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አህፅሮት 
 

በኢትዮጵያ በሰብል መሬት ላይ ያለው የአፈር መከላት በዓመት ከ40-130 ቶን በሄክታር የሚደርስ ሲሆን፣ 
ከ1.0-1.5 ሚሊዮን ቶን እህል ምርትን እያሳጣት ይገኛል፡፡ የዕቀባ እርሻ በሶስት እርስ በእርስ በሚደጋገፉ 
መሰረታዊ መርሆዎች ላይ ተመስርቶ የአፈር መከላትን በመቀነስ፣ የአፈርን ጥራት በማሻሻል እና ዘላቂነት 
ላለው የግብርና ምርት አስተዋጽኦ እያደረገ ስለመሆኑ በሰፊው ይታወቃል፡፡ በኢትዮጵያ ውስጥ ከሶስት አስርት 
ዓመታት በላይ የምርምር እና የሰርቶ ማሳያ ጥረቶች ቢኖሩም የረጅም ጊዜ ጥናቶች ለአፈር ጥራት መጎልበት 
ያለዉን ጥቅሞች በበቂ ሁኔታ በማሳየት ላይ ውስንነት አለባቸው፡፡ በሀገር ውስጥም ሆነ በውጭ የረጅም ጊዜ 
የዕቀባ እርሻ ጥናቶችን መዳሰስ እና ያለውን እውቀት መቀመር የወደፊት የዕቀባ እርሻ አጠቃቀም ላይ ትክክለኛ 
ውሳኔዎችን ለመስጠት፤ እንዲሁም የምርምር እና የማስተዋወቅ ስራዎች ለመምራት ይረዳል፡፡ ይህ ጥናት 
ዓላማው የዕቀባ እርሻ ለአፈር ጥራት መሻሻል እና ተያያዥ ተግዳሮቶች ላይ የተሰሩ ጥናቶችን በመተንተን 
በኢትዮጵያ የወደፊት አቅጣጫን ለማሳየትና አርሶ አደሮች ተጠቃሚ የሚሆኑበትን መንገድ ለመጠቆም ነው፡፡ 
የዕቀባ እርሻ ከ3-5 ዓመታት ውስጥ የአፈር ጥራትን ሊያሻሽል እንደሚችል እና ዘላቂነት ላለው የግብርና ምርት 
አስተዋፅዖ እንደሚያበረክት የታዩት ጥናቶች ያመለክታሉ፡፡ በተጨማሪም ዝቅተኛ ርጥበት ባለባቸው 
አካባቢዎች የሰብል ምርት መሻሻልን በአጭር ጊዜ ውስጥ ማምጣት እንደሚችል ያሳያሉ፡፡  ሆኖም በኢትዮጵያ 
ውስጥ የዕቀባ እርሻ የመጠቀም ልምድ በአርሶ አደሩ ዘንድ እምብዛም አልሰፋም፡፡ ለዚህም ዋና ዋና 
ምክንያቶች የሰብል ተረፈ-ምርቶች ለተለያዩ ጠቀሜታዎች መዋልና የአቅርቦት እጥረት፣ ለዕቀባ እርሻ ተብለው 
የተመከሩ አሰራሮች እና ግብዓቶች ውስንነት፣ ለዕቀባ እርሻ ምቹና አቅም ያላቸው አካባቢዎችን ቅድሚያ ሰጥቶ 
አለመሥራት፣ የኤክስቴንሽን አገልግሎቶች ውስንነት እና ለዕቀባ እርሻ ትግበራ ምቹ ሁኔታዎች የማመቻቸትና 
የማስቀጠል ውስንነቶች ናቸው፡፡ በአጠቃላይ ከተለያዩ የሙያ ዘርፎች ባለሙያዎችን በማሳተፍ፣ አካባቢያዊ 
ማህበራዊና ኢኮኖሚያዊ ሁኔታዎችን ያማከለ የዕቀባ እርሻን በማጎልበት ለተጠቃሚው ማቅረብ እና ለሚኖሩት 
ተግዳሮቶች ቀድሞ ተገቢዉን አማራጭ መፍትሄዎችን በመተግበር ከዕቀባ እርሻ ሊገኝ የሚችለውን ጥቅም 
ለአርሶ አደሩ ማሳየትና ተጠቃሚ ማድረግ ያስፈልጋል፡፡ ለተመራማሪዎች፣ ለኤክስቴንሽን ሰራተኞች ለልማት 
ባለሙያዎች እና ለአርሶ አደሮች እንዲሁም ለወሳኝ ባለድርሻ አካላት የሚታዩትን ውስንነቶች የሚቀርፍ በቂ 
የአቅም ግንባታ ሥራም ወሳኝነት አለው፡፡ 

 

Abstract 
 

Ethiopia experiences a very high soil loss of 40–130 t ha
-1

year
-1

 from croplands that 

costs the country about 1.0-1.5 million tons loss of grain production per year. Founded 

on its three interlinked principles, Conservation Agriculture (CA) is widely 

documented to reduce soil loss, improve soil quality and contribute to sustainable 

agricultural production. Despite more than three decades of research and promotion 

efforts on CA in Ethiopia, long-term comprehensive studies are scanty to sufficiently 

demonstrate its benefits for soil quality enhancement. Drawing lessons from long-term 

CA studies both within and outside the country would help to make informed decisions 

for wider use of CA and guide future research and promotion activities. Available 

pertinent CA literatures from peer-reviewed journals, research reports, dissertations, 

and proceedings were reviewed. This review was aimed to collate and analyse studies 

documented the effect of CA practices on soil quality improvement and associated 

challenges, and suggest the way forward for its application by smallholder farmers in 

Ethiopia. The review indicated that, when properly implemented, CA improves soil 

quality in 3-5 years and contributes to sustainable agricultural production. Besides, 

yield improvement is possible in early stages of CA application in the low moisture 

areas under sufficient crop residue retention. However, CA adoption in Ethiopia is 

generally low which is mainly attributed to limited availability and competing uses of 
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crop residue, limited availability and use of CA based recommendations, mis-location 

of CA promotions, limited participatory extension services and enabling conditions. 

Overall, the review suggested the need for a concerted multi and inter-disciplinary 

research effort to develop CA innovations suiting to the different biophysical 

environments and socioeconomic circumstances. Effectively demonstrating the power 

of CA on relieving soil problems, and providing alternative solutions for the challenges 

surrounding it are requisites to get its full benefits. Capacity building on innovative CA 

practices is crucial for researchers, extension workers, development practitioners and 

the smallholder farmers. 

 

Keywords፡ Conservation agriculture, soil quality, adoption, Ethiopia 

 
Introduction 

 

Conventional agriculture through intensive tillage and high input based production 

system has played a tremendous role to meet the global food, feed, fiber and bio-

energy demands. Nevertheless, concomitant environmental (soil, water and 

associated ecosystem services) degradation was high in both high input intensive 

(Zhang et al., 2018; Clark and Tilaman, 2017) and low input repeated tillage 

agricultural practices (Birhanu et al., 2011; Stoorvogel and Smaling, 1998). This 

calls for transition towards sustainable agricultural production practices that help 

regenerating soil and land quality, and productivity (LaCanne and Lundgren, 

2018; Clark and Tilman, 2017). In response, Conservation Agriculture (CA) has 

been considered one of the possible sustainable agriculture trajectories. It is 

founded on three pillars: maintaining permanent soil covers with crop residues or 

live mulches, no or minimum mechanical soil disturbance, and crop diversification 

through growing in sequences and/or associations. CA in conjunction with other 

complementary good agricultural practices is considered a major entry point for 

sustainable agriculture while concurrently protecting and enhancing the 

environment (FAO, 2012).  

 

Global literatures are well stocked with positive impacts of CA adoption on soil 

quality improvement (Naab et al., 2017; Friedrich et al., 2012; Wang et al., 2010; 

Sombrero and de Benito, 2010; their felder and Wall, 2009; Fernandez-Ugalde et 

al., 2009; Rockstrom et al., 2009). The soil quality improvements are around 

enhancement of soil organic carbon (SOC) content, water infiltration capacity, 

water holding capacity and microbial activities, and thereby arresting decline in 

total factor productivity of applied inputs. Moreover, it was reported to have 

contributed to protection of the top fertile soil from wind and water erosion 

(Dumanski et al., 2006; CTIC, 1999). Its contribution was indicated in build-up of 

effective nutrient recycling and enhancement of nutrient use efficiency by creating 

conducive rhizosphere for soil micro-flora and fauna (Sombrero and de Benito, 

2010; Bessam and Mrabet, 2003). In addition to reducing the evaporation losses 
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and non-point pollution of water bodies, CA contributed to reducing vulnerability 

against impacts of climate change on crop production and mitigation by reducing 

emissions and improving carbon sequestration in soils (Bessam and Mrabet, 2003; 

West and Post, 2002). 

 

CA is practised worldwide in all the continents and agricultural ecologies on about 

180 million hectares of cropland, corresponding to about 12.5% of the total global 

cropland (Kassam et al., 2018). The annual rate of global expansion since 

2008/2009 is about 10.5 million ha of CA cropland area. Its adoption is reported 

by 78 countries. However, adoption is shown mainly intense in North and South 

America, Australia, New Zealand, and only recently in Asia, Russia, Ukraine, 

Europe and few African countries. 

 

Ethiopia experiences a severe soil resource base degradation where about 40-130 t 

ha
-1

 yr
-1

 soil is lost from croplands (Tamene and Vlek 2008; Berry, 2003; Girma, 

2001; Kefeni, 1992). This rate is much higher than the world and African average 

of 17 Mg ha
–1

 yr
–1

 and 23 Mg ha
–1

 yr
–1

, respectively. The soil loss due to erosion 

was estimated to cost the country’s economy by 1.0-1.5 million tons of grain 

production per year (Hurni et al., 2015; Girma, 2001). Degradation of soil 

productivity factors along with negative net soil nutrient balance in the farmlands 

(van Beek et al., 2016; Amare et al., 2006) have been challenging the country’s 

effort to ensure food security under sustainable production. Reduction in soil 

fertility and soil quality are among major factors contributing to low adaptability 

of agriculture to insufficient and erratic rainfall in many parts of the country (van 

Beek et al., 2016; Gete et al., 2010).  

 

Quite intense natural resource conservation efforts have been made since the past 

several decades by the government and non-governmental organizations (NGOs) 

in the country. A number soil and water conservation practices including physical 

structures and a few biological measures (Grunder, 1988), and CA practices like 

minimum/zero tillage with/without mulching and with/without herbicides (Ito et 

al., 2007; Assefa et al., 2004) have been employed though with a little adoption 

by the farmers. 

 

In Ethiopia, despite several researches and conservation tillage promotion 

endeavours for over three decades, only a few of initiatives and long-term studies 

were made to address the contributions of CA to soil health and demonstrate its 

benefits to smallholder farmers. Moreover, the results of the available scanty 

studies are not consistent and conclusive on soil, water and crop productivity 

improvement benefits obtained from practicing CA. The objectives of this review 

work is therefore to collate and synthesis available information within and outside 

the country in similar production environments, on CA contributions to soil health 

and crop productivity enhancement and associated challenges. By doing so, it 
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aims to draw lessons and forward recommendations that help to inform policy 

makers, researchers, agricultural development practitioners and farmers in their 

CA application endeavors. 

 
Principles of conservation agriculture 

CA is an approach of managing agro-ecosystems for improved and sustained 

productivity, increased profits and food security while preserving and enhancing 

the resource base and the environment. To this end, three interlinked CA 

principles; viz., no or minimum mechanical soil disturbance, permanent soil cover 

with crop residues and live mulches, and crop sequences and associations, 

applicable to all agricultural landscapes and land uses applied with locally tailored 

improved management practices are considered as the key road to increased 

system productivity, resilience and sustainability (FAO, 2012). 

 

Zero or minimum mechanical disturbance of soils is aimed to minimize processes 

that contribute to degradation such as erosion, compaction, aggregate breakdown, 

loss of organic matter, leaching of nutrients and others (Kassam et al, 2015; 

Friedrich et al., 2012). A suit of practices including direct sowing/broadcasting of 

crop seeds, direct placing of planting material in the soil or minimum soil 

disturbance from cultivation or farm traffic are used. In fact, the use of zero tillage 

without appropriate residue retention and suitable rotations is reported to be even 

more harmful to agro ecosystem productivity and resource quality than a 

continuation of conventional practices (Gebreyesus, 2012; Sayre, 2000). 

 

The permanent soil cover both during crop growth phases as well as during fallow 

periods provides the soil surface a buffering effect from raindrops and radiation 

effects. It is recommended that at least 30% of the soil surface need to be covered 

with previous crop residue by the time of planting (CTIC, 1999; Erenstein, 2002). 

This threshold is thought to reduce soil erosion by 80% (Jat et al., 2013). Overall, 

the practice reduces soil surface sealing, crusting and evaporative moisture loss 

and hence contributes to improved water infiltration, soil water use efficiency and 

increased insurance against in-season dry spells. Presence of high levels of lignin 

and phenolic acids that gives the residues a higher resistance to decomposition is 

used as criteria in residue cover selection to provide longer period soil protection.  

Diversification of crops through sequences (rotations) and associations is done 

through practices like a balanced mix of legume and non-legume crops to offer a 

diverse “diet” to the diverse soil micro-organisms that in turn plays an important 

role in atmospheric N fixation and in the transformation of unavailable nutrients 

into plant available form. Furthermore, they can serve as biological pumps of 

nutrients as they possess different rooting depth in addition to their contributions 

to greater distribution of channels or bio pores created by diverse roots with 

various form, size and depths. The practices can also be used as a host break to 
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harmful pests (insects, weeds and diseases) in the long-run that will result to 

reduced requirements for pesticide and herbicide chemicals (Dumanski et al., 

2006). 

 

On implementing the three CA pillars, specific CA components (establishment 

methods, farm implement selection, crop residue and mulch management, crops in 

the rotation, soil fertility management, germplasm selection, pre-CA 

implementation management requirements, etc.) would appear to be different 

across different environments. Hence, adaptive research is needed to tailor specific 

components of CA principles to suit local conditions and constraints. 

 
Soil quality parameters prone to CA management practices 

Soil quality, as defined by Soil Science Society of America (SSSA) soil quality 

Ad Hoc committee, "is the capacity of a specific kind of soil to function, within 

natural or managed ecosystem boundaries, to sustain plant and animal 

productivity, maintain or enhance water and air quality, and support human health 

and habitation" (Karlen et al., 1997). Soil quality being a function of both inherent 

and dynamic soil properties and processes can be viewed as a composite picture of 

measurable soils’ physical, chemical and biological attributes. These attributes 

relate to functional soil processes that can be used as indicators to evaluate soil 

health as affected by management changes. Soil health is the continued capacities 

of soil to function as a vital living ecosystem that sustains plants, animals and 

humans (NRCS, 2012). CA recognizes soil as living entity essential to sustain 

quality of life and gives emphasize to the critical and highly active upper 20 cm 

layer soils (Dumanski et al., 2006) to protect against erosion and degradation. This 

is a layer where human activities of land management have the most immediate, 

and potentially the greatest impact. 

 
Soil physical quality 

Soil physical qualities including infiltration, plant available water and aggregate 

stability are among major indices of productivity and are prone to changes in soil 

management practices. To this end, there are ranges of CA research results 

showing soil management change impacts on soil physical quality aspects. 

 
Infiltration rate 

Field experiment conducted on loamy sand ferric Lixisol receiving mean annual 

rainfall of 748 mm in Zambia, and on sandy soil of endostagnic dystric Luvisol 

receiving annual rainfall 884 mm in Zimbabwe showed significantly higher water 

infiltration for CA fields as compared to conventional shallow depth (10-15 cm) 

animal traction based mouldboard plough fields (Thierfelder and Wall, 2009). The 

report in Zimbabwe showed overall average infiltration rate of 25% and 39% 

higher for CA treatments as compared to conventional farmers practice in 2006 

and 2007, respectively, while it was 42 and 100% in Zambia for CA treatments as 
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compared to conventional farmers practices. The effect was higher on clay loams 

Lixisols of Zambia; three and five times greater for CA plots than for 

conventionally tilled fields (Thierfelder et al., 2013). Similar improvement in total 

infiltration for long-term zero tillage was reported in India (Sikka et al., 2005) and 

in semi-arid Morocco (Mrabet, 2004). On the contrary, in a deep and well drained 

sandy loam soil (Ultisol) with mean annual rainfall of 1600 mm at Nsukka, 

Nigeria, the conventional tillage under sole sorghum and the intercrop systems 

recorded significant enhancement of saturated conductivity than CA practices 

(Obalum and Obi, 2010). Higher rainfall can temporarily result in waterlogging 

for CA plots if macro-pores are not well developed in reduced tillage (Thierfelder 

and Wall, 2009), while ploughing which breaks up the blocky structure of the soil 

might have improved drainage in conventional tillage.  

 

In Ethiopia, water infiltration measurement during 2015 and 2016 for CA plots 

established on silt loam of Andosols in 2010 at Melkassa Agricultural Research 

Center (MARC) was about 15% higher as compared to conventional practice, 

while the result on clay loam of Alfisols at Bako (CA plot established in 2015) 

was vice versa (Liben et al., 2018). The cumulative rainfall was about 400 and 

830 mm at Melkassa and 800 and 1300 mm at Bako in 2015 and 2016 seasons. 

 
Soil moisture content 

The higher water infiltration on CA plots during the growing season (Thierfelder 

and Wall, 2009; Mrabet, 2004) leads to a higher plant available soil moisture that 

generally enables crops to overcome in-season dry spells and reduce the risk of 

crop failure. Thierfelder and Wall (2009) and Olaoye (2002) reported that in CA 

plots available soil moisture above the permanent wilting point was constantly 

higher than that of the conventional farmers’ practices. According to Mrabet 

(2004) in semi-arid Morocco, the non-tilled surface needed on average 32 days for 

soil moisture to reach a wilting point, while moldboard plow, chisel plow, 

rotavator and disking needed only 8, 21, 17 and 18 days, respectively. This in 

most cases resulted in improved rainfall-use efficiency mainly under lower rainfall 

seasons or in low-moisture stressed areas. Similarly, in a long-term field 

experiment, field water content was found significantly improved in no-tillage 

than in conventional tillage in the semiarid Mediterranean Ebro Valley of Spain 

during the driest months. The volume of equivalent diameter pores (0.2–9 mm) 

was reported 1.5 times higher under no-tillage (Fernandez-Ugalde et al.2009) 

contributing to increased plant available water content and improved production 

under no-tillage in a drier year.  

 

As reported by Patil et al. (2016) and Rockstrom et al. (2009) a set of experiments 

conducted in semi-arid and dry sub-humid locations in East and Southern Africa 

demonstrated that minimum-tillage practices considerably increased water 
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productivity and crop yields under even little mulch of crop residues. On the other 

hand, on clay soils of Nyabeda, western Kenya that receives annual rainfall of 

1200 mm, in bimodal seasons showed lower crop water productivity (CWP) in 

reduced tillage plots than conventional plough plots though improvement was 

seen after four consecutive seasons (Kihara et al., 2008). The authors documented 

the greatest CWP between 400 and 700 mm rainfall and a declining trend when 

rainfall exceeds 900 mm. The possible explanation for reduced CWP is that the 

macro-pores that act as water conduits in reduced tillage may not develop 

sufficiently in shorter period of time. 

 

In Ethiopian studies, soil water content measured in the top 0-30 cm soil layer was 

reported remarkably high in CA plots established on sandy loam and loam soils of 

MARC and Wolenchity (Olanchiti) research sub-station than under conventional 

tillage during the main growing season (Worku et al., 2006). Recent medium-term 

CA study in the semi-arid Central Rift Valley (CRV) also showed that stored soil 

water at 0 to 100 cm depth at physiological maturity of maize was 21% more with 

CA as compared to conventional ploughing (Liben et al., 2017). Similarly, 

conservation tillage study on Vertisols in the drylands showed constantly higher 

soil-water storage (0–80 cm soil depth) during the growing season with DER+
1
 

followed by TER+ and conventional tillage, whereas the opposite trend was 

observed for runoff (Tesfay et al., 2015). On a medium term CA study in the 

semiarid CRV of Ethiopia early emergence of maize planted under CA was 

reported compared to the conventional ploughing (Liben et al., 2017). Crop 

emergence in the area is affected by surface soil crusting (Biazin et al., 2015) 

especially when rainfall is not enough to moisten the soil for the period from 

planting to seedling emergence. Hence, the improved maize emergence in CA 

plots can be attributed to wetting effect by stored soil water (Liben et al., 2017) 

that assists emerging seedlings by loosening surface crust. Furthermore, extended 

tasselling, silking or physiological maturity were reported for maize grown on CA 

plots mainly due to improved stored soil water. Overall, the studies showed that 

CA is effectively increasing green water in the root zone available for crops and 

thus good crop establishment, growth and crop productivity. 

 
Soil aggregate stability 

Several research findings have indicated a higher proportion of stable aggregates 

in the soil surface in no-tillage than conventional tillage (Wang et al., 2010; 

Roldan et al., 2003; Lahlou and Mrabet, 2001; Bossuyt et al., 2001). Long-term 

on-farm experiment by Fernandez-Ugalde et al. (2009) on silt loam Haplic 

Calcisol of semiarid Mediterranean Ebro Valley of Spain also depicted 

                                                           
1
 DER+ is ‘dirdaro’ plus crop straw where beds and furrows are made along the contour at intervals of 0.6 m while TER+ 

is ‘terwah’ plus crop straw where furrows are made along the contour at regular intervals of 1.5 m (Tesfay et al., 2011). In 
both cases only one tillage operation refreshing the furrows at planting was made and 30% of the crop straw standing 

stubble was left on the field. 
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improvement in soil physical quality for no tillage treatment plots. In this study, 

aggregate dry mean weight diameter (MWD) and stability in water were 1.2 and 

2.2 times greater, respectively, for no-tillage as compared to conventional tillage. 

This is attributable to reduced mechanical disturbance and increased SOC content. 

Stable soil aggregate formation contributes to the conservation and protection of 

SOC that allows its function as a reservoir of plant nutrients and energy. The 

physical disturbance due to repeated ploughing exacerbates the turnover of 

aggregates and rapid loss of soil organic matter (SOM) in conventional tillage 

(Zheng et al., 2018; Murage et al., 2007). 

 
Penetration resistance 

Penetration resistance is an indicator for the degree of compaction of soil. Soil 

compaction limits root growth and the availability of air and water to the roots. 

Research results on effects of no-tillage and crop residue retention on soil 

penetration resistance are generally inconclusive resulting in conflicting reports. 

For instance, increasing penetration resistance from the good to the poor fields 

was reported due to minimum tillage (Liben et al., 2018; Guto et al., 2011). 

Sufficient quantity of residue retention on the other hand was reported to 

considerably reduce the penetration resistance in the medium class fields (Liben et 

al., 2018; Baudron et al., 2012; Guto et al., 2011), while neither tillage nor crop 

residue practice did significantly affect penetration resistance of the good class 

fields. On the other hand, zero tillage with residue retention increased soil 

penetration resistance in surface soil layer (Choudhary et al., 2018). 

 
Soil Chemical quality 

Soil organic carbon accumulation  

SOC accumulation is the most reported soil chemical attribute from tillage 

experiments as it is the key soil quality indicator well linked to other soil 

properties. Field experiment on sandy loam Andosols at Ajuno experimental site 

in the central Mexico depicted significant increase in total SOC with crop residue 

additions (Roldan et al., 2003) over conventional tillage. Another evidence of total 

SOC improvement was reported from two long-term (4 and 11 years) experiments 

conducted on deep clay vertic Calcixeroll soil receiving mean annual precipitation 

of 358 mm in semiarid Morocco. The result indicated that carbon sequestration 

under no-tillage was found 3.5 t ha
-1

 and 3.4 t ha
-1

 higher than conventional tillage 

in the 0-20 cm layer after 4 and 11 years, respectively (Bessam and Mrabet, 2003). 

Similarly, about 11.0 and 25.0 % SOC improvement was reported in CA plots 

over conventional tillage (CT) after 3 and 10 years, respectively in a semi-arid 

area of Castile-Leon, Spain (Sombrero and de Benito, 2010). As can be seen from 

Figure 1, under no-/minimum-tillage system, the initially higher SOC in the upper 

soil layer showed a declining trend with increasing depth (Sombrero and de 

Benito, 2010).  



Dejene et. al.,                                                                            [205] 

 

 

 

 

Figure 1. Vertical distribution of the SOC content in 2004 by tillage system  
Lettered values mark significant differences at p < 0.05 (Duncan’s test). CT, conventional tillage; MT, minimum tillage; NT, 
no tillage.  
Source: Sombrero and de Benito (2010) 
 

Labile (water soluble) carbon fractions mainly used by the soil microbial 

community as an energy source for metabolic activity were reported to have direct 

relationship with the rate of crop residue addition (Mrabet et al., 2004). Saber and 

Mrabet (2002) also reported an increase in the labile fraction of SOC under no-

tillage as compared to conventional tillage. In this respect, growing legumes as 

cover crop had significant contribution to increase the water soluble carbon 

fractions (Roldan et al., 2003). Overall, according to West and Post (2002) the 

global database of 67 long-term experiments depicted significantly higher SOC 

levels under zero tillage as compared to the conventional and reduced tillage, and 

concluded that a move from conventional tillage systems to zero tillage plus 

residue retention can sequester on average 48 ± 13 g C m
-2

 yr
-1

.  

 

Increase in soil organic matter under no-tillage may be attributed to reduced 

contact of crop residues with soil (Gosai et al., 2010). The majority of SOC 

increase under no-tillage has been found to be in the top 10 to 25 cm with 

insignificant changes relative to conventional tillage at higher depth (Sanderman 

et al., 2012). Surface residues tend to decompose more slowly than soil-

incorporated residues, because of greater fluctuations in surface temperature, 

moisture and reduced availability of nutrients to microbes colonizing the surface 

residue (Olaoye, 2002). Hence, the newly sequestered C is accumulating where it 

is most vulnerable to environmental and management pressures that actually made 

it arguable about the permanence of the increase. 

 

Similarly, studies in Ethiopian confirmed SOC improvement with CA. On a 

conservational tillage experiment established on sandy loam and loam soils in the 

dry land areas of the CRV, soil organic matter on weight basis at a depth of 0-15 
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cm was higher under conservation tillage (1.6%) as compared to conventional 

tillage (1.2%) (Worku et al., 2006). Another experiment conducted on smectite 

rich clay mineral vertisol at Chefe Donsa in the central high lands showed a trend 

of increase in SOM content in reduced tillage (Teklu, 2011). Similarly, a higher 

level of SOC 16 g kg
-1

 was reported in CA fields as compared to 12 g kg
-1

 in 

conventional ploughed fields at 0-0.05m surface soil depth at Melkassa (Liben et 

al., 2018). Thirty years crop growth simulation study in seven different agro-

ecologies of Ethiopia showed 33% maize grain yield advantage by combined use 

of N fertilizer, crop rotation and conservation tillage (Liben et al., 2020). It further 

showed to slow down the rate of SOC and N decline over time as compared to 

combined use of conventional tillage and recommenced N rate only.  

 
Nutrient cycling 

Retention of crop residues and diversification of crop species grown in sequence 

or associations under no-tillage affects nutrient cycling and availability. It has 

been found that no-tillage helped to conserve more nitrogen (Bessam and Mrabet, 

2003), and resulted in increased extractable phosphorus and exchangeable 

potassium concentrations in the upper root-zone similar to the finding by Tesfa et 

al. (2003) from Ethiopia (Fig. 2). Total nitrogen content increased from low to 

medium level (0.13%) in conservation tillage while it remained under low 

category (0.07%) in conventional tillage (Worku et al., 2006). 

 

 

Figure 2. Chemical properties of soils in conventional and CA systems at (a) MARC and (b) Jimma  
The secondary vertical axis shows the soil pH and Olson soil P2O5 (ppm). Computed from Worku et al. (2006) and Tesfa et al. (2003)  

 

A study conducted at Bako in Ethiopia on clay loam soils reported appreciable 

improvement of soil organic C and total N content as well as extractable P and 

exchangeable K for zero-tillage with five years residue retention (Tolessa et al., 

2007). The larger total N values under no-tillage than conventional tillage imply N 

immobilization in microbial biomass near the soil surface, leaving less N available 

for mineralization or leaching that is slow release overtime. 

 

(a) (b) 
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Soil Biological quality  

Biological activities in soils are considered important indicators of soils capacity 

to support biological productivity. Macro faunal activity and microbial biomass 

responds quickly to changes in soil management and are among adequate 

indicators of soil quality and hence soil health. 

 
Macro fauna population and activity 

Significant increase in mean density of earthworm casts in no-tillage than in 

conventional tillage plots was shown in Nigeria by Obalum and Obi (2010). Other 

research works (Brevault et al., 2007; Johnson-Maynard et al., 2007) have also 

demonstrated higher number of earthworms to thrive under no-tillage. These 

findings suggested a close linkage of the higher water infiltration measured on CA 

fields to increased biological activity and pore continuity. A study conducted in 

Zimbabwe on two soil types: Vertisol receiving low and erratic rainfall of 450 mm 

year
-1

 and Luvisol receiving moderate rainfall of 650 to 800 mm year
-1

 but still 

prone to severe mid-season dry spells showed higher macro fauna population in 

CA systems. The macro fauna population was found increasing with increasing 

amount of crop residues retained as soil cover than conventional practice (Mutema 

et al., 2013). Conventional tillage on the other hand is associated with reduction in 

soil macro fauna including earthworm population (Reedler et al., 2006; Obalum 

and Obi, 2010; Mutema et al., 2013) probably due to mechanical soil disturbance 

deleterious effects such as drying the soil, burying the plant residue they feed on, 

destroying their vertical burrows, and cutting up and killing the worms 

themselves. 

 

However, macro fauna diversity was shown somewhat different under different 

residue types. According to Mutema et al., (2013) higher diversity was found in 

CA plots with maize residue while that was not confirmed where sorghum 

residues were used. This is in agreement with Verhulst et al. (2010) who reported 

increased species diversity on reduced tillage used in combination with maize 

residue retention. This suggests that species diversity may depend on the quality 

of organic material retained on the soil surface. 

 
Microbial biomass 

Soil microbial biomass increased in surface soils under no-tillage (Choudhary et 

al., 2018; Gosai et al., 2010; Teklu et al., 2007) as compared to the tilled plots. 

Likewise, Gonzalez-Chavez et al. (2010) experiment result revealed that microbial 

biomass C and N nearly doubled under no-tillage as compared to conventional 

tillage treatments. The same work showed decreased microbial biomass C, N and 

P from low to high tillage disturbance regime and also from surface to sub-surface 

soil layers.  
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In general, from the above CA literature review it is possible to deduce that CA 

offers improvement to soil quality parameters and hence soil functions such as 

biomass production; storing, filtering and transforming nutrients and water; 

biodiversity pool, and serve as carbon pool that in one way or another benefits 

ecosystem functioning in general and sustainable agricultural production in 

particular. By avoiding or reducing the frequency of tillage, farmers can timely 

plant right after rainfall onset that help them adapt to climate change, save labour 

and energy requirements for land preparation. In addition, soil erosion is arrested, 

soil productivity functions improved and yields stabilized by adopting and 

implementing CA effectively. These benefits may have contributed to the high 

rate of CA adoption in countries such as North and South America, Australia, 

New Zealand, Asian and few Southern African countries.  

 
Conservation agriculture in Ethiopia 

Research on conservation tillage in Ethiopia began early in 1980s (Kidane and 

WoldeYesus, 1993, Tanner et al., 1991, Asefa et al., 1991) with the focus of 

reducing heavy disturbance from frequent tillage operations by the traditional 

tillage implement, Maresha plow (Melesse, 2007). Reports on crop performance 

and soil productivity improvements in most trials of zero and minimum tillage 

showed varying results in different soils and rainfall conditions (Tanner et al., 

1991; Asefa et al., 1991). Soil hindrance to germination, and weed infestation 

were among the challenges accounted for the inconsistent performance of the 

crops in early stages of the no or minimum tillage practices. 

Later on, the research focus changed into stubble management and different tillage 

practices along with cropping sequences (Assefa et al., 2004). Wheat based field 

experiment on tillage systems conducted from 1993-2000 at Kulumsa clay soil (an 

intergrade between eutric Nitisol and luvic Phaoezem) and Asasa clay loam 

(calcic Chernozem) in Arsi revealed that there was no improvement in 

productivity. Both sites receiving mean annual precipitation ranging from 600 to 

900 mm in bimodal distribution rather showed consistently higher severity of 

Bromus pectinatus weed under zero and minimum tillage (Assefa et al., 2004) that 

was attributed to the decreased grain yield throughout the experimental period 

despite glyphosate application during the “short rain” season. Over years the same 

study showed a wheat grain yield increase and B. pectinatus severity decrease for 

conventional tillage in contrast to minimum and zero tillage. However, crop 

rotation with faba bean under reduced tillage systems showed reduction on 

severity of B. pectinatus infestation. 

 

CA with its full components was introduced to Ethiopia in 1998 by Sasakawa 

Global 2000 (SG-2000) (Matsumoto et al., 2004), which demonstrated CA with 

30% residue retention for maize, wheat and tef between 1999 and 2003. The 



Dejene et. al.,                                                                            [209] 

 

overall results showed a biological yield improvement and hence profitability of 

the practice (Ito et al., 2007). Similar experiments were conducted from 2000-

2004 on maize by Jimma, Bako and Melkassa Agricultural Research Centers in 

collaboration with Sasakawa Global 2000 to determine and compare the 

advantages of conservation tillage over the conventional practice. The on-farm 

researcher managed conservation tillage at Mana and Omonada districts in Jimma 

zone showed significant improvement in SOC content and maize grain yield in 

CA plots as compared to the conventional tillage (Tesfa et al., 2003). Similar trend 

of SOC and grain yield improvement was reported on sandy loam and loam soils 

in Melkassa area (Worku et al., 2006).The result from Bako on station and on 

farm fields at Shoboko, Tibe, Ijaji and Gudar indicated the need to wait at least 

three years to see the benefit of CA on grain yields (Tolessa et al., 2007). 

 

On the other hand, lower grain yield of sorghum in general was experienced from 

zero-tillage at MARC research plot (Tewodrose et al., 2005) where 70% grain 

yield increase was recorded from conventional tillage to which 3t ha
- 1

 of tef straw 

applied as soil surface mulch, and only 46% for same level of straw application 

under zero tillage. Such results were often experienced during the early stage of 

CA implementation (Tesfay et al., 2010; Tolessa et al., 2007) while the result also 

clearly indicated that permanent cover of the field with organic material is the 

most important component to be combined with the minimum or no tillage 

practice. On another study, lower average grain yield of sorghum was reported on 

zero tillage treatment without residue retention on water and nutrient constrained 

Typic Pellustert soil of Abergelle area, Tigray (Gebreyesus, 2012). The author 

suggested the need for pre-soil amendment to improve the infiltration and water 

holding capacity of the soil before zero tillage implementation, and a further long-

term study. CA experiment by Tesfay et al., (2010) on Calcic Vertisol at 

Gumselasa (Adigudom), Tigray showed 53 to 61% soil loss reduction in no-tilled 

60 cm wide permanent beds with 30% residue retention as compared to traditional 

tillage. Considerably low to comparable grain yields were reported for 

conservation tillage from different studies suggesting the need for weed control 

while growing tef (Tesfay et al., 2010; Tigist et al., 2010) and wheat (Asefa et al., 

2004). In another research, Tesfay et al. (2015) documented increased grain and 

straw yield of wheat, 1.6 and 3.7 t ha
_1

 with conventional tillage and  2.6 and 5.2 t 

ha
_1

 due to DER+. 

 

Comprehensive on-station and on-farm CA experiments and demonstrations were 

conducted across wider agro-ecologies by six research centers: Melkassa, 

Hawassa and Jigjiga (representing mid-altitude dry land low potential maize 

growing areas), and Bako, Adet and Pawe (representing mid-altitude sub-humid 

high potential maize growing areas) under the Sustainable Intensification of 

Maize-Legume cropping systems for food security in Eastern and Southern Africa 

(SIMLESA) project during 2010 to 2018 cropping seasons. Results of the first 
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year CA trials showed reduction in grain yield as compared to conventional 

practice in both maize and common bean yields (Dagne et al., 2012) mainly 

attributed to lack of appropriate residue management and weed control as inferred 

by the authors. Later on, Liben et al. (2017) from the same experiment in the 

semiarid CRV (2011–2014 on-farm and 2010–2014 on-station trials) indicated 

maize bean rotation and intercropping under CA had 28 and 19% maize grain and 

29 and 17% more stover yield advantages compared with maize monoculture 

under conventional practice, respectively. The same study revealed that 21% 

higher stored soil water in 1 to 100 cm soil depth for CA plots compared with 

conventional tillage practice. Consequently, rainfall use efficiency was on average 

20% higher with no-till maize-bean intercropping compared to treatments with 

conventional practices. However, the same on-farm study indicated 23 and 47% 

less maize grain and stover yield under maize bean rotation under CA compared to 

maize monoculture under CA practice. 

 
Adoption and adoption constraints of CA by smallholder farmers in Ethiopia 

Conservation agriculture, introduced with its full components in 1998 by SG-

2000, was first demonstrated on 77 farmers’ plots on maize in Central Ethiopia 

(Matsumoto et al., 2004). According to Wondwossen et al. (2016), the technology 

demonstrations reached more than 16 districts in 2008 and recently over 35 

districts. The authors also indicated at least 3000 farmers started using CA in 2011 

from 262 farmers in 2006. SIMLESA project had worked with over 100,000 

farming households to help them apply ‘conservation agriculture’ based practices. 

Recently, the public agricultural extension system has taken up CA as one of the 

sustainable soil management technology packages. In addition to CA based 

programs’ and projects’ researches and demonstration initiatives, there are a 

number of NGOs promoting CA in Ethiopia. Among others, the Canadian Food 

Grains Bank working with Food for the Hunger Ethiopia in Beneshengul-Gumuz, 

Migbare Senay Children and Family Support Organization in Amhara, and 

Terepeza Development Association in Wolaita are currently supporting the 

promotion of CA in different parts of the country. 

 

Despite the different initiatives and the potential contribution of CA to the 

agricultural development and Climate Resilient Green Economy strategy of the 

country, and its recognition by the government, several factors as identified by 

different studies are constraining the adoption of CA by smallholder farmers. They 

are briefly discussed as below: 

 
Limited availability and competing use of crop residue in mixed crop-

livestock production systems 

Mixed crop-livestock production is the dominant production system in Ethiopia. 

In this areas, limited availability and competing demand for crop residues such as 
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for livestock feed, mulch, and fuel has been repeatedly reported as one of the key 

constraints affecting CA adoption by smallholder farmers (Liben et al., 2017; 

Moti et al., 2015; Baudron et al., 2014; Moti et al., 2013; Kindu et al., 2011). In 

areas where livestock are kept in stalls (zero-grazing), crop residues are often 

harvested and kept to feed animals during the dry season. The situation is worse in 

areas where livestock are released to graze freely on crop aftermaths (Moti et al., 

2013; Kindu et al., 2011). A survey conducted at Kobo and Nekemte areas 

revealed a declining trend of mulching practices in crop fields (Kindu et al., 

2011). In hot dry areas of the country, biomass production and residue availability 

is generally low making crop residue retention for permanent organic mulch very 

difficult. 

 

Nevertheless, the competing demand for crop residues in mixed crop-livestock 

systems should not be a barrier to the adoption of CA as it can be solved through 

appropriate interventions (Duncan et al., 2016; Baudron et al., 2015; 2014; Moti 

et al., 2013). Hence, promotion of CA must take into consideration introduction of 

alternative means to increase biomass production, and alternative sources to 

alleviate the opportunity costs of leaving crop residues as mulch (Kindu et al., 

2011; Valbuena et al., 2012). Cereal-legume intensification, quality based sharing 

of crop residue between livestock feed and mulching, and introduction of high 

biomass cover crops that can provide fodder for animals may help in meeting the 

subsequent year crop residue requirements of CA. Promoting CA aligning with 

the integrated watershed management practices may also help to retain crop 

residues by reducing competition with animals since free grazing is not allowed in 

managed watershed areas. Furthermore, the public agricultural extension agency 

must create enabling environment to reduce free grazing practices in selected CA 

promotion strategic geographic areas. 

 
Limited availability and use of CA adapted recommendations  

Using CA adapted technology packages including improved fertilizer, seed/variety 

and moisture management of the CA promotion locations can also improve 

biomass production for livestock feed and minimal initial soil cover required for 

initiating CA. 

 
Insufficient nitrogen fertilization 

Implementation of CA can modify N dynamics in the soils compared with 

conventional practices (Vanlauwe et al., 2014; Giller et al., 2009; Erenstein, 2002) 

since reducing soil disturbance leads to lower N release from the mineralization of 

soil organic matter at least for some years compared to repeated tillage (Zheng et 

al., 2018; Murage et al., 2007). Retention of wider C:N ratio crop residues, a 

preferred organic soils cover in CA, may also lead to temporary N immobilization 

(Vanlauwe et al., 2014; Abiven and Recous, 2007). Under Ethiopian smallholder 

farmers’ condition where fertilizer application is sub-optimal, this might be one 
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reason for N stress commonly observed early in the season in CA systems leading 

to depressed plant vigor and growth (Verhulst and Govaerts. 2010). Hence, 

nitrogen fertilizer recommendation rate and timing for the conventional 

production may need adjustment by understanding the ‘cross-over points’ beyond 

which investments in N fertilizer to counteract N immobilization by crop residues 

becomes profitable across agro-ecological conditions (Baudron et al., 2015; Giller 

et al., 2009). Nitrogen fertilization is generally challenging in crop production due 

to its mobile nature in soil. Therefore, alternative method that can enable in-season 

crop N requirements prediction such as hand-held sensors measuring the 

Normalized Difference Vegetation Index of the crop canopy (Verhulst and 

Govaerts. 2010) need to be calibrated and adapted. 

 
Lack of adaptation of soil water balance situation of an area to CA 

CA often shows improvement in crop production in areas where low moisture is a 

major limiting factor. There are also situations where results are neutral or even 

negative for crop production by causing waterlogging (Thierfelder and Wall, 

2009) depending on the amount of rainfall received and infiltration capacity of the 

soils of the specific location. On the other hand, no or retention of insufficient 

quantities of crop residues as surface mulch hardly improved the rainwater 

infiltration properties of the soil and crop yield, particularly on soils that are prone 

to crusting and compaction (Baudron et al., 2012; Guto et al., 2011). The soil 

physical properties improvement can take several years. Hence, CA system in 

such situations has to be adapted to the water balance situations of the study 

location soils at least to avoid the adverse effects on short-term crop productivity. 

For instance, formation of semi-permanent raised beds were found to reduce water 

runoff (Tesfay et al., 2015) and opening rip-lines in CA system increased water 

infiltration compared with conventional practices and has led to higher maize and 

wheat yields (Liben et al., 2017; Tesfay et al., 2015). 

 
Lack of suitable CA farm implements  

Availability of soil- and crop-specific adequate implements that can sow in an 

unploughed soil under crop residue mulch is among vital components contributing 

to CA adoption. Besides, cover crop management implements/tools to flatten and 

kill cover crops and leave the plant residues on the soil surface are also essential. 

In Ethiopia, a number of CA implements, modifications to the local Maresha 

plough that cause minimal soil disturbance, have been developed to make the 

conservation tillage implements affordable, light and easy to be used by 

smallholder farmers (Rockstrom et al., 2009; Melesse et al., 2009; Melesse, 
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2007). Also, locally made Berken Maresha
2
 with reduced draft power requirement 

was indicated promising which helps ripping at the center to break the hardpan, 

improving infiltration, and creating invisible barriers (Siwur Erken) to retard water 

movement (Feed The Future, 2017; Muche et al., 2017). Some modern CA 

implements like hand Jab-planters and rippers were also demonstrated. However, 

the effectiveness of existing local tillage implements for planting under residue is 

yet a challenge making CA practice less attractive.  

 

Therefore, prior to promoting CA as a good alternative practice, limiting factors 

that counteract its benefits need be well understood and given solutions. For 

instance, to address the problem of hard soil pan common with the traditional 

tillage, soil sub soiling is a requisite to improve the poor water infiltration and thus 

crop yields (Muche et al., 2017; McHugh et al., 2007; Melesse, 2007). A sub-

soiling (25─30 cm depth, 75 cm intervals) experiment in compacted soils in a dry 

sub-humid environment showed an increase in plant available soil water and 

sorghum yield (McHugh et al., 2007). Leaving the soil undisturbed without cover 

crops or sufficient crop residues can result in high surface runoff (Muche et al., 

2017; Gebreyesus, 2012). Hence, opening the soil to allow infiltration, while 

minimizing the adverse effects of tillage, would be a good strategy. 
 

Pest problems 

In practicing minimum and no-tillage weeds appears a serious challenge at the 

early crop growth stage (Tesfay et al., 2010; Tigist et al., 2010; Giller et al., 2009; 

Assefa et al., 2004). Therefore, uses of herbicides are recommended at early stage 

of CA establishment to control weeds though not a desirable option for a healthy 

environment. On the other hand, repeated use of glyphosate herbicide need to be 

monitored to avoid any undesirable effect like weed resistant development, human 

and environmental hazards. Although it might be costly, the environmentally safe 

investment of hand weeding is mandatory in CA early implementation years 

(Brown et al., 2018; Baudron et al., 2015; Giller et al., 2009). Furthermore, pre-

emergence and post emergence weed control herbicides availability by type, time 

and location as well as farmers’ skill of application need to be considered in CA 

promotion. 

 
Untargeted promotion of CA to meet its primary purpose 

The biophysical and socioeconomic environments are among major factors 

influencing CA performance and its adoption by farmers (Wondwossen et al., 

2016; Baudron et al., 2015; Kindie et al., 2015; Guto et al., 2011; Giller et al., 

                                                           
2 Berken Maresha also known as Silet Deger is a modification of local Maresha. Wooden 

Deger in local Maresha is replaced with metal Deger. 
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2009). For instance, minimum tillage and crop residue retention in low soil 

fertility classes (Guto et al., 2011) and in areas receiving high amount of rain fall 

in low infiltration capacity soils were not found promising for crop production 

(Thierfelder and Wall, 2009). CA has been promoted in the country with no 

beforehand knowledge about the biophysical and socioeconomic potential of the 

area. Cognizant of such limitations, a study in Ethiopia identified CA 

recommendation domains from the perspectives of biophysical (soil texture, 

surface slope and rainfall) and socioeconomic potentials (market access, human 

density, livestock population densities) where conventional crop-livestock mixed 

farming is a common practice (Kindie et al., 2015). Accordingly, about 4.6% 

(821,006 ha) of the cultivated land in Ethiopia is identified as high potential for 

CA recommendation domain and about 42.4% as medium or higher potential for 

CA recommendation domain. Therefore, the country’s CA promotion need to be 

targeted based on recommendation domains. 

 

On the other hand, some research findings indicate that CA has first and foremost 

been adopted in USA and Brazil primarily for energy-saving (time and/or power), 

erosion-control, and improving water use efficiency (Baudron et al., 2015; Lal et 

al., 2015; Giller et al., 2009). They argue that the primary motivation of CA 

adopters has rarely been for immediate yield increase, except perhaps where low-

moisture is a major limiting factor. The yield increases in CA plots, in most cases, 

have been occurring after several years of gradual physical, chemical and 

biological improvement of soils. Hence, the purpose of adopting CA can be linked 

with rainwater use efficiency, energy use efficiency, protection of soil from 

erosion and sustainable optimum yield during poor seasons as target variables in 

addition to sustainable yield improvement in the long-term. 

 
Limited extension services  

Access to strong extension services, frequency of extension visit, and human 

capital (years of formal education and farming experience) are inter alia factors 

found to positively influence adoption decision of improved practices in general 

and CA in particular (Woldegebrial et al., 2017; Wondwossen et al., 2016; 

Marenya et al., 2015; Moti et al., 2015; Moti et al., 2013). On the other hand, 

availability of high quality information enables farmers to learn, experiment, 

evaluate and allocate resources to new practices and hence likely to positively 

influence adoption of new technology/practice. 

 

Participatory methods and innovative responsiveness of the extension service is 

crucial to satisfy farmers’ dynamic needs which is changing with the emerging 

market, customer demand and varying biophysical environment (Brown et al., 

2018; Gerba. 2018; Davis et al., 2010; Erenstein, 2002). Studies indicated that 

inadequate technical and innovation capabilities, and mind-sets developed over the 
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years are constraining the success of public agricultural extension system of the 

country (Brown et al., 2018; Brown et al., 2017; Gerba, 2018; Lanckriet et al., 

2014; Davis et al., 2010). For instance, the repetitively ploughed and clean farms 

that are considered to be an attribute of a good farmer, and the dominance of 

“technology supply-push” mind-set than farmer-driven and market-pull 

technology are challenging the implementation, promotion and adoption of 

conservation agriculture. Despite the considerably large number of development 

agents (Davis et al., 2010), lack of adequate skills and multiple tasks they are in 

charge of limited their effectiveness in providing proper extension services and 

winning the farmers’ trust (Brown et al., 2018). The adverse effect of such 

limitations particularly in CA implementation, promotion and hence its adoption 

by farmers is considerable (Wondwossen et al., 2016; Feed The Future, 2017). 

Hence, shifting from conventional practice to conservation farming requires strong 

capacity building for the extension workers, farmers and other development 

practitioners to build the required capability and bring about a mind-set change. 

 

On the other hand, extension approaches for CA should suit the varying 

biophysical factors (soil types, agro ecologies, crops) and socio-economic factors 

such as indigenous practices of local farmers. As stated by Erenstein (2002), a 

blueprint package is no panacea to be successfully fit in widely varying production 

systems. Hence, flexible and dynamic extension service that considers the existing 

biophysical and socioeconomic factors of selected strategic geographic areas of 

CA promotion is required to facilitate its adoption (Marenya et al., 2015; FAO, 

2006).  
 

Furthermore, CA as a complex system requires multi and inter-disciplinary 

approaches involving experts from crop, natural resources, mechanization, 

livestock, agroforestry, energy, economics, and technology extension and 

communication. Hence, a concerted and coordinated research and extension 

efforts are needed for effective testing and evaluation of appropriate tools and 

machinery, crop management, etc. and successful adoption of CA (Baudron et al., 

2015; Hengxin and Xuemin, 2006). Then, long term strategic investment in 

agricultural extension and improved access to farm inputs are key policy issues to 

be considered (Marenya et al., 2015; Melesse, 2007) supported by a new 

knowledge base and strong technical backstopping at the field level (Milder et al., 

2011; Davis et al., 2010). Limited financing of operation costs of agricultural 

extension services for effective execution, supervision and sharing experiences are 

also constraints that need to be addressed 

 

Furthermore, limited access to affordable financial services, the challenge for 

actual investment requirements and use of CA adapted recommendations in 

general (Brown et al., 2018; Marenya et al., 2015), necessitate concerted effort to 

create enabling environment. 
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