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አህፅሮት 
 

ከ7.0 ፒ.ኤች በሊይ የአፈር ፎስፈረስ ግዑዝ ስሇማይሟማ በከፍተኛ ሁኔታ ሇዝግጠት ተጋሊጭ ስሇሚሆን 

ዕፅዋቶች በቀሊለ አያገኙትም፡፡ ስሇዚህ ይህ የምርምር ጥናት በመተሏራ ስኳር ፋብሪካ በ 2008 ዓ.ም ምርት 

዗መን የብረዲራይዞቢዬም ባክቴሪያ ክትባት አስተዋፅዖ  አኩሪ አተርን ከሸንኮራ አገዳ ጋር በማሰባጠር 
በፎስፈረስ አወሳሰድና የፎስፈረስ አወሳሰድ ብቃትን ሇመገምገም ዓሊማ አንግቦ በመስኖ ተተግብሯሌ፡፡ 
ሙከራው ሦስት መጠን የባክቴሪያ ክትባት ማሇትም ላጊዩምፊክስ፣ SB6B1እና ያሌተከተበ እንዲሁም 

አራት ፎስፈረስ መጠን ማሇትም 0፣ 10፣ 20 እና 30 ኪ.ግ/ሄክታር ፎስፈረስ ወስዯዋሌ፡፡ ሙከራው 

የተ዗ጋጀው በራንዯማይዝድ ኮምፕሉት ብልክ ዲዛይን በፋክቶሪያሌ የተዯራጀ ሲሆን ሦስት ቅጂ ግሌባጭ 
አሇው፡፡ የጭብጥ (መረጃ) ትንትና እንዳሚያሰየው ብረዲራይዞቢዬም ክትባት ትርጉም ባሇው ሁኔታ 

የዕፅዋት ናይትሮጅንና ፎስፈራስ ይ዗ት ሊይ ካሌተከተበ አንፃር አመርቂ ውጤት አሳይቷሌ፡፡ የተሇያዬ 
የፎስፈረስ መጠን እንዲሁም የፎስፈረስና ክትባት ጥምረት በናይትሮጅንና ፎስፈረስ ይ዗ት ሊይ ትርጉም 
ያሇው ሌዩነት አሊሳዩም፤ ነገር ግን 30 ኪ.ግ/ሄክታር ፎስፈረስ በጠቅሊሊ ፎስፈረስ ይ዗ት ሊይ ከፍተኛ ሌዩነት 

አምጥቷሌ፡፡ በብረዲራይዞቢዬም ክትባት ምክንያት ፎስፈረስን የመውሰድ ብቃት ተሻሽሎሌ፡፡ በዚህ 
መሠረት ከፍተኛ አግሮኖሚክ ኢፊሼንሲ፣ ሪከቨሪ ኢፊሼንሲና ዩትሊይዜሽን ኢፊሼንሲ በSB6B1 ክትባት፤ 

ፊዚዮልጂካሌ ኢፊሼንሲና አግሮፊዚዮልጂካሌ ኢፊሼንሲ በላጉምፊክስ ክትባት አማካይነት በ10 

ኪ.ግ/ሄክታር ፎስፈረስ ሲገኝ አግሮፊዚዮልጂካሌ ኢፊሼንሲ በ30 ኪ.ግ/ሄክታር ፎስፈረስ ተመዝግቧሌ፡፡ 
በአጠቃሊይ በ10 ኪ.ግ/ሄክታር ፎስፈረስ መጠን SB6B1 ባክቴሪያ ክትባት አመርቂ ውጤት ያስገኘ ሲሆን 

ላጊዩምፊክስ ዯግሞ ይከተሊሌ፡፡ የፎስፈረስ መውሰድ ብቃትን እንዲጨምር የተሻለ አያያዝ  ዗ዴዎችን 
ማሇትም ፎስፌት የሚያሟሙ ረቂቅ ነፍሳት ወይም ማይኮሪ዗ ብረዲራይዞቢዬም ጋር በማጣመር መጠቀም 
አስፈሊጊ ነው፡፡ 

 
Abstract 

At a soil pH value of above 7.0, inorganic phosphorus (P) is highly susceptible to precipitation as insoluble 
form that is unavailable to plants. Hence, a field experiment was conducted at Metehara Sugar Estate under 
irrigation during the 2014/15 cropping season to evaluate the effect of inoculating Bradyrhizobium on P 
uptake and P use efficiency of soybean intercropped with sugarcane. The treatments consisted of three levels 
of inoculation (Legume fix, SB6B1 and uninoculated) and four rates of P (0, 10, 20 and 30 kg Pha-1). The 
experiment was laid out in a randomized complete block design (RCBD) in a factorial arrangement and 
replicated three times. Analysis of the data indicated that Bradyrhizobium inoculation significantly 
increased plant N concentration and P uptake compared to the uninoculated treatment. The effect of P rates 
and its interaction with inoculation was not significant on N concentration and P uptake, but significantly 
increased total P uptake at the application of 30 kg Pha-1. Phosphorus use efficiency indices were improved in 
response to inoculating the crop with Bradyrhizobium. The highest AE (13.6 kg kg-1), PRE (31.8%) and 
PUE (10.6 kg kg-1) were obtained by SB6B1 inoculation and the highest PE (117.2 kg kg-1) and APE (161.7 
kg kg-1) were obtained by Legumefix inoculation all at 10 kg P ha-1except PE which recorded the highest at 
30 kg P ha-1.Thus, it can be concluded that SB6B1 isolate can be used as the best inoculant followed by 
Legumefix isolate with 10 kg P ha-1of P fertilizer. However, strategies for increasing P use efficiency by 
adopting best management practices like co-inoculation of phosphate solubilizing microorganism or 
mycorrhiza with these Bradyrhizobium inoculants should be adopted to enhance P use efficiencies.  
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Introduction 
 
Phosphorus (P) is the most essential element for plant growth and development 
next to nitrogen (N) (Vance et al., 2000). It is one of the most important nutrients 
for crop productions on more than 30% of the world's arable land. Some 
estimates, world resources of inexpensive P may be depleted by 2050 (Yan et al., 
2009). Phosphorus has significantly positive effect on nodulation nitrogenase 
activity and the yield of pulse crops (Sepetoglu, 1992). However, more than 80% 
of the added P is fixed or precipitated, and only a part of it goes to soil solution 
which may be taken up by crops (Leytem and Mikkelsen, 2005) because it rapidly 
forms insoluble complexes with cations and is incorporated into organic matter 
by microbes (von Uexkuill and Mutert, 1995; Vance, 2001). Sustainable 
management of P in agriculture that enhances P acquisition and exploits these 
adaptations to make plants more efficient at acquiring the nutrient is very 
important. Therefore, in areas with low soil fertility, with a poor supply and/or 
high cost of fertilizers, cultivating legumes with high efficiencies of P uptake and 
P use would be very useful. A two site experiment conducted at Metahara Sugar 
Estate showed that P application (0 to 60 kg P ha-1) had no significant effect on 
sugarcane yield (Agricultural Services, 1974). This might be ascribed to the high P 
precipitation caused by presence of high calcium carbonate (BAI, 2009). 
 
Several key processes which affect the availability of P to plantsin the P cycle are 
mediated by different types of microbial processes (Richardson and Simpson, 
2011). Most researches in microbial inoculants to enhance P availability and root 
uptake have centered on soil microorganisms capable of solubilizing sparingly-
available P (Leggett et al., 2007).  Qin et al. (2011) demonstrated that soil 
beneficial microorganisms including rhizobia can solubilize the insoluble form 
of organic and inorganic P. Increase in productivity of wheat by 30-40% was due 
to inorganic P application with inoculation, as compared to P alone (Afzal and 
Asghari, 2008). In addition, enhancement of P utilization from insoluble P 
through inoculation of rhizobia has been demonstrated in lettuce (Chabot et al., 
1996). The objective of this study was thus to evaluate the effect of inoculating 
selected Bradyrhizobium isolates on N and P uptake and P use efficiency of 
soybean intercropped with sugarcane at Metahara Sugar Estate in the Central 
Rift Valley of Ethiopia. 
 

Materials and Methods 
 

Description of Experimental Site 

A field experiment was conducted at Metahara Sugar Estate under irrigation 
during 2014/15. The  estate is located at 8o 53‟ N latitude and 39o 52' E longitude 
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at an altitude of 950 meters above sea level in the Eastern Shewa 
Administrative Zone, Oromia Regional State, 200 km south-east of the capital 
city, Addis Ababa, Ethiopia. 
 
The long term mean (LTM) annual rainfall is 551 mm with the LTM annual 
maximum and minimum air temperatures of 33.0 and 17.5 ºC, respectively. 
According to meteorological information recorded in the last five decades, the 
rainfall period ranged from April to October albeit the maximum rainfall was 
recorded in the months of July (127.4 mm) and August (140 mm) in Metahara 
Sugar Estate.  
 
Most soils of the experimental site are developed under tropical hot condition 
from alluvium-colluvium parent materials which include basic volcanic rocks 
such as basalt, limestone, acidic volcanic rocks such as granite, sandstone as well 
as recent and ancient alluvial soils (Ambachew and Abiy, 2009; BAI, 2009). Soils 
of Metahara Sugar Estate are classified as Calcaric Cambisols (BAI, 2009). 
 
Experimental Procedures 

Carrier based Bradyrhizobium inoculants, namely, indigenous isolate (SB6B1) and 
exotic UK-isolate (Legumefix) were obtained from the Soil Microbiology 
Laboratory of Holetta Agricultural Research Center and used for seed inoculation 
at planting. Soybean variety „Williams‟ was obtained from Hawassa Agricultural 
Research Center and intercropped with high yielding and widely cultivated 
sugar cane variety „B52-298‟.  
 
The experiment consisted of four rates of phosphorus (0, 10, 20 and 30 kg Pha-1) 
in the form of triple super phosphate (TSP) (0:19:0%; N: P:K) and three types of 
inoculant inoculation, i.e. SB6B1 (local isolate), Legumefix (UK isolate) and 
uninoculated control. The experiment was laid out in a randomized complete 
block design (RBCD)in a factorial arrangement and replicated three times per 
treatment.  
 
Carrier-based inoculants of each isolate were applied at the rate of 10 g 
inoculant/kg seed (Rice et al., 2001). To ensure that the applied inoculants stick to 
the seed, the required quantity of inoculants was suspended in 1:1 ratio in 10% 
sugar solution for 10 minutes.  
 
Land preparation was done by a tractor (ripping, uprooting of old cane stools, 
disking, leveling and furrowing) and a selected portion of land was then divided 
into blocks and plots for this experiment. Sugarcane was planted on 21st 
November 2015 in the furrow trench with end-to-end sett position and 145 cm 
inter-row spacing. Soybean seed was also sown in the following day at one side 
of the ridge with the spacing of 10 cm between plants and similar row spacing as 
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sugarcane on 8.7 m x 5.0 m (43.5 m2) gross plot size, which holds 6 rows of 
both soybean and sugarcane but data were collected from four central rows. 
There was a 1 m space between each plot and two furrow (2.90 m) path between 
blocks, in which no cane was planted.  
 
The experiment was carried out using an irrigated field with furrow irrigation 
method with an irrigation interval of seven days which was recommended for 
soybean cultivation. Nitrogen fertilizer at the rate of 20 kg N ha-1 was applied as 
urea (46% N). 
 
 Plant Tissue Sampling and Analysis 

At physiological maturity, five randomly selected soybean plants were harvested 
from the four central rows and partitioned into grain and straw. The grain and 
straw samples were separately oven-dried at 70 ºC to a constant weight, ground 
to pass through 1 mm sieve and saved for tissue analysis of grain and straw N 
and P. Total N in grain and straw subsamples were quantitatively determined by 
a kjeldahl procedure (Bremner and Mulvarey, 1982). Nitrogen content of the 
grain and straw was determined by multiplying the N concentrations in the dry 
matter of the tissues by the respective grain and straw dry yields. Phosphorus in 
grain and straw subsamples were determined by using Meta vanadate method 
(NSL, 1994). Phosphorus uptake in the grain and straw of soybean was 
determined from the phosphorus content of the respective parts after multiplying 
with the grain and straw yields, respectively.  
 
 Phosphorus Use Efficiency 

Based on the results of plant tissue analysis, phosphorus use efficiency indices 
were computed (Albrizio et al., 2010). 
 
Agronomic efficiency(AE): is defined as the quantity of grain yield per unit of 
nutrient applied. 
AE (kg kg–1) =Gf – Gu   (1) 

  N 
Where:Gf is the grain yield of the fertilized plot (kg), GU is the grain yield of the 
unfertilized plot (kg), and Na is the quantity of P applied (kg). 
 
Physiological efficiency (PE): is defined as the aboveground biomass yield 
obtained per unit of nutrientuptake.  
PE (kg kg-1) =BYf – BYu   (2) 

Nf - Nu 
Where: BYf is the aboveground biomass yield (grain plus straw) of the fertilized 
plot (kg), BYu is the aboveground biomass yield (grain plus straw) of the 
unfertilized plot (kg), Nf is the nutrient uptake (grain plus straw) of the fertilized 
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plot (kg) and Nu is the nutrient uptake (grain plus straw) of the unfertilized 
plot (kg). 
 
Agro-physiological efficiency (APE): is defined as the grain yield obtained per 
unit of nutrient uptake. 
APE (kg kg-1) =Gf – Gu    (3) 

  Nf - Nu 
 
Where: Gfand Gu are grain yieldsfrom fertilized and unfertilized plots (kg), 
respectively; Nf and Nu are P uptakes (grain plus shoot) from fertilized and 
unfertilized plots (kg), respectively. 
Phosphorus recovery efficiency (PRE): is defined as the quantity of nutrient 
uptake per unit of nutrient applied. 
PRE (%) =Nf – Nu × 100   (4) 

Na 
Where: Nfand Nu are nutrient uptakes (grain plus straw) from fertilized 
unfertilized plots (kg), respectively, and Na is the quantity of nutrient applied 
(kg). 
 
Phosphorus Utilization efficiency (PUE): is defined as the product of 
physiological efficiency and recovery efficiency. 

PUE (kg kg-1) = PE x PRE  

Data analysis 

Data were subjected to analysis of variance using SAS version 9.1.3 GLM 
procedure (SAS Institute Inc., 2004). Comparison among treatment means with 
significant difference for measured and scored characters were made using Least 
Significant Difference (LSD) at 5% level of significance. 
 

Results and Discussion 
 
Selected soil physical and chemical properties  

Analysis of the soil of the experimental field indicated a clayey texture with a clay 
content of 70%. The soil pH could be rated as moderately alkaline according to 
the rating of Tekalign (1991) (Table 1). The organic matter content of the soil is 
low according to the rating of Tekalign (1991). The low organic matter content of 
the soil might be attributed to the intensive cultivation underway for a long time 
and continuous removal of crop residues through sugarcane burning. In line with 
this result, BAI (2009) reported soil organic matter content of Metahara Sugar 
Estate ranges from low to very low. 
 
 



Inoculating Bradyrhizobium for Phosphorus use efficiency and nutrient uptake 

 

 

[22] 

Table 1. Physical and chemical properties of soils of the experimental site before planting 
 

Soil property Value Soil property Value 

Depth (cm) 20 OM (%) 1.70 

Particle size (%)  EC (dSm-1) 0.37 

    Sand 12 Exchangeable Na (cmol(+)kg-1) 1.89 

    Silt 18 Exchangeable K (cmol(+)kg-1) 3.33 

    Clay 70 Exchangeable Ca (cmol(+)kg-1) 49.0 

Textural class clay Exchangeable Mg (cmol(+)kg-1) 11.0 

pH (1:2.5 H2O) 7.70 CEC (cmol(+)kg-1) 67.0 

TN (%) 0.12 PBS (%) 97.3 

Avail. P (ppm) 5.60 CaCO3 (% ) 7.00 

Note: P: Available phoshorus, CEC: Cation exchange capacity, EC: Electrical 
conductivity, OM: Organic matter, PBS: Percent base saturation, TN: Total 
nitrogen 

 
The analysis further indicated that the soil has low contents of total nitrogen 
(Tekalign, 1991) and available phosphorus (Marx et al., 1996) (Table 1). The low 
nitrogen content could be attributed to the low soil organic matter content. The 
low available P could be ascribed to the precipitation of phosphorus into 
unavailable forms of calcium and magnesium carbonates. Consistent with this 
result, BAI (2009) reported low available phosphorus in the Estate because of 
high P precipitation. Beside, the cation exchange capacity (CEC) of the soil was 
rated in the range of very high as reported by Landon (1991) with the dominant 
cation being calcium in the exchange site. The high CEC of this soil might be 
attributed to the high clay content in the soil. Percent calcium carbonate (CaCO3) 
content (7.0%) was moderate according to the rating of Nachtergaele et al. (2009) 
 
Nitrogen content and P uptake of soybean 
 
Nitrogen contents of grain, straw and total biomass 

Inoculation with Bradyrhizobium significantly (P <0.01) influenced the N contents 
of the grain and straw as well as the total biomass of soybean (Table 2). 
Bradyrhizobium inoculation alone improved the whole N content of soybean 
regardless of P application (Table 2). Both SB6B1 and Legumefix inoculations 
significantly increased grain, straw and total N contents over the uninoculated 
control. The highest mean N contents of grain, straw and total biomass yield were 
obtained from inoculation with SB6B1 isolate albeitno significant variation was 
observed between the two Bradyrhizobium inoculants. SB6B1 increased grain, 
straw and total biomass contents of N by 6, 14 and 8%, respectively compared to 
Legumefix while the respective increase over uninoculated control was higher by 
147, 97 and 130%. An increase in N contents due to Bradyrhizobium inoculation 
could be related to the significant increase in nodulation resulting in higher 
accumulation of N through biological N2 fixation (Siczek and Lipiec, 2011). 
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This current result is in agreement with the findings of Tahir et al. (2009) who 
reported that soybean N accumulation in grain, straw and total biomass was 
increased by 9, 122 and 76% over the control due to inoculation with 
Bradyrhizobium. This result is also in accord with the finding of Tajini et al. (2011) 
who reported that inoculation with rhizobia improved symbiotic N2 fixation even 
under phosphorus deficiency. In line with this result, Tufenkci et al. (2006) 
reported that Rhizobium inoculation improved NPK uptake. 

 

Table 2. Effect of Bradyrhizobium inoculation and P application on N content and P uptake in grain and 
straw  (kg ha-1) of soybean intercropped with sugarcane at Metahara Sugar Estate. 

 

Treatment Nitrogen Phosphorous 

Grain N Straw 
N 

Total N 
(grain + straw) 

P uptake by 
grain 

P uptake by 
straw 

Total P 
uptake 

P rate (kg ha-1)     

0 71 35.2 102.2 11.5 5.3 16.8b 

10 82.9 36.6 119.5 13.8 5.9 19.7ab 

20 85.2 31.1 116.3 11.5 6 17.4b 

30 84.1 37.3 121.4 15.8 6.9 22.7a 

Significance NS NS NS NS NS * 

LSD (0.05) NS NS NS NS NS 3.93 

Inoculation       

Uninoculated 41.8b 22.4b 64.2b 10.0b 5.1b 15.0b 

SB6B1 103.2a 44.1a 147.4a 16.1a 6.7a 22.8a 

Legumefix 97.4a 38.7a 136.1a 13.34a 6.3a 19.6a 

Significance ** ** ** ** * ** 

LSD (0.05) 11.7 6.7 11.52 3.31 1.12 3.4 

CV (%) 17 22.5 11.7 29.8 22 21 
Where: NS, * and **: Non significant, significant at 5 and 1%, respectively; CV: Coefficient of variation, LSD: Least 
significant difference. Means within the same factor and column followed by the same letter are not significantly 
different at 5% level of significance. 

 
Phosphorus fertilizer rate and its interaction with inoculants did not significantly 
affect the N contents of the grain and straw as well as the total biomass at 
physiological maturity although soil available P was low (Table 2). This might be 
due to the high alkalinity of the soil which predisposes the available P in the soil 
to precipitation into unavailable forms (BAI, 2009). However, a slight increase in 
total plant N content was obtained due to small P application (10 kg Pha-1) with 
SB6B1 and Legumefix inoculation as compared to uninoculated treatment (Figure 
1a).This shows that application of 10 kg P ha-1 is optimum for sufficient uptake of 
nitrogen by the crop. Consistent with this result, Tekle and Walelign (2014) 
reported that P significantly increased the soybean grain N and straw N contents 
at lower P rate (25 kg P ha-1) than at higher level (50 kg P ha-1).  
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Figure 1. The regression analysis of the response of (a) P uptake (kg ha-1) and (b) Plant N content (kg ha-1) to P 

application rates (kg P2O5 ha-1)  

 
Uptake of P in Grain, Stover and Total Biomass of Soybean 

Inoculation with Bradyrhizobium had significant (P<0.01) effect on the uptake of P 
by grain, straw, and total soybean biomass compared to the uninoculated 
treatment. Phosphorus uptake by grain, straw, and total biomass in response to 
inoculation with SB6B1 as well as in response to relative to inoculation with 
Legumefix was significantly higher than the uptake observed in response to no 
inoculation. Thus, the total P uptake that resulted from inoculation with SB6B1 
and Legumefix exceeded the P total uptake obtained in response to no 
inoculation by about 52 and 31%, respectively (Table 2). The higher P uptake due 
to inoculation with SB6B1and Legumefix could be attributed to the fact that some 
rhizobia have the ability to solubilize precipitated P components, thereby 
increasing the uptake in plants (Qin et al., 2011). Consistent with the results of this 
study, the finding of Taye (2006) showed that except P uptake in the straw, 
inoculation of pea by Rhizobium significantly increased both grain and total P 
uptake. Similarly, Tahir et al. (2009) reported that Rhizobium inoculation increased 
total P uptake by 79%. Havlin et al. (1999) also indicated that large quantities of P 
are found in seed and P is considered to be essential for seed formation.  
 
Improved N status in soybean plants due to better root growth might be the 
mechanism by which soybean P uptake was increased in plants inoculated with 
the effective Rhizobium strains on low-P acid soils (Neila et al., 2014). Cheng et al. 
(2008) found that inoculating soybean with effective rhizobial inoculants 
significantly improved root growth as well as N and P contents in low-Pacidic 
soils. In addition, Tang et al. (2007) found that total P uptake from sparingly  
 
soluble P correlated highly with plant biomass production, N2 fixation and 
nodulation, and seed P concentrations. Singh et al. (2005) found that inoculation 
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of P solubilizing bacteria increased P content in grain and straw by 10.72 and 
31.94%, respectively, over the uninoculated treatment.  
 
In contrast to the main effect of inoculation, P rates and its interaction with 
inoculation had no significant effect on grain and straw P uptake at physiological 
maturity (Table 2). However, total P uptake was significantly (P <0.05) increased 
in response to the increase in the rate of phosphorus application. The maximum 
total P uptake was recorded due to the applications of 10 and 30 kg P ha-1). 
Similarly, Egamberdiyeva et al. (2004) confirmed that P uptake by soybean 
increased with the increase in the rate of phosphorus application in N-deficient 
calcareous soils. Apparently, a similar trend was also reported by BAI (2009) who 
found that soils of Metahara Sugar Estate were alkaline and strongly calcareous 
and that the organic matter and total N contents were low. Among the tested 
isolates, SB6B1 inoculation showed significantly higher total P uptake at 30 kg P 
ha-1 than the other rates of P application though no interaction effect was 
observed (Figure 1b). 

 

Phosphorus use efficiency 
 
Agronomic efficiency 

The higher the rates of P application, the lower were the agronomic efficiency in 
all observed treatments. Across P rates, a 2.8, 8.4 and 7.7kg soybean grain yield 
was produced per unit of P applied by un-inoculated, SB6B1 and Legumefix 
inoculation, respectively. The highest agronomic efficiency (AE) of 3.9,13.6 and 
11.5 kg kg-1was obtained at 10 kg Pha-1 application coupled with un-inoculated, 
SB6B1 and Legumefix inoculation (Table 3, 4 and 5). However, the least AE value 
was noted at 30 kg Pha-1 in all treatments. Application of P fertilizer above 10 kg 
P ha-1 had no appreciable effect on soybean grain yield. Nonetheless, the AE was 
more influenced by soybean inoculation than un-inoculated treatments. This 
might be due to the fact that rhizobial symbiosis requires large amounts of P to 
meet the high energy costs for adenosine triphosphate (ATP) synthesis (Tang et 
al., 2001)in order to produce higher grain yield. This agrees with Gifole et al. 
(2011) who found a declining trend of AE from 69.8 to 9.3 kg kg-1 at the P rates 
ranging from 10 to 60 kg P ha-1 on haricot bean. This might be due to small 
amounts of applied fertilizer optimized nutrient use efficiency (Bationo and 
Buerkert, 2001).Similar to this result, the combined application of phosphorus 
and inoculation enhanced agronomic efficiency of soybean and common bean 
over the un-inoculated control (Devi et al., 2012; Anteneh, 2014). 
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Table 3. Phosphorus use efficiencies of soybean intercropped with sugarcane as affected by P 
application 

 

 Uninoculated 

P 
(kg ha-1) 

AE 
(kg kg-1) 

PE 
(kg kg-1) 

APE 
(kg kg-1) 

PRE 
(%) 

PUE 
(kg kg-1) 

0 - - - - - 

10 3.9 21.2 21.2 3.1 0.7 

20 2.6 25.7 25.7 3.2 0.8 

30 2.0 28.8 28.9 2.6 0.8 

Mean 2.8 25.2 25.3 3.0 0.8 
Note: AE: Agronomic efficiency, PE: Physiological efficiency, APE: Agro-physiological 
efficiency, PRE: Phosphorus recovery efficiency and PUE: Phosphorus utilization efficiency 

 
 

Table 4. Phosphorus use efficiencies of soybean intercropped with sugarcane as 
affected by SB6B1 inoculation 

 

P2O5 
(kg ha-1) 

SB6B1 

AE 
(kg kg-1) 

PE 
(kg kg-1) 

APE 
(kg kg-1) 

PRE 
(%) 

PUE 
(kg kg-1) 

0 - - - - - 

10 13.6 33.2 42.8 31.83 10.58 

20 6.7 35.5 37.99 17.74 6.30 

30 4.8 40.9 27.83 17.36 7.10 

Mean 8.4 36.6 36.2 22.3 8.0 

 
Table 5. Phosphorus use efficiencies of soybean intercropped with sugarcane 

as affected by Legumefix inoculation. 
 

P2O5  
(kg ha-1) 

Legumefix 

AE  
(kg kg-1) 

PE 
 (kg kg-1) 

APE 
 (kg kg-1) 

PRE  
(%) 

PUE 
 (kg kg-1) 

0 - - - - - 

10 11.5 98.2 161.7 7.1 7.0 

20 7.1 114.5 140.2 5.1 5.8 

30 4.5 117.2 75.0 6.1 7.1 

Mean 7.7 110.0 125.6 6.1 6.6 

 

Physiological Efficiency 

The physiological efficiency (PE) indicates the biological yield obtained per unit 
of nutrient uptake. Along P rates slight increase in biomass accumulation was 
observed and maximum biomass yield was obtained at application rate of 30 kg P 
ha-1 in all treatments (Tables 3, 4 and 5).Across P rates on average 25.2, 36.6 and 
110.0 kg biomass yields were noted per 1 kg of applied P with respect to un-
inoculated, SB6B1 and Legumefix. Legumefix inoculation led to higher biomass 
yield and P uptake than SB6B1 throughout P application rates, whereas the 
lowest PE was recorded by un-inoculated control. The higher PE fraction 
obtained due to Legumefix inoculation might indicate its tendency to accumulate 
relatively higher biomass yield as P fertilizer rates increase with small amounts of 
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increase in total P uptake. This could also be due to better symbiotic N2 
fixation with Legumefix inoculation thereby increasing the response of soybean 
to P application (Singleton et al., 1984). Moreover, it might have produced 
hormones and solubilizing insoluble P from the soil (Sobral et al., 2004; Singh et 
al., 2005).The slight increase in dry biomass yield at higher P fertilizer application 
rate indicated that the plants grown at the lowest P level were the most efficient 
in using P for the production of dry matter (Win et al., 2010).  
 
 Agro-physiological Efficiency 

Agro-physiological efficiency (APE) is the economic production (grain yield) 
obtained per unit of nutrient uptake. Along P application rates, APE drastically 
decreased in the inoculated treatments but showed slight increment in the un-
inoculated control albeit it scored the lowest APE compared to the inoculated 
ones. Across P application rates on average 25.3, 36.2 and 125.6 kg grain yield 
was obtained per unit of nutrient absorbed in un-inoculated, SB6B1 and 
Legumefix, respectively. The highest agro-physiological efficiency of 42.8 and 
161.7 kg kg-1 was noted at the lowest P rate of 10 kg P ha-1with SB6B1 and 
Legumefix, respectively (Table 3, 4 and 5).The higher APE by Legumefix 
inoculation might be due to the presence of plant growth promoting 
characteristics in addition to N2 fixation which enabled to produce relatively 
higher nutrient uptake at lower P rate fertilizer. Similar results were reported by 
Singh et al. (2005) in lentil. Contrary to this result, Abbasi et al. (2010) found the 
highest (51 kg ha-1) APE for soybean at lower P fertilizer application rate (50 kg 
P2O5 ha-1) than at higher rate of 100 kg P2O5 ha-1which produced APE of 42 kg kg-

1. In alkaline soil pH, the availability of some essential nutrients for plant is 
reduced (Maschner, 2011). 
 
Phosphorus Recovery Efficiency 

Phosphorus recovery efficiency (PRE) provides the quantity of nutrient uptake 
per unit of nutrient applied. The mean recovery efficiency of P by soybean treated 
with un-inoculated, SB6B1 and Legumefix were3.0, 22.3 and 6.1%, respectively. 
The highest recovery efficiency of 31.8 and 7.1% were noted due to SB6B1and 
Legumefix inoculation at the lowest P rate of 10 kg ha-1. However, the lowest 
recovery efficiency was noted at 30 kg P ha-1 with SB6B1 and un-inoculated, and 
at 20 kg P ha-1 with Legumefix inoculation (Tables 3, 4 and 5). The higher 
recovery efficiency by SB6B1 inoculation might be due to the fact that large 
number of strains of Rhizobium and Bradyrhizobium could solubilize inorganic 
phosphate through the enzymatic action of acid and alkaline phosphatase 
(Halder and Chakrabartty, 1993) and assimilate the soluble P in plants and 
prevent it from adsorption or fixation (Khan and Joergensen, 2009).  

 
The lower recovery efficiency was also reported by Abbasi et al. (2010) who found 
PRE of 12.1% in soybean at lower P rate(10kg Pha-1) and 10.2% when dose 
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increased to20kg Pha-1. Syers et al. (2008) also reported that in the year of 
fertilizer application P fertilizer used by plants ranged from 10–30%. The low P 
recovery efficiency in the present study might be associated with high P fixation 
property of the soil due to the presence of Ca compounds and clay minerals. 
Besides, P sorption increases at higher fertilizer rates than at lower application 
(Chaudhary et al., 2003). Kumar and Kairon (1980) also determined an apparent P 
recovery of 4.7% by field grown cotton in alkaline soils. Beside this, Fixen (2004) 
concluded that first year recovery of P is low, not only because the P is 
immediately “fixed” into plant unavailable forms but also because it moves so 
little in soils that crop roots are too far from much of the fertilizer-soil reaction 
zones to be accessed. 

 
Phosphorus utilization efficiency (PUE) 

As shown in Table 3, 4 and 5 the efficiency of soybean in P utilization 
inconsistently decreased as the P fertilizer rate increased. On the average, every 
kilogram of P applied to the un-inoculated, SB6B1 and Legumefix treated 
soybean produced 0.8, 8.0 and 6.6 kg of grain yield respectively. The highest P 
utilization efficiency was observed at 10 kg P ha-1due to SB6B1 and at 30 kgP ha-

1with Legumefix inoculation. However, the lowest PUE was noted at 20 kg P ha-

1with SB6B1 and Legumefix, and at 10 kg P ha-1with un-inoculated treatments. It 
is evident from the result that inoculation enhanced PUE of soybean where better 
numerical values were attained from SB6B1, followed by Legumefix. This could 
be due to the fact that symbiotic N2 fixation is an energy consuming process with 
a high (16) ATP demand for the reduction of one molecule of N2 into 2NH3 
(Schulze et al., 2006).Phosphorus application also enhanced growth of rhizobial 
strains and host plants (Munns et al., 1981; Leung and Bottomley, 1987). Win et al. 
(2010) reported the declining trend in PUE as P rate increased from 0.5 to 2 mMP, 
which is in in agreement with the results of this study. by . Singh et al. (2005) also 
reported that the highest PUE was obtained from the lowest P rate with 
inoculation of P solubilizing bacteria. y. However, P application did not improve 
PUE significantly in uninoculated treatment.  
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