA21 | HL21 | HL22 | HU21 | JL21 | SN22 | Mean |
|------|------|------|------|------|------|------|------|------|------|------|------|
| G1   | 1745 | 1561 | 3180 | 3525 | 2157 | 3417 | 3768 | 3073 | 2831 | 2281 | 2754 |
| G2   | 2132 | 2848 | 3091 | 2168 | 1975 | 2867 | 3377 | 2543 | 3342 | 2676 | 2702 |
| G3   | 2106 | 2355 | 3235 | 1470 | 2446 | 3322 | 3613 | 2907 | 3824 | 2429 | 2771 |
| G4   | 2998 | 4187 | 3225 | 858  | 2406 | 2588 | 3216 | 4590 | 2331 | 3280 | 2968 |
| G5   | 2428 | 2130 | 2870 | 1119 | 2671 | 2848 | 3023 | 2698 | 2519 | 2242 | 2455 |
| G6   | 2812 | 2378 | 2789 | 1229 | 2503 | 2731 | 3509 | 3313 | 4121 | 2876 | 2826 |
| G7   | 3163 | 3063 | 3798 | 3812 | 3581 | 3781 | 5306 | 3177 | 4406 | 3608 | 3769 |
| G8   | 2215 | 1707 | 3520 | 1542 | 2468 | 3171 | 3722 | 2629 | 3156 | 2702 | 2683 |
| G9   | 2077 | 1672 | 3263 | 3962 | 2392 | 3230 | 4107 | 3403 | 3983 | 2538 | 3063 |
| G10  | 2476 | 2358 | 2986 | 2627 | 3403 | 3420 | 3161 | 2457 | 3550 | 2565 | 2900 |
| G11  | 2961 | 2931 | 2843 | 2825 | 2178 | 2984 | 3957 | 3655 | 2854 | 2377 | 2957 |
| G12  | 2409 | 2512 | 3116 | 2687 | 2502 | 2721 | 4360 | 3018 | 3727 | 3323 | 3037 |
| G13  | 1732 | 2650 | 2883 | 3084 | 2074 | 2276 | 3520 | 3556 | 3107 | 2781 | 2766 |
| G14  | 3279 | 4099 | 3761 | 3555 | 2771 | 2975 | 4587 | 3568 | 3413 | 2184 | 3419 |
| G15  | 1976 | 2322 | 2975 | 2882 | 2303 | 2978 | 3609 | 2790 | 4539 | 2455 | 2883 |

Where: AA21(Asassa 2021), AA22(Asassa 2022), AR21(Areka 2021), BE22(Bekoji 2022), DA21(Dabat 2021), HL21(Holetta 2021), HL22(Holetta 2022), HU21(Haramaya 2021), JL21(Jeldu 2021) and SN22(Sinana 2022)

#### **Grain yield stability**

#### The GGE Biplot and AMMI analysis

The AMMI variance analysis revealed significant differences (p < 0.01) among genotypes, environments, and their interactions. The GGE biplot indicated that some genotypes exhibited either broad or specific adaptability to different environments. Among them, EH 014011-4 and EH014007-1 stood out as the most

stable and ideal genotype across all tested environments.

In the AMMI1 biplot model, the abscissa represents the main effects and its ordinate represents IPC1 scores. Genotypes and environments on the right side of the midpoint (abscissa) of the perpendicular line have higher yields than those on the left side. As a result, genotypes, G7, G14, G9, G12, G4, G11, G10, G15 were generally high yielding. In

contrast, genotypes, G5, G8, G2, G1, G13, G3, G6 were generally low yielding genotypes. Environments HL, JL, AR, HU were on the right-hand side of the midpoint of the main effect seemed potential axis. to be environments, while BE, AA, SN and DA environments. were poor Genotypes with IPC1 scores close to zero expressed general adaptation whereas the larger scores depicts more specific adaptation to environments with IPC1 scores of the same sign

2002). (Ebdon and Gauch. Accordingly, genotypes G7, G14, G9, G12, and G11 with mean yields greater than the overall mean and low IPC1 scores had a combination of high stability performance. vield and Environments, AR and HL were poor and were the most stable environment due to low IPC1 score, while the remaining environments had the highest interaction with genotypes because they had higher IPCA scores (Figure 1).



Figure 1. AMMI1 biplot showing the mean (main effect) vs. stability (IPCA1) view of both genotype and environment on grain yield.

#### **GGE Biplot analysis**

#### Which-Won-Where Pattern and Mega Environments

The GGE biplot polygon for the "which-won-where" pattern is created by connecting the markers of the genotypes that are located furthest from the biplot origin, ensuring that all other genotypes are enclosed within the polygon (Cravero *et al.*, 2010). The GGE biplot illustrates the "Which-Won-Where" pattern for seed yield among 15 genotypes across ten environments, identifying the bestperforming genotypes for each

Ethiop. J. Crop Sci. Vol 12 No.1, 2024

environment. PC1 and PC2 accounted for 39.86% and 27.66% of the total variation in seed yield, respectively, together explaining 62.52% of the overall variation (Figure 2). The polygon view of the biplot offers a clear visualization of genotypeenvironment interactions. It is created by connecting the genotype markers located farthest from the origin. forming а convex polygon that contains all other genotype markers within it. Environments located in different sectors correspond to winning genotypes. different The "Which-Won-Where" biplot showed distinct winning genotypes in different environments (Gasura et al., 2015).

The mega-environment concept requires multi-year data. In this study, four mega-environments were identified (Figure 3). Specifically, environments HL22, JL21, AR21, HU21, SN21, DA21, and AA21 formed one mega-environment, while

AA22, BE22, and HL21 formed split mega-environment. another Genotypes located at the corners of the polygon performed best in each respective environment sector defined by the broken lines. Based on the analysis, vertex genotypes G1, G9, G7, G14, G4, and G5 performed best in their respective environments. Genotypes G7, G14, G9, and G12 were the vertex genotypes in the mega-environment formed by HL22, JL21, AR21, HU21, SN21, DA21, and AA21, showing broad adaptation. On the other hand, G12 demonstrated adaptation specific to F4 Environments E3, E5, E2, E6, and E1 shared the same sector, indicating the winning genotypes, same while environments in other sectors had different top-performing genotypes. Seven other genotypes fell into sectors without any environment markers. Similar observation was reported from the study by Yihunie and Gesesse ( 2018).



Figure 2. Polygon view of GGE (genotype plus genotype by environment interaction) bi-plot for the "whichwon where" pattern of 15 field pea genotypes tested in ten environments.

#### **Rank of genotypes**

The Average Environment Coordination (AEC) view of the GGE biplot ranks genotypes based on their performance relative to an ideal genotype. The ranking shows that genotypes G7 and G14 are closest to the ideal genotype, indicating their superior performance. In contrast, the standard check varietv G5 and candidate variety G4 are positioned farther from the center of the concentric circles, suggesting lower performance. In the biplot, genotypes positioned at the center of the circles are considered the most ideal, while those further away are regarded as poorer performers that do not align with the characteristics of an ideal genotype. Therefore, the positions of G5 and G4, farther from the center, highlight their inferior performance compared to the superior genotypes G7 and G14 (Figure 3).



Fig 3. The average environment coordination (AEC) view of ranking of 15 field pea genotypes relative to an ideal genotype (center of the concentric circle).

# **Result of Varity verification trials** (VVT)

The field pea candidate varieties EH 014011-4 and EH 014007-1 were developed through crosses involving large seed size gene donor parents

from ICARD. EH 014011-4 is a cross between the released variety *Letu* and IFPI 5136, while EH 014007-1 is a cross between the released variety *Bilallo* and IFPI 3208, both of which were introduced from ICARD. These candidate varieties were evaluated in a variety testing trial (VVT) alongside with the recently nationaly and regionaly released standared checks *Bursa* and *Mieso* respectively.

The evaluations took place at 12 field sites, including Holeta, Bekoji, Dabat, Areka, and twelve farmers' fields, where the performance of the candidates was compared to the checks. Both candidate varieties were assessed for important agronomic traits and disease resistance. The overall performance of the varieties was ranked by a technical committee, researchers, and farmers. The results, summarized in Table 6, indicate that the candidate varieties performed better than the checks at all evaluation sites.

Table 6: The on-station and on-farm agronomic performance of the candidate genotypes in 2023

| Field pea            | Grain yiel | Grain yield kilogram per hectare |      |  |  |  |  |
|----------------------|------------|----------------------------------|------|--|--|--|--|
| Genotype             | On-station | On-farm                          |      |  |  |  |  |
| Candidate (Released) | EH014011-4 | 2440                             | 1800 |  |  |  |  |
| Candidate (Rejected) | EH014007-1 | 2010                             | 1680 |  |  |  |  |
| Standard check       | Meiso      | 1420                             | 1200 |  |  |  |  |
| Standard check       | Bursa      | 1970                             | 1625 |  |  |  |  |

The field evaluation results demonstrated that the candidate varieties consistently outperformed in terms of stand and pod loading (Table 7). EH 014011-4 and EH 014007-1 were particularly well-adopted and showed superior overall performance compared to the standard checks. Based on the results from both the NVT and VVT field evaluations, the candidate varieties were uniform, stable, and adaptable to the tested environments. Notably, the candidate variety EH 014011-4 exhibited a higher number of pods per plant, moderate tolerance to Ascochyta blight and Powdery mildew, and yielded 3,769 kg ha<sup>-1</sup> superior to all other materials tested. This variety also featured larger seeds, making it more

desirable for local the market. Considering importance the of incorporating farmers' preferred traits desirable characteristics and into breeding programs for better adoption of new varieties (Sheikh et al., 2017), farmers' selection criteria were farmers assessed. As result. а expressed a strong preference for EH 014011-4 due to its exceptional performance compared to the standard checks. This highlights the significance of farmers' preferences in variety selection. Consequently, the committee approved the national release of the candidate variety EH 014011-4 for use in the tested areas and other similar agro-ecological zones.

| No | Variety    | Agronomic Characters |         |          |                     |                 |             |                | Disease (0-5)         |                         | Overal                 | Overall performance/Ranking |        |  |
|----|------------|----------------------|---------|----------|---------------------|-----------------|-------------|----------------|-----------------------|-------------------------|------------------------|-----------------------------|--------|--|
|    |            | Uniformity           | PHT(cm) | Maturity | No of<br>pods/plant | No of seeds/pod | TSW(g<br>m) | Seed color     | Powdery<br>mildew(PM) | Ascochyta<br>blight(AB) | Technical<br>Committee | Breeder                     | Farmer |  |
| 1  | Bursa      | 1                    | 165     | **       | 33.7                | 5               | 187         | Light<br>brown | 3.6                   | 3.9                     | 3                      | 3                           | 2      |  |
| 2  | EH014011-4 | 1                    | 164     | **       | 47.8                | 5               | 224         | Pale<br>green  | 3.3                   | 3.6                     | 1                      | 1                           | 1      |  |
| 3  | EH014007-1 | 1                    | 163     | *        | 44.1                | 5               | 202         | Pale           | 3.4                   | 3.9                     | 2                      | 2                           | 3      |  |
| 4  | Mieso      | 3                    | 131     | ***      | 27.9                | 4.2             | 153         | Dark<br>grav   | 4.1                   | 4                       | 4                      | 4                           | 4      |  |

Table 7: Agronomic performance and disease reaction of Field pea varieties evaluated by technical commeette, breeders and farmers in 2023

Where: 1= Excellent; 2=V.good; 3=Good; 4= Poor; \*\*\* Early; \*\*Medium; \* Late

## Conclusion and Recommendations

Genotype-by-environment interaction (GEI) is a critical factor in crop variety development, often complicating the release of varieties across diverse and challenging environments. The ANOVA results indicated significant differences among genotypes, environments, and their GEI effects on grain yield and most other traits studied. In this research, two promising genotypes, EH 014011-4 (G7) and EH 014007-1 (G14), showed significantly higher grain yields and comparable thousand seed weights compared to the standard checks Bursa and Jeldu during the national variety trial, and Bursa and Mieso during the variety verification trial. These genotypes also demonstrated more stable performance, as evidenced by GGE biplot analysis and positive evaluations from both farmers and researchers during field trials. Based on their high yield and stability, these genotypes are recommended for further evaluation and potential commercial release for growers. The candidate variety EH 014011-4 showed a higher number of pods per plant, moderate tolerance to Ascochyta blight and powdery mildew, and a yield of 3,769 kg ha<sup>-1</sup> surpassing all other tested varieties. It also produced larger seeds, increasing its appeal to the local market. Farmers favored EH 014011-4 for its exceptional performance compared to the checks. Consequently, in 2024, the national varitiy releasing committee approved the candidate varity EH 014011-4 for its national release and recommended it for use in the tested areas and other similar agro-ecological zones.

# Acknowledgments

This research was part of the national highland pulse breeding program funded by the Ethiopian Institute of Agricultural Research. The authors sincerely appreciate the valuable contributions of the staff members from the Highland Pulse Breeding Program at Holetta, Kulumsa, Gonder, Sinana, and Areka Agricultural Research Centers, as well as Haramaya University, in ensuring the successful completion of this study.

## Referances

- Argaye, S., Tadele, M. and Tilahun, N. 2023. Agronomic performance and grain yield stability of elite field pea (Pisum sativum L.) genotypes tested at various potential growing environments in Ethiopia. Middle East Research Journal of Biological Science, 3(3): 96-104.
- Cravero, V., Esposito, M.A., Anido, F.L., Garcia, S.M. and Cointry, E. 2010. Identification of an ideal test environment for asparagus evaluation by GGE-biplot analysis. Australian Journal of Crop Science, 4(4): 273-277.
- CSA, C. 2021. Report on area and production of major crops. Central Statistical Agency CSA, Addis Ababa, Ethiopia.
- Eberhart, S.T. and Russell, W. 1966. Stability parameters for comparing varieties. Crop Science, 6(1): 36-40.
- Fikere, M., Tadesse, T., Gebeyehu, S. and Hundie,
  B. 2010. Agronomic performances, disease reaction, and yield stability of field pea (Pisum sativum L.) genotypes in Bale Highlands, Ethiopia. Australian Journal of Crop Science, 4(4): 238-246.
- Mussa, J., Jarso, T., Wolabu, T. and Keneni, G. 2006. Review of field pea (Pisum sativum L.) genetics and breeding research in Ethiopia. In: Kemal Ali, Gemechu Keneni, Seid Ahmed, Rajendra Malhotra, Surendra Beniwal, Khaled Makkouk and M.H. Halila, eds. Food and Forage Legumes of Ethiopia: Progress and Prospects. Proceedings of a workshop on food and forage legumes, 22-26 Sept 2003, Addis Ababa, Ethiopia. ICARDA, Aleppo, Syria, pp. 67-79. ISBN 92-9127-185-4.
- Shekh, F.A. and Bhat, J.A. 2017. Farmers' Preference Ranking in Bush type of

Common Bean (Phaseolus vulgaris L.) in Kashmir – Participatory Varietal Selection. International Journal of Pure & Applied Bioscience, 5(1): 712-719.

- Smýkal, P., Aubert, G., Burstin, J., Coyne, C.J., Ellis, N.T., Flavell, A.J., Ford, R., Hýbl, M., Macas, J., Neumann, P. and McPhee, K.E. 2012. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2(2): 74-115.
- Yan, W. and Hunt, L.A. 2002. Biplot analysis of diallel data. Crop Science, 42(1): 21-30.
- Yan, W. and Kang, M.S. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists.
- Yang, X., Gou, Z., Zhu, Z., Wang, C., Zhang, L. and Min, G. 2022. Breeding and evaluation of a new-bred semi-leafless pea (Pisum sativum L.) cultivar Longwan No. 6. Agronomy, 12(4): 850.
- Yihunie, T.A. and Gesesse, C.A. 2018. GGE biplot analysis of genotype by environment interaction in field pea (Pisum sativum L.) genotypes in Northwestern Ethiopia. Journal of Crop Science and Biotechnology, 21: 67-74.