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Abstract 
In the era of advancing technology, the proliferation of the Internet of Things (IoT) has become 
pervasive, influencing various facets of contemporary life. Intrusion Detection Systems (IDS) stand as 
a crucial guardian of these interconnected networks. Feature Selection emerges as a pivotal element in 
the design of effective IDS, aiming to discern the optimal subset of features for accurate attack 
classification within an extensive feature set. This paper introduces an approach that enhances a Hybrid 
Gorilla Troops Optimizer (GTO) algorithm and Bird Swarm Algorithm (BSA) with Step size 
parameters. The aim of adding the step size is to have controlled movement and adaptively explore and 
exploit the search space, thereby enhancing the performance of the hybrid algorithm. The hybridization 
leverages the strengths of both algorithms in identifying the optimal feature subset. The resulting 
Improved Hybrid GTO with BSA Algorithm (IGTO-BSA), utilizes metaheuristic techniques to boost 
feature selection, striking a balance between exploration and exploitation, foster faster convergence and 
deliver superior solutions within reasonable time. The effectiveness of IGTO-BSA is assessed using 
three diverse IoT datasets: NSL-KDD, CICIDS-2017, and UNSW-NB15. Performance evaluation is 
conducted using five metrics: accuracy, sensitivity, specificity, computational time and the number of 
selected features. Comparative analysis with an existing technique from the literature establishes the 
efficacy of the proposed approach.
 
INTRODUCTION 
In the realm of advancing technology, the concept of the Internet of Things (IoT) has 
permeated various aspects of contemporary life (Heidari & Jabraeil Jamali, 2023). The term 
"Internet of Things" has historical roots, with Nikola Tesla envisioning a world transformed 
into a massive brain through wireless application (Ben-daya & Bahroun, 2020). The evolution 
of IoT has been shaped by emerging concepts like cloud computing, information-centric 
networking, big data, social networking, and constant technological influences (Xu et al., 
2023). However, as IoT applications proliferate, security becomes a paramount concern, 
especially in the realm of cloud computing (Xu et al., 2023). The synergy between IoT systems 
and cloud computing relies heavily on effective data storage and analysis, making security 
vulnerabilities a focal point (Sarker et al., 2023).  
 
In this landscape, Intrusion Detection Systems (IDS) emerge as a crucial line of defense against 
cyber-attacks in IoT systems(Sarker et al., 2023). IDS, categorized into anomaly detection and 
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misuse detection, plays a pivotal role in identifying harmful actions and distinguishing 
between genuine and malicious instances (Stea, 2022; Perwej et al., 2019; Hoz, 2013).Despite 
their effectiveness, IDS systems have inherent flaws, such as high False Positive (FP) rates and 
difficulty distinguishing unknown attacks (Heidari & Jabraeil Jamali, 2023). Researchers have 
turned to machine learning techniques to address these challenges, yet achieving the desired 
level of accuracy remains an ongoing endeavor (Mishra et al., 2019). 
 
One notable challenge in machine learning techniques is the complexity introduced by a wide 
range of attack types and network traffic attributes (Heidari & Jabraeil Jamali, 2023; Xu et al., 
2023). Feature selection, the process of choosing the optimal subset of features, becomes 
critical in addressing this complexity (Isuwa et al., 2022). Traditional approaches face 
feasibility issues given the vast amount of data generated today, leading to the consideration 
of metaheuristic algorithms (Isuwa et al., 2023). 
 
Metaheuristic algorithms, renowned for their dynamic search behavior and global search 
capabilities, have emerged as effective solutions for feature selection problems. Algorithms 
like Genetic Algorithm (GA) (Ali & Saeed, 2023), Particle Swarm Optimization (PSO) (Hassan, 
Mohammed, et al., 2023), Grey Wolf Optimizer (GWO)(El-Kenawy & Eid, 2020), and Gorilla 
Troops Optimizer (GTO) (Abdoullazadeh et al., 2021)have been proposed to tackle these 
challenges, with hybrid approaches demonstrating superior performance .
 
The GTO algorithm, inspired by the social structure of gorilla groups, simulates the decision-
making processes of a silverback gorilla group's leader(Mostafa et al., 2023). Divided into 
initialization, global exploration, and local exploitation phases, GTO represents a unique 
approach to optimization problems (Abdoullazadeh et al., 2021).  
 
In parallel, the Bird Swarm algorithm (BSA) (Miramontes & Melin, 2023), rooted in swarm 
intelligence and inspired by bird behaviors, has shown significant prowess in solving 
optimization problems(Miramontes & Melin, 2023). With behaviors encompassing foraging, 
vigilance, and flight, the BSA offers a distinctive approach to addressing complex challenges 
(Meng et al., 2016). 

 
Kennedy and Eberhart (1995) introduced Particle Swarm Optimization (PSO), a pioneering 
nature-inspired optimization algorithm that simulates the social behaviors of birds flocking 
or fish schooling. PSO leverages a population of candidate solutions, referred to as particles, 
which explore the search space by adjusting their positions based on their own experience and 
the experience of neighboring particles. Each particle updates its velocity and position by 
considering its personal best position and the global best position found by the swarm. This 
iterative process enables particles to converge towards optimal solutions over successive 
generations. PSO has been widely acclaimed for its simplicity, ease of implementation, and 
robust performance across various optimization problems. Kennedy and Eberhart 
demonstrated the effectiveness of PSO through numerous benchmark tests, showing that it 
consistently finds high-quality solutions with relatively fast convergence times. 
 
Meng et al. (2016) proposed a novel approach known as the Bird Swarm Algorithm (BSA). 
This algorithm emulates the foraging and vigilance behaviors of bird swarms to optimize 
complex problems. BSA divides the swarm into three groups based on different behaviors: 
producers, scroungers, and vigilantes. Producers search for food resources, scroungers follow 
the producers to exploit these resources, and vigilantes keep an eye on potential threats. The 
algorithm leverages these dynamics to balance exploration and exploitation during the 
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optimization process. Meng et al. demonstrated the efficacy of BSA through extensive 
experiments on benchmark functions, showcasing its superior performance in terms of 
convergence speed and solution accuracy when compared to other state-of-the-art algorithms 
such as PSO and GA. 
 
Gauthama et al. (2017) proposed the utilization of a genetic algorithm for parameter 
optimization and feature selection within a hypergraph-based intrusion detection system. The 
study leveraged the hyper-clique property of hypergraphs to generate initial populations, 
expediting the search for optimal solutions and mitigating the risk of being trapped in local 
optima. The HyperGraph Genetic Algorithm (HG-GA) employed a weighted objective 
function to determine the optimal number of features while simultaneously maximizing the 
detection rate and minimizing the false alarm rate. On the NSL-KDD dataset, HG-GA 
demonstrated a detection rate of 95.32% and a false alarm rate of 3.17%. It was identified as 
scalable, adaptive, robust, and applicable to a wide range of problems, although it was 
acknowledged that GA might encounter local optimal solutions. 
 
Saremi et al. (2017) introduced the Grasshopper Optimization Algorithm (GOA), a novel 
nature-inspired metaheuristic algorithm designed to solve complex optimization problems. 
GOA simulates the swarming behavior of grasshoppers in nature, particularly their 
movement and social interactions. The algorithm models the long-range and short-range 
attraction forces between grasshoppers to balance exploration and exploitation during the 
search process. By doing so, GOA efficiently navigates the search space to identify optimal 
solutions. Saremi et al. conducted extensive experiments on a variety of benchmark 
optimization problems to validate the performance of GOA. The results demonstrated that 
GOA outperforms several existing optimization algorithms, including PSO and GA, in terms 
of convergence speed and solution accuracy. Specifically, GOA achieved significant 
improvements in accuracy, with performance metrics indicating superior ability to find 
optimal or near-optimal solutions across diverse problem domains. The robustness and 
efficiency of GOA make it a valuable tool for tackling a wide range of optimization challenges. 
 
Salp Swarm Algorithm (SSA), introduced by Mirjalili et al. (2017), a novel nature-inspired 
optimization algorithm that simulates the swarming behavior of salps in the ocean. SSA is 
inspired by the unique chain-like formation of salps, which helps them efficiently navigate 
and forage in the ocean depths. In SSA, the population of salps is divided into leaders and 
followers, where the leaders guide the swarm towards optimal solutions and the followers 
adjust their positions based on the leaders and their immediate neighbors. This dynamic 
interaction between leaders and followers allows SSA to effectively balance exploration and 
exploitation throughout the optimization process. Mirjalili et al. validated SSA through 
extensive experimentation on a wide range of benchmark optimization problems, 
demonstrating its superior performance in terms of convergence speed and solution accuracy 
compared to other state-of-the-art algorithms like PSO and Genetic Algorithm(GA). The 
results showed that SSA achieved significant improvements in accuracy and robustness, 
making it a powerful tool for solving complex optimization challenges across various 
domains. 
 
M. Swarna et al., (2020) initiated the preprocessing stage by employing one-hot encoding to 
transform the data. Subsequently, the transformed dataset underwent a hybrid approach 
involving the Principal Component Analysis (PCA) and Grey Wolf Optimization (GWO) 
algorithms. PCA was utilized for dimensionality reduction, effectively reducing the dataset's 
dimension. Following PCA, GWO was applied to transform the coordinates, ensuring the 
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preservation of dimension variety. The feature values were then converted to numerical 
representations. Upon subjecting the preprocessed dataset to various classifiers, a notable 
improvement of approximately 15% in accuracy was observed, accompanied by reduced 
training time. 
 
In a different approach, Ghosh and Das (2021) proposed a novel hybrid Cuckoo Search (CS) - 
PSO algorithm for rapid and effective attack classification. The model, evaluated on the NSL-
KDD dataset, involved preprocessing and normalizing the data to reduce training time. The 
algorithm computed the objective function value for each data point, assigning pbest and 
gbest values to track individual and group best results at each stage. The CS-PSO algorithm 
effectively addressed the exploration-exploitation tradeoff, utilizing the Levy Flight technique 
during the exploration phase to jump into random positions and achieve better global 
optimized values. 
 
Abdollahzadeh et al. (2021) introduced the Artificial Gorilla Troops Optimizer (AGTO), a 
novel nature-inspired metaheuristic algorithm designed to tackle global optimization 
problems. AGTO mimics the social hierarchy and collective behaviors of gorilla troops in the 
wild. The algorithm models the foraging strategies, leadership dynamics, and territorial 
disputes observed in gorilla groups to enhance exploration and exploitation capabilities. By 
simulating these interactions, AGTO effectively navigates the search space to identify optimal 
solutions. The authors validated AGTO through rigorous testing on a variety of benchmark 
optimization problems, demonstrating its competitive performance against established 
algorithms like Particle Swarm Optimization (PSO) and Differential Evolution (DE). The 
results indicated that AGTO excels in convergence speed and solution quality, making it a 
valuable addition to the suite of metaheuristic optimization tools. Abdollahzadeh et al. 
highlighted AGTO's potential applications in diverse fields, emphasizing its robustness and 
efficiency in solving complex optimization challenges. 
 
In a separate study, Kareem et al. (2022) proposed a hybrid GTO/BSA algorithm. Recognizing 
that GTO, like many other meta-heuristic algorithms, is susceptible to local optima due to an 
imbalance between exploration and exploitation, the authors addressed this challenge. Four 
strategies were implemented to enhance GTO's local and global searching capabilities: a 
control randomization parameter, an advanced non-linear transfer function for balancing 
exploration and exploitation, and a novel local updating position strategy based on the BSA 
algorithm. Fine-tuning randomization parameters played a crucial role in ensuring correct 
search algorithm behavior and achieving a balanced exploration-exploitation dynamic. The 
control randomization parameter generated variable numbers between positive and negative 
values, facilitating a comprehensive exploration of the search space and preventing stagnation 
in sub-local optimal solutions. The transfer function, vital in transitioning the search algorithm 
between exploration and exploitation phases, replaced the linear transfer function present in 
GTO, as it often failed to strike a balance.  
    
Despite the efficiency of integrating gorilla troop optimization with bird swarm algorithm, it 
still suffers from computational complexity, computational overhead and the potential of 
falling in the trap of local optima. to overcome these limitations, this study proposes the 
enhancement of GTO-BSA whose aim is to reduce computational complexity and avoid falling 
into the trap of local optima and therefore achieve superior solutions in optimizing intrusion 
detection in IoT platforms. 
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A. Gorilla Troops Optimization (GTO) 
GTO draws inspiration from the collective lifestyle and social intelligence observed in gorillas. 
Within a gorilla troop, adult male silverback gorillas coexist with multiple adult female 
gorillas. The Silverback, distinguished by unique hair on its back during puberty and typically 
around the age of 12, assumes the leadership role within the troop. The Silverback is 
responsible for decision-making on behalf of the group, resolving conflicts, and determining 
group movements (Xiao et al., 2022). In general, both male and female gorillas may migrate 
from one birth group to another. In the event of the silverback's demise, males may engage in 
fierce battles for group dominance and mating rights with adult females. Leveraging insights 
from these observed gorilla troop behaviors, a mathematical model is formulated for GTO. 
The GTO model comprises three key phases: initialization, global exploration, and local 
exploitation (Xiao et al., 2022). 
 
a) Initialization phase  

Assuming there are 𝑛 gorillas in a d-dimensional space, the position of the 𝑖𝑡ℎ gorilla in the 
space can be defined as  𝑋𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3….𝑥𝑖,𝑑), 𝑖 =  1, … , 𝑁. Therefore, the initialization of 
the gorilla process can be defined as shown in equation 1. 
𝑋𝑛×𝐷 = 𝑅𝑎𝑛𝑑(𝑁, 𝐷) × (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏  (1) 
where 𝑢𝑏 and 𝑙𝑏 are the upper and lower boundaries respectively, and 𝑅𝑎𝑛𝑑 (𝑁, 𝐷) denotes 
the matrix with  𝑁 rows and 𝐷 columns. Each element is a random number between 0 and 1. 
 
b) Exploration phase 
Upon departure from their native troop, gorillas navigate through diverse natural landscapes. 
In the context of the GTO algorithm, all gorillas are regarded as candidate solutions, with the 
optimal solution identified in each optimization iteration termed as the "silverback." The 
position update of a gorilla during the exploration stage is governed by three distinct 
strategies: migration toward unfamiliar positions, relocation to familiar locales, and 
movement toward other groups. The formulation of this concept is encapsulated in Equation 
2. 

𝐺𝑋(𝑡 + 1) =  {

(𝑢𝑏 − 𝑙𝑏) × 𝑟2 + 𝑙𝑏                                    𝑟1 < 𝑃
(𝑟3 − 𝐶) × 𝑋𝑎(𝑡) + 𝐿 × 𝑍 × 𝑋(𝑡)       𝑟1 ≥ 0.5

𝑋(𝑡) − 𝐿 × (𝐿 × (𝑋(𝑡) − 𝑋𝐵(𝑡)) +  𝑟4  × (𝑋(𝑡) − 𝑋𝐵(𝑡))) , 𝑟1 < 0.5   

   (2) 

where 𝑡 specifies the current iteration, 𝑋(𝑡) specifies the current position vector of individual 
gorillas. 𝐺𝑋(𝑡 + 1) refers to the candidate position of search agents in the next iteration. Also, 
𝑟1, 𝑟2, 𝑟3, and 𝑟4are all random numbers in the range 0 and 1. 𝑋𝑎(𝑡)and 𝑋𝑏(𝑡)are two randomly 
selected gorilla positions in the current population.P is a constant and 𝑍 specifies a row vector 
in the problem dimension with values that are randomly generated in the interval [-C, C] 
where 𝐶 is calculated according to equation.3. 

𝐶 = (cos(2 × 𝑟5) + 1) × (1 −  
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)    (3) 

 
where 𝑐𝑜𝑠(. ) represents the cosine function, 𝑟5 is a random number in the range of 0 to 1, and 
𝑀𝑎𝑥 − 𝑖𝑡𝑒𝑟 indicates the maximum iterations.  𝐿 can be computed as in equation 4 
𝐿 = 𝐶 ×  𝑙 (4) 
 
where 𝑙 is a random number between [-1 and 1]. 
c) Exploitation phase 
The mathematical expression for the modeling of the exploitation phase of the GTO is shown 
in equation 5. 
                       𝐺𝑋(𝑡 + 1) =  𝐿 × 𝑀 × (𝑋(𝑡) − 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) + 𝑋(𝑡)      (5) 
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Where 𝐿 is evaluated using equation 4 and 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘  represents the best solution obtained so 
far and 𝑋(𝑡) specifies the current position vector. 𝑀 is be calculated using equation 6.   

𝑀 = (|∑ 𝑋𝑖(𝑡)/𝑁𝑁
𝑖=1 |

2𝐿

)

1

2𝐿

 (6) 

 
where 𝑁 specifies the population size, and 𝑋𝑖(𝑡) denotes each position vector of the gorilla in 
the current iteration. If 𝐶 <  𝑊, it means that the latter mechanism is chosen and the location 
of gorillas can be updated using equations 7 to. 9. 
𝐺𝑋(𝑡 + 1) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 − (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 × 𝑄 − 𝑋(𝑡) × 𝑄) × 𝐴    (7) 
 

 𝑄 = 2 × 𝑟6 -1                                 (8a) 
 
𝐴 =  𝜑 × 𝐸     (8b)  
     

𝐸 =  {
𝑁1, 𝑟7  ≥ 0.5
𝑁2, 𝑟7 < 0.5

    (9) 

 
In equation 7, 𝑋(𝑡) specifies the current position and 𝑄 stands for the impact force, which is 
calculated using equation 8a. 𝑟6 is a random value in the range of 0 and 1. Moreover, the 
coefficient 𝐴  is used to mimic the violence intensity in the competition is evaluated by 
equation 8b. 𝜑 specifies a constant and the values of 𝐸 are assigned using equation 9. 𝑟7 is also 
a random number in the range [0, 1]. If 𝑟7 ≥ 0.5, 𝐸 would be defined as a 1-D array of normal 
distribution and 𝐷 is the spatial dimension. If 𝑟7 < 0.5, 𝐸 will be equal to a stochastic number 
that conforms to the normal distribution. At the end of the exploitation process, the fitness 
value of the newly generated candidate 𝐺𝑋(𝑡 + 1)solution is also calculated. If 𝐹(𝐺𝑋)  < 𝐹(𝑋), 
the solution 𝐺𝑋will be preserved and participate in subsequent optimization, the optimal 
solution within all individuals is specified by the silverback.  
 
B. Bird Swarm Optimization Algorithm (BSA) 
The BSA algorithm draws inspiration from the social dynamics observed in bird swarms, 
incorporating key elements such as feeding, flying, and vigilance compartments (Miramontes 
& Melin, 2023). This algorithm is intricately governed by predefined rules that dictate its 
behavior, and mathematical equations within the BSA framework are systematically 
formulated to align with these rules (Miramontes & Melin, 2023). 

i. Rule 1: Each bird exhibits dynamic behavior by probabilistically transitioning between 
vigilance and foraging states. This decision-making process is characterized as a 
stochastic decision. 

ii. Rule 2: During the foraging state, each bird adeptly records and updates its individual 
best experiences related to food patches, as well as the collective best experiences of 
the swarm. This acquired knowledge is promptly disseminated across the entire 
swarm, facilitating informed decision-making in the food search. Social information is 
efficiently shared among swarm members. 

iii. Rule 3: Birds strive to converge towards the central area of the swarm while 
maintaining vigilance, a behavior influenced by the interference resulting from swarm 
competition. Birds with higher resource reserves tend to position themselves closer to 
the swarm's center compared to those with lower reserves. 

iv. Rule 4: Birds engage in frequent relocation, transitioning between different locations. 
During these movements, birds alternate between producing and scrounging 
behaviors. The bird with the highest reserves assumes the role of a producer, while the 
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one with the lowest reserves adopts the role of a scrounger. Intermediate reserve levels 
prompt random decisions for birds to choose between being a producer or a scrounger. 

v. Rule 5: Producers actively seek food, while scroungers randomly follow a producer in 
their collective quest for food (Rule 5). 

 
a) Foraging behavior 
Individual bird groups engage in food-seeking activities influenced by both their individual 
experiences and the collective knowledge amassed from other birds within the swarm. This 
behavior can be mathematically modeled using Equation 10 

𝑋𝑖,𝑗
𝑡+1 =  𝑋𝑖,𝑗

𝑡 +  (𝑃𝑖,𝑗 −  𝑋𝑖,𝑗
𝑡 )  × 𝐶 × 𝑟𝑎𝑛𝑑(0,1) + (𝑔𝑗 −  𝑋𝑖,𝑗

𝑡 )  × 𝑆 × 𝑟𝑎𝑛𝑑 (0,1)   (10) 

where 𝑗  specifies the set of uniformly distributed numbers within the range 0 and 1. 𝑆 
specifies the social accelerated coefficients and 𝐶 specifies cognitive accelerated coefficients. 

While 𝑃𝑖,𝑗  is the previous location of the 𝑖𝑡ℎ  bird and 𝑔𝑗  the previous best location of the 

swarm. 
 
b) Vigilance behavior 
Each bird attempts to proceed to the middle of the swarm to engage in surveillance behavior. 
This can be modeled as in equation 11 to 12. 

                      𝑋𝑖,𝑗
𝑡+1 =  𝑋𝑖,𝑗

𝑡 + 𝐴1(𝑚𝑒𝑎𝑛𝑗 − 𝑋𝑖,𝑗
𝑡 )  × 𝑟𝑎𝑛𝑑(0,1) + 𝐴2 (𝑃𝑘,𝑗 − 𝑥𝑖,𝑗

𝑡 ) × 𝑟𝑎𝑛𝑑 (−1,1) 

 (11)       

 𝐴1 = 𝑎1 × exp (
−𝑃𝐹𝑖𝑡𝑖

𝑠𝑢𝑚𝐹𝑖𝑡 + 𝜀
) × 𝑁                               (12a)          

      𝐴2 =  𝑎2 × exp ((
𝑝𝐹𝑖𝑡𝑖− 𝑝𝐹𝑖𝑡𝑘

|𝑝𝐹𝑖𝑡𝑘−𝑝𝐹𝑖𝑡𝑖|+𝜀
)

𝑁𝑝𝐹𝑖𝑡𝑘

𝑠𝑢𝑚𝐹𝑖𝑡+𝜀
)     (12b) 

where 𝑘 specifies a positive number between 1 and 𝑁 chosen at random. The best fitness value 

at the 𝑖𝑡ℎ position is 𝑝𝐹𝑖𝑡𝑖 and the total of the swarm's best objective value is sumFit. 𝜀 is used 
to avoid the zero division error. 𝐴1 and 𝐴2 represent the positive constant values (0,2). 
 
c) Flight behavior 
In reaction to potential predation threats, birds can migrate to diverse locations for foraging 
and other activities (Miramontes & Melin, 2023). Upon reaching a new location, birds continue 
their quest for food. Producers, who actively seek and find food, are then followed by 
scroungers who consume the located food (Miramontes & Melin, 2023). The behaviors of both 
producers and scroungers are formalized in Equations 13 and 14. 

𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + 𝑟𝑎𝑛𝑑𝑛(0,1) × 𝑥𝑖,𝑗                        
𝑡                (13) 

𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + (𝑥𝑘,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) ×  𝐹𝐿 × 𝑟𝑎𝑛𝑑 (0,1)   (14) 

 
MATERIALS AND METHODS 
This section delineates the research methodology employed. It discusses the details of the 
proposed and that of Kareem et al.(2022), IGTO-BSA, the datasets used, and the experimental 
design. 
 
EXPERIMENTAL SETUP 
All experiments were carried out on a Windows 10 operating system with Intel(R) Core (TM) 
i7-6700HQ CPU (2.60 GHz; 2.59 GHz with 64 GB. The MATLAB R2021b programming 
language environment was used. 
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Dataset Description 
The suggested model underwent testing with three datasets: NSL-KDD, CICIDS-2017, and 
UNSWNB-15 Dataset. These datasets are commonly utilized by researchers to assess the 
effectiveness of their proposed systems. 
 
a). The NSL-KDD dataset 
The NSL-KDD dataset was introduced as a remedy to address inherent challenges in the 
KDDCUP’99 dataset (Al-Khassawneh, 2023). In comparison to the original KDD dataset, NSL-
KDD offers several advantages: it eliminates redundant data from the training set, mitigating 
classifier bias toward more prevalent records (Al-Khassawneh, 2023). Comprising 41 features 
and 5 classes (normal and four forms of attack: DoS, Probe, R2L, and U2R), the NSL-KDD 
dataset provides a refined and improved data structure for research purposes. 
  
 b). CICIDS-2017 dataset 
The CICIDS-2017 dataset, unveiled by the Canadian Institute for Cybersecurity (CIC) 
encompasses prevalent benign activities and contemporary cyber threats (Krsteski et al., 2023). 
Positioned as one of the latest intrusion-detection datasets, it incorporates up-to-date attack 
scenarios. Comprising a total of 2,830,743 records distributed across eight files, each entry 
within this dataset is characterized by 78 distinct features along with their corresponding 
labels (Krsteski et al., 2023). 
 
c). UNSW-NB15 dataset 
The UNSW-NB15 dataset, developed at UNSW Canberra was created using IXIA perfect 
storm to generate a comprehensive mix of benign and attack traffic (Sallam et al., 2023). This 
effort resulted in a 100GB dataset represented as PCAP files, featuring a substantial number 
of novel generated features (Sallam et al., 2023). The primary objective of this dataset is to 
serve as a resource for the creation and validation of intrusion detection systems. The dataset 
encompasses nine distinct attack types, namely Fuzzers, Analysis, Backdoors, DoS, Exploits, 
Generic, Reconnaissance, Shellcode, and worms (Fathima et al., 2023). Comprising a total of 
2,540,044 records organized into four CSV files, a subset of this dataset has been designated 
for training and testing purposes. Specifically, the training set encompasses 175,341 records, 
while the testing set incorporates 82,332 records, encompassing all attack types and standard 
records (Fathima et al., 2023). 
 
Evaluation Metrics 
To assess the efficacy of the proposed IGTO-BSA approach, various evaluation metrics have 
been applied as shown in equation 16 to 20. The evaluation encompasses the use of a confusion 
matrix to measure the accuracy, specificity, and sensitivity of the classifier in both the existing 
method and our proposed method, along with other pertinent evaluation methods. 

i. Accuracy =       
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
       (15) 

ii. Sensitivity=           
𝑇𝑃

𝑇𝑃+𝑇𝑁
       (16) 

iii. Specificity=             
𝑇𝑁

𝑇𝑁+𝐹𝑃
        (17) 

where 𝑇𝑃  = True Positive, TN = True Negative, 𝐹𝑃 = False Positive, FN = False 
Negative 

iv. Average accuracy (AVGacc):  This measure is employed to compute the accuracy of 
data classification. 

v. Average number of features (AVG|fsBest|): This metric is employed to assess the 
capability of a method to reduce the number of features across multiple runs. 
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vi. Standard Deviation (STD): This metric is used to evaluate each method's quality and 
analyze the data obtained in multiple runs. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑃
∑(𝐵𝑖 − 𝑀𝑒𝑎𝑛)2    (18) 

vii. Average computation time: This metric is employed to determine the average duration 
taken by the algorithm to complete one iteration of a task. 

AVGTime = 
1

𝑁𝑟
∑ 𝑇𝑖𝑚𝑒𝐵𝑒𝑠𝑡

𝑘𝑁𝑟
𝐾=1                                            (19) 

 
Proposed Model 
i. Position Update During Exploration: The initial exploration strategy in the original GTO 

utilized equation (2). In our proposed IGTO-BSA, we enhanced the last strategy by 
incorporating a step size parameter into the update mechanism. The modified equation 
(20) in the proposed approach calculates the updated position for an individual at index 
i within the gorilla population. This equation plays a pivotal role in refining the current 
solution by guiding it towards the solution of the best-performing neighbor. The 
adjustment's magnitude is now determined by the parameter 'alpha,' acting as a 
controlling factor that influences the extent of the individual's movement towards the 
optimal neighbor's solution. 

𝐺𝑋(𝑡 + 1) = 𝑋(𝑡)−∝ × (𝐿 × (𝐿 × (𝑋(𝑡) − 𝑋𝐵(𝑡)) +  𝑟4  × (𝑋(𝑡) − 𝑋𝐵(𝑡))))  (20) 

 
ii. Position Update During Exploitation: Equation 22 computes the updated position for 

the individual at index i within the bird swarm population. Equation (11) was modified 
to equation (21)by introducing the step sizes 'beta' and 'gamma'. This modification aims 
to enhance the algorithm's performance by providing more control over the individuals' 
movement and introducing additional variability into the update process. The parameter 
'beta' functions as a controlling factor, influencing the magnitude of the adjustment and 
directing the individual towards the solution of the best-performing neighbor. On the 
other hand, 'gamma' is introduced with the purpose of enhancing diversity in the update 
process. 

     𝑋𝑖,𝑗
𝑡+1 =  𝑋𝑖,𝑗

𝑡 +  𝛽 × 𝐴1(𝑚𝑒𝑎𝑛𝑗 − 𝑋𝑖,𝑗
𝑡 )  × 𝑟𝑎𝑛𝑑(0,1) + 𝛾 × 𝐴2 (𝑃𝑘,𝑗 − 𝑥𝑖,𝑗

𝑡 ) × 𝑟𝑎𝑛𝑑 (−1,1) (21) 

 
The algorithm for the proposed model, the flowchart and the parameter settings are 
shown in Algorithm 1, Figure 1 and table 1. 

 
Algorithm 1: Improved GTO-BSA (IGTO-BSA) 

1. Initialize the population size N and the maximum number of iterations Maxiter 
2. Determine suitable parameters for gorilla and bird 
3. Initialize the random gorilla and bird population 𝑋𝑖(1,2, … , 𝑁) 
4. Calculate the fitness value of all gorilla individuals  
5. While t < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟  do 
6.     Update the parameter C according to equation 3 
7.     Update the parameter L according to equation 4 
8.     For each 𝑋𝑖 do  
9.         Update position of gorilla according to equation 20 
10.     End for 
11.     Evaluate the fitness values of all gorillas  
12.     Save optimal position as a silverback (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) 
13.     For each gorilla 𝑋𝑖 do  
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14.        If C≥ 𝑊 then 
15.            Update the position of the current gorilla according to equation 7 
16.         Else update the position of the birds according to equation 21 
17.   Update the fitness values of all gorillas 
18.   Update the global best solution ,𝑋-𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘. 
19.    t = t+1 
20. End While 
21. Output the global best solution 

 
Figure 1: Flowchart of the proposed IGTO-BSA algorithm 

 
Table 1:  Parameter Settings 
 
 
 
 
 
 
 
 
 
 

Parameter Value 

Number of iterations 100 

Population size 30 

Search domain [0,1] 

Number of runs 25 

𝛽 0.01 

𝛼 0.99 

Alpha 0.1 

Beta 0.2 
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RESULTS AND DISCUSSION 
Analyzing Table 2 with a focus on the NSL-KDD dataset reveals that the proposed method, 
which incorporates step size parameter, exhibits superior performance compared to GTO-
BSA across four key metrics: accuracy, specificity, computational time, and the count of 
selected features. 
 
Table 2: Performance comparison between GTO-BSA and the proposed method using the 
NSL-KDD datasets 

Dataset Models  Performance Measures 

   
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Computational 

Time 
No. of 

features 

NSL-
KDD 

Proposed 
Method 

IGTO-BSA 

Avg. 0.9845 0.8229 0.9900 211.78 13.0000 

STD ±0.0026 ±0.1673 ±0.0500 ±6.3532 - 

Existing 
System 

GTO-BSA 

Avg. 0.955964 0.914219 0.97365 10,205.83 14.75 

 STD ±0.000777 ±0.006015 ±0.001684 ±1531.406 - 

 
A. Performance comparison between GTO-BSA and the proposed method using the 

UNSW-NB15 dataset 
Examining Table 3, particularly in the context of the UNSW-NB15 dataset, it is evident that 
the proposed method, which integrates step size parameters, outperforms GTO-BSA across 
all five metrics: accuracy, sensitivity, specificity, computational time, and the count of selected 
features. 
 
Table 3: Performance comparison between GTO-BSA and the proposed method using the 
UNSW-NB15 datasets 

Dataset Models  Performance Measures 

    

   
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Computational 

Time 
No. of 

features 

UNSW-
NB15 

Proposed 
Method 

IGTO-BSA 

Avg. 0.8273 0.8894 0.8783 126.1023 10.0000 

STD ±0.0038 ±0.1685 ±0.1096 ±3.7833 - 

Existing 
System 

GTO-BSA 

Avg. 0.710138 0.815385 0.877049 161.2396 16.625 

 STD ±0.010759 ±0.052656 ±0.019192 ±4.890585 - 

 
B. Performance comparison between GTO-BSA and the proposed method using the 

CICIDS-2017 dataset 
From Table 4, considering the CICIDS-2017 dataset, it is noteworthy that the proposed method 
demonstrates superior performance over GTO-BSA specifically in terms of accuracy, 
sensitivity, and specificity. However, it is important to highlight that GTO-BSA exhibits better 
results in terms of computational cost and the number of selected features. In summary, while 
the proposed method excels in certain key metrics, GTO-BSA showcases advantages in 
computational efficiency and feature selection, indicating a nuanced comparative evaluation 
between the two approaches. 



Enhancing Intrusion Detection in IoT Platforms Using a Novel Hybrid Gorilla Troops and Bird Swarm 

Optimization Algorithm 

 

 

Sambo A. M. et al., DUJOPAS 11 (1c): 68-82, 2025                                                                                            79 

 
 

 
 
 
 
Table 4: Performance comparison between GTO-BSA and the proposed method using the 
CICIDS-2017 datasets 

Dataset Models  Performance Measures 

   
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Computational 

Time 
No. of 

features 

CICIDS-
2017 

Proposed 
Method 

IGTO-BSA 

Avg. 
0.9986 

 
0.9994 

 
0.9978 

 
4604.313 

 
14.0000 

 

STD ±0.0006 ±0.0003 ±0.0011 ±1889.0432 - 

Existing 
System 

GTO-BSA 

Avg. 0.987915 0.972644 0.996798 2270.918 10 

 STD ±0.001997 ±0.004299 ±0.001977 ±221.0268 - 

 
The observed variations in performance between the proposed method and GTO-BSA on the 
CICIDS-2017 dataset underscore the relevance of the "No Free Lunch"(Montazeri et al., 2023) 
theory in optimization. This theory asserts that no universally superior optimization 
algorithm excels across all problem domains. The fact that the proposed method outperforms 
GTO-BSA in accuracy, sensitivity, and specificity while GTO-BSA demonstrates superiority 
in computational cost and the number of selected features aligns with the inherent trade-offs 
dictated by the “no-free lunch” principle. Essentially, the effectiveness of an optimization 
algorithm is contingent on the specific characteristics and nuances of the problem at hand. 
This acknowledgment emphasizes the importance of selecting or designing optimization 
methods tailored to the unique requirements of each specific task or dataset. 
 
The charts below compare the performance metrics of the proposed Improved Hybrid GTO-
BSA Algorithm (IGTO-BSA) against  existing system(GTO-BSA). Chart (a) evaluates the NSL-
KDD dataset, illustrating the superior accuracy, and specificity of IGTO-BSA, alongside a 
reduced number of selected features. Chart (b) shows the superiority of our proposed system 
in terms of higher accuracy, sensitvity, specificity and reduced number of features on UNSW-
NB15 dataset. Chart (c) assesses the CICIDS-2017 dataset, again showcasing the proposed 
system's higher accuracy, sensitivity, and specificity. On the other hand the existing system 
shows superiority with less seclected number of features. Chart (d) examines computational 
time across the three datasets, revealing IGTO-BSA's enhanced efficiency, especially 
noticeable in the NSL-KDD and UNSW-NB15 datasets.  These visualizations underscore the 
improved efficacy and efficiency of the IGTO-BSA method in intrusion detection for IoT 
environment. 
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NSL-KDD                           UNSW-NB15                            CICIDS-2017                   COMPUTATIONAL TIME 

 
(a)                                                  (b)                                     (c)                                      (d) 

 
CONCLUSION 
The research concludes with the successful development and evaluation of the IGTO-BSA 
feature selection algorithm, specifically tailored for Intrusion Detection Systems in the context 
of Internet of Things security. By integrating elements from Gorilla Troop Optimization (GTO) 
and Bird Swarm Algorithm (BSA), and incorporating step size parameters, the proposed 
algorithm exhibits superior performance over the baseline GTO-BSA.  
 
Upon conducting experiments using benchmark datasets such as NSL-KDD, UNSW-NB15, 
and the CICIDS-2017, the findings reveal noteworthy results. In comparison to GTO-BSA, the 
IGTO-BSA algorithm consistently demonstrates improvements across key metrics, including 
accuracy, sensitivity, specificity, computational time, and the number of selected features. The 
step size parameters, encompassing alpha in GTO and beta and gamma in BSA, play a pivotal 
role in enhancing the algorithm's adaptability, enabling controlled adjustments and efficient 
exploration of the solution space. 
 
Specifically, when analyzing the UNSW-NB15 dataset, the IGTO-BSA algorithm showcases 
significant enhancements, underlining its effectiveness in tackling feature selection challenges 
in IDS for IoT security. The step size parameters contribute not only to the algorithm's 
adaptability but also to its exploration efficiency, addressing issues related to premature 
convergence and local optima. 
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