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Abstract

This  research presents an age-structured  Susceptible-Vaccinated-Exposed-Asymptomatic-
Symptomatic-Hospitalized (SVEASH) model for COVID-19 transmission, which incorporates age-
dependent recruitment rates, transmission dynamics, contact patterns, and various infection forces. It
assumes perfect vaccination, ensuring permanent immunity. The study investigates the mathematical
properties of the model, including the existence of equilibrium states and the local stability of the
disease-free equilibrium (E™0). The basic reproduction number (R0), a critical threshold for stability,
is derived as a weighted average across both asymptomatic and symptomatic infection classes. The
model is solved analytically using the Laplace transform, and simulations demonstrate that vaccinating
up to 85% of the global population between the ages of 0 and 80 can significantly reduce the peak of the
disease and shorten the duration of the epidemic. Additionally, the research emphasizes the importance
of vaccinating not only susceptible and hospitalized individuals but also those who have recovered,
further aiding in the control of the outbreak.

Keywords: COVID-19 transmission, vaccine response, age-structured population, disease
dynamics, mathematical modeling.

INTRODUCTION

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has resulted in widespread
health, social, and economic disruptions. Since its emergence in 2020, the virus has spread
globally, prompting governments to implement a range of public health measures to curb
transmission, such as lockdowns, travel restrictions, and vaccination campaigns.
Mathematical and epidemiological models have been pivotal in understanding the
transmission dynamics of COVID-19 and evaluating the effectiveness of these interventions
(Ferguson et al., 2020). One significant advancement in epidemiological modeling has been
the inclusion of age structure, where the population is divided into age groups with distinct
risks for infection, disease severity, and vaccine response (Keeling & Rohani, 2008; Hethcote,
2000). Age-structured models are particularly important for COVID-19, as evidence shows
that the severity and transmission of the disease vary significantly across different age groups
(Liu et al., 2020). Older adults face a higher risk of severe disease and mortality from COVID-
19, while children and young adults typically experience milder symptoms or remain
asymptomatic (Liu et al., 2020). This variation in disease progression underscores the need
for models that account for these age-related differences in order to accurately predict the
trajectory of the pandemic and inform public health interventions. Additionally, age plays a
critical role in immune response to both natural infection and vaccination, with older
individuals generally exhibiting a weaker immune response to vaccines compared to younger
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populations (Polack et al., 2020; Hall et al., 2021). This highlights the importance of
considering age in both the modeling of transmission dynamics and the development of
vaccination strategies.

Traditional epidemiological models, such as the Susceptible-Infected-Recovered (SIR) model,
have been instrumental in understanding the spread of infectious diseases (Kermack &
McKendrick, 1927). However, these models often assume a homogeneous population, which
fails to capture the important variations in disease transmission and vaccine efficacy across
age groups. To address this, age-structured models explicitly partition the population into
age classes, each with distinct rates of infection, recovery, and vaccination response. These
models are particularly effective in simulating how COVID-19 spreads through different
cohorts and in assessing the impact of vaccination campaigns that prioritize specific age
groups (Anderson & May, 1992; Brauer et al.,, 2019). The importance of age-structured
modeling in the COVID-19 context has been demonstrated in several studies. For example,
Ferguson et al. (2020) developed a model that incorporated age-specific transmission rates
and assessed the impact of various non-pharmaceutical interventions, including social
distancing and quarantine measures. Their work emphasized that age structure must be
considered when predicting the outcomes of public health interventions. Similarly, age-
structured models have been used to evaluate vaccination strategies, with a focus on
prioritizing older adults who are at greater risk of severe disease (Hodges et al., 2021). These
models have shown that vaccinating high-risk age groups first can significantly reduce
hospitalizations and deaths, even in the absence of widespread vaccination. Another critical
factor in the modeling of COVID-19 transmission is the role of vaccine efficacy across age
groups. Vaccines have been shown to be highly effective in preventing severe disease, but
their efficacy can vary by age. For instance, older adults may experience a lower immune
response to COVID-19 vaccines, which influences vaccine effectiveness and the timing of
booster doses (Hall et al., 2021). Models that incorporate these differences are essential for
simulating the impact of vaccination campaigns. Studies by Hodges et al. (2021) and others
have indicated that prioritizing vaccines for older populations can help achieve the greatest
reductions in mortality and hospitalizations, even if younger populations are vaccinated later.
Additionally, waning immunity over time presents another challenge for modeling the long-
term effectiveness of vaccination campaigns. As immunity from both natural infection and
vaccination decreases over time, booster doses may be necessary to maintain protection,
particularly in older age groups (Ferguson et al., 2020). Models incorporating age-structured
immunity dynamics can estimate the long-term impact of vaccination strategies and help
inform decisions regarding booster shots.

Methodology

Model Variables and Parameters: Table 2.1 shows the description of model variables and
parameters used.

Table 2.1: Description of model variables and parameters

Variable Description

P(a,t) Total population density of age a at time t

S(a, t) density of susceptible individuals of age a at time t

V(a,t) density of Vaccinated individuals of age a at time t

E(a,t) density of exposed individuals of age a at time t

M(a,t) density of asymptomatic infectious individuals of age a at time t
I(a,t) density of symptomatic infectious individuals of age a at time t

H(a,t) density of hospitalized individuals of age a at time t

Parameter Description
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A Maximum age attained by individuals in the population, 0 < A <

y(a,t) The per capita force of infection

B(a) Transmission or infection rate

g(a) Contact ratio

b(a) Recruitment rate for all ages a

B Total number of birth rate (newborns)

K, j Fraction of susceptible who become vaccinated, exposed who become
symptomatic.

u(a), aa) age-specific natural and disease induced death rate respectively

?(a) age-specific vaccination rate

8(a) age- specific exit rate from the exposed class

z(a), q(a) age-specific hospitalized rate for infectious asymptomatic and symptomatic
class

n(a) age-specific boost of immunity

Model Description

The proposed model is an age-structured susceptible-vaccinated-exposed-asymptomatic
infected-symptomatic infected and hospitalized (SVEMIH) model that considered a total
population density of P(a, t),where a denotes the age of individuals at time t. A is the
highest age attained by the individuals in the population, where A <o with a € [0, A) or
with a €[0, ). The whole population under consideration is divided into six
compartments of susceptible, vaccinated, exposed, asymptomatic infectious,
symptomatic infectious, and hospitalized age densities denoted by S(a, t), V(a, t), E(a, t),
M(a,t), I(a, t) and H(a, t) respectively.

Let b(a), n(a) and a(a) be age specific flow or recruitment for all ages a entering only
the susceptible compartment, natural mortality and force of mortality rate of the
population respectively with a fraction k of susceptible individuals vaccinated at the rate
@(a) and the remaining (1-k) become exposed after contact with the infection at the
transition rate g(a)A(t). 8(a) is the exit rate from the latent class, j is the proportion of
exposed individuals who show symptoms while the remaining (1-j) are asymptomatic
infectious without symptoms.

Most individual’s immune response is capable of controlling and clearing the infection
over time when hospitalized and treated (WHO 2021). n(a) is the rate at which
individuals who recovered as a result of medical intervention are vaccinated. q(a), z(a)
is the rate at which symptomatic infectious and asymptomatic individuals who are
noticed as a result of diagnosis are hospitalized respectively.

Here, the force of infection y(a, t) after contact with the symptomatic and asymptomatic
infectious in the infective compartment is assumed to be

A
y(@ ) = g(@) f B@Ii(a,t) + M(a 0)] da )
0

Equation (1) is the force of infection of the inter-cohort separable form, where f(a) and
g(a) is defined as the transmission coefficient and the contact ratio respectively.
Let At) = [, f(@I(a,t) + M(a,t)] da
equation (1) becomes
y(a,t) = g(a)A(t) (2)

The integral f: I(a,t)da and f: M(a,t) da stands for the total number of symptomatic
infected and asymptomatic infected individuals respectively.
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The following diagram describes the transmission dynamics and vaccination of COVID-19
infection.
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Figure 1 Flow diagram of COVID-19 transmission and vaccine response

The Model Equations
From the assumptions, descriptions and the compartment diagram in figure 1, we obtained
the following system of partial differential equations for the transmission dynamics of the

diseases.
dS(a,t) N dS(a,t)

=b(@) — [u(@) + kd(a) + (1 = k)g(@)A(D)]S(a, D) (2)

avgi, v, avge;, D _ Lp(@)S(a 1) + n(a)H(a ) — u(a) V(a0 3)
aEgi 9, aE((;’ Y (1 - 0g@A®SE@ — [u(a) + 6(@)]EG, D )
M0 OO (1 ey - [2) + @IMG,D )
N@Y @Y _ o b — [q@) + u(a) + a@]i@ (6)

da ot

0H(a, t) N 0H(a, t)

da o = A@1@ 1) +z(@)M(a,t) — [n(@) + u(@) + «@]H(@, ) (7)

A
ACH) = f B(@)[I(a ) + M(a, )] da )
0
with limiting conditions
S(0,t) = B,V(0,t) = E(0,t) = 1(0,t) = H(0,t) = M(0,t) = 0 9
and initial conditions

S(a,0) = Sy(a), V(a,0) =Vy(a), E(a,0) = Ey(a), M(a,0) = My(a) (10)
I(a,0) = 1y(a),H(a, 0) = Hy(a)
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Laplace Transform

The Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral
transform that converts a function of a real variable (usually ¢, in the time domain) to a
function of a complex variables s (in the complex-valued frequency domain, also known as s-
domain, or s-plane).

L{u/(a,t)} = fooe_“ut(a, t)dt = su*(a,s) —u(a,0) (11)
0

L{ug(a,t)} = f e Stuy(a,t) dt =ugy(a,s) (12)
0

Basic properties of the model

To be sure that the model formulated is well-posed and epidemiological meaningful, there is
need to prove the positivity and invariant region of the solutions of equation (2) - (10). These
are best done when the model equations are ODE and not PDE and since solution to the
transformed ODE along the characteristics curves also provide solution to the PDE. Hence,
there is need to transform our model equations to ODE only at these points using the method
of characteristics to be able to carry out these proves.

First, compare equation (1) with the general form of a first order PDE in equation (2)

a(x, y)u, + b(x,y)u, + c(x,y)u = d(x,y) (13)
2.6.8

Positivity of Solution
Since the model studied human population, we need to show that all the state variables
remain non-negative for all times.

Theorem 21 : Let Q={Q={(SV,EM1IH) € RE:SO)>0,V(0)=0EW0)>0,M0) >
0,1(0) = 0,H(0) = 0} then the solutions {S(t),V(t),E(t),M(t),I(t),H(t)} of the system of
equations (3) - (8) are positive forall t > 0

Proof: Let {(5(0),V(0),E(0),M(0),1(0),H(0)) > 0} € R¢
From (3), we have

ds

= = b@ - (00 + 0gA(1))S (14)
Where 0, = p(a) + kdp(a), og = (1 —k)g(a)

Then

das

o2 —(00 + 0gA(1))S (15)
Solving (15) gives

S(t) = S(0)e~(otos fADAD) > (16)
Since oy = 0 and ogA(t) =0

dv

T 0;S+n(aH —p(@) Vv a7n
Where o, = kd(a)

Then

av

=@V (18)
Solving (18) gives

V(t) = V(0)e #t >0 (19)

Since u(a) =0
From (19), we have
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dE

E - ng(t)s - GzE (20)
Where o, = p(a) + 06(a)

dE

T > —o,E (21)
Solving (21) gives

E(t) = E(0)e %t >0 (22)

Since 0, =0
From (6), we have

dM
I 04E — o3M (23)
Where o5 = p(a) +z(a) and 6, = (1 —j)0(a)
Then
M
E = —G3M (24)
Solving (24) gives
M(t) = M(0)e °3t >0 (25)
Since 03 >0
From (7)
dl
P 06E — o5l (26)
Where o, =jb(a) and o5 = p(a) + q(a) + a(a)
Then
dl
a > —o;l (27)
Solving (27) gives
I1(t) > 1(0)e %t >0 (28)

Since 05 =0
From (8), we have

dH

e q@I+z(a)M — o,H (29)

Where o6, = u(a) + n(a) + a(a)

Then

dH

L (30)
Solving (30) gives

H(t) > H(0)e °7t >0 (€3))

Since 0; =0

Hence, this completes the proof.

24.3 Invariant Region

Theorem 2.2: the region Q in theorem 3.1 is positively invariant and all solutions are
contained in Q € RS .

Proof: Let Q= (S,V,E,M,I,H) € RS be any solution of the system with non-negative initial
conditions. From (3.6.8), we have that in the absence of infection /(t) and H(t) equals zero.
Thus, we have

dp
i b(a) — u(a)P (32)
P=S+V (33)
Solving (32) using the method of integrating factor yields
b(a)
—u(a)t

P(t) =@+ce (33)

Using the initial condition P(0) = Py(a) and simplifying gives
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b(a) < b(a))
P(t) < —=+ | Py(a) — —= | e #@}t 34
Applying Birkoff and Rota’s theorem on differential inequality (Birkoff and Rota 1982), gives
0<P< % ast — oo

The total population approaches % . Therefore, the feasible solution set of the model enters

the region () . in this region, the model equations (2) - (7) are epidemiologically meaningful
and mathematically well posed.

Disease Free Equilibrium (DFE)
The disease-free equilibrium (DFE) point is a state where there is absence of COVID-19
infection in the population. Steady state solutions play an important role in studying the
qualitative properties of the solution when the explicit form of the solution is not known. The
disease-free equilibrium points £° = (5°(a),V°(a), E°(a), M°(a),1°(a), H%(a)) of model
system (2) - (7) is obtained by setting
s oV O0E oM 09l O0H

R T =
And in the absence of disease,
A=E=M=I=H=0 (35)
ds® 0
aa + (u(a) + kd)(a))S = b(a) (36)
Solving (36) gives
a a a
S%(a) = Be ™ Jo o) dx +f b(t)e fe co)dx go (37)
0
Where 0,(a) = p(a) + kd(a)
Also, from equation (3), we have
ave
—+u(@V° = k¢p(a)s® (38)

da
Solving (5) gives

a T

Vo(a) = J Gl(r)e_fra“(x) dx (Be_foa""(x) ax 3 f b(a)e_f;""(x) dx da) dt (39

0 0

Where o4 (a) = kéd(a)

Hence the DFE states £° = (S°,V°,E°% M°,1°, H?)

2.6 Endemic Equilibrium (EE).

Let (S*,V*,E*,M",I",H") represents any arbitrary endemic equilibrium point of the model
equations (2) - (7). this equilibrium satisfies the following equations:

ds*(a)
+ (0¢ + 0gA")S*(a) = b(a) (40)

da
dv*(a)

ia +u@V*(a) =0,5"(a) + n(@)H*(a) (41
dE*(a) i y

da +02E (a) = GSA S (a) (42)
dM*(a)

T + 03M*(a) = 0,4E*(a) (43)
dl*(a)

I + 051" (a) = o4E*(a) (44)
dH*(a)

9a +0,H"(a) = q(@)I"(a) +z@M*(a) (45)

Solving (40) using integrating factor method, gives
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$*(a) = e~ Jo (Gotosn)dx < f * p(r)e~ e ourost)ay g 4 B) (47)
0
Also, solving (41) - (45) gives

E*(a) = e o 020x < fo ’ 01" S* (7)eko o2 dt) (48)
M*(a) = e~ Jo o3 dx < fo ’ 0 E*(T)eho o34y dr) (49)
I*(a) = e~ Jo o5 < fo Bt (r)eks 5 dt) (50)
H*(a) = e~ o 07dx < fo a(q(T)I*(t) + Z(T)M*(T))efot o7 dy dr) (51)
V(@) = e~ Jo HIax < fo a(cls*(r) + n(‘r)H*(r))efoT neo dy dr) (52)

So, the endemic equilibrium state (S*,V*, E*, M*,I*, H") is given by equations (46) - (51)

Basic Reproduction Number (R)

Epidemiologically, R, is the number of secondary cases produced by one infectious
individual in an entirely susceptible population during the lifespan as infectious.
Mathematically R, is a reproduction number if it serves as threshold for the stability of the
disease-free equilibrium. (Li et al, 2020)

One of the fundamental questions of mathematical epidemiology is to find the reproduction
number, which determines whether an infectious disease spreads in a susceptible population
when the disease is introduced into the population. For an age-structured model, a possible
formula for R, can be derived by determining the condition for stability of the disease-free
equilibrium (Li & Brauer, 2008). Thus, whether a disease becomes persistent or dies out in a
population depends on the value of R

Following the approach by Wang & Zhang (2016) and Ashezua (2015).
Let

Ry = 05()S°(a) f; B@(I"(@) + M*(a)) da (53)

According to Dickmann et al (1990), Basic reproduction number R, of our COVID-19 model
is in the form (3.9.1) and this is explained as follows, Since the total or overall infectivity at
time t is the sum of the infectivity of each infected compartment, we define

Ro =R, + Ry (54)

The basic reproduction number R, can be seen as a weighted value of the basic reproduction
number due to asymptomatic infectious class and the basic reproduction number due to
symptomatic infectious class. R, is a mix of how much the disease spread from people
without symptoms and from people with symptoms. It gives us a big picture of how the
disease spreads in the entire population since it reflects the combined impact of both groups.
Where

A
%, = 05(@5°(@) [ F@I'(@ da (55)
0
is the number of secondary cases generated by individuals in the symptomatic infected class;
A
Ry = 0(@5°@) | B@M" () da (56)
0

is the number of secondary cases generated by individuals in the asymptomatic infected class
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and
a a a
§9(a) = Be~ s oot dx 4 f b(z)e~ ki o0t ax g (57)
0

is the number of susceptible individuals in the absence of COVID-19.
When R, <1, the number of infections decreases toward zero. The basic reproductive
number R, must exceed one for the disease to persist in the population.

Local Stability Analysis of the Disease-Free Equilibrium Point
Here, we investigate the local stability of the DFE state
£% = (5%a),V°(a), E®(a), M°(a),1°(a), H*(a)) = (5°(a),V°(a),0,0,0,0) (58)

Let x(a, t),y(a, t),u(a, t), h(a, t),w(a,t),(a, t) be the perturbation in £° respectively, defined
as follows;
S(a,t) = S5%a) + x(a,t)
V(a,t) =V°a) + y(a,t)
E(a,t) = u(a,t)
M(a,t) = h(a,t)
I(a,t) =w(a,t)
H(a,t) =r(a,t)

Linearizing equations (2.5.1) - (2.5.8) about £°, give the following equations
ox 0Ox

=2 52 = (@ = 6o(@x(a, 1) — 0g(a)S (@A) (59)
d d

g_i + % = o01(a)x(a,t) + n(a)r(a,t) — u(a)y(a,t) (60)
i + é = 05(a)S°(@A(t) — oz (a)u(a, 1) (61)
=+ 5 = 0:(@u(@,0) — 05(@h(a, 0 (62)
ow Jw _

& + da o6 (@ua,t) — o5(@w(a, t) (63)
a—’; + é K a(@w(a,t) + z(a)h(a,t) — o, (@)r(a,t) (64)
AH) = f B(@[w(a,t) +h(a, )] da (65)
2(0,6) = y(0,8) = u(0,8) = h(0,t) = w(0,t) = r(0,) = 0 (66)

To analyze the asymptotic behavior of £°, we look for exponential separable solutions of the
form:

x(a,t) = x(a)e?t, y(a, t) = y(a)e?t, u(a,t) = u(a)eq’t} 67)

h(a,t) = h(a)e®t, w(a,t) = w(a)e?,r(a,t) = r(a)e?
This is because exponential separable solutions of the form 3.10.10 captures the temporal
growth or decay rates of the perturbations. It simplifies the process of finding the eigenvalues
and determining the stability of the equilibrium in a system of PDEs. Hence, we consider the

following linear eigen-value problems:
dx(a)

— =+ (¢ + 00(@)x(@) = (b(@ — 0(@S° (@A) (68)
d

7D 1 (0 + u@)y(@) = 0, (@x(@ + n(a@)r(@) (69)
d

U9 1 (0 + o@)u@ = o (@S5 (@)2 (70)
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dh(a) _
da T (¢ + 03(@))h(a) = o4(a)u(a) (71)
d
W)+ (o + o5(@)w(a) = og(@u(a) (72)
dr(a) B
2+ (9 + 0,@)r(@ = a@w(@) + 2(@)h(@) 73)
A
A= | p@lw@ + h(@)da (74)
0
x(0,t) = y(aO, t) = u(0,t) = h(0,t) = w(0,t) =r(0,t) =0 (75)
u(a) = Af 08(1)50(1)6_‘/’(‘1_T)e_fra"Z(s) as dr (76)
0
h(a) :f cu(r)u(r)e“p(a_r)e_fra°3(s) as dr (77)
0
w(a) =j 06(T)u(r)e_‘p(a_r)e_fra"s(s) as dr (78)
0

Substituting (75) into (76) - (78) and changing the order of integration, we get
a T z a
h@ =1 [ @ ( [ oomsoae-siemelioxes d77> L
0 0

a a T a
2| oamSP e [ aye h O = o0 8 oy
0 n
a a a
h(a) — /lf Gg(T)SO(T)e_‘p(a_T)f 0'4(7])6_'[:] o,(s)ds e_fn o3(s) ds dndr  (79)
0

T
a

w(a) =/'lf

T T
66(™) ( [ oatmsomersieme e dn> eI 050524 g
0 0

a a - a
21| 0amsP e [ age h o = o0 8 oy
0

n
a

a a
w(a) = /'lj 08(‘[)50(1)6‘4’(‘1‘7).[ Gﬁ(n)e_frn 02(5)ds o~ Iy 05(5) ds dndt  (80)
0 T

Substituting (70) and (71) into (77), it follows that

A a a T a
=2 [ @ [ ou@so@ere [ eTho O (g,apeh 04z
0 0 T

+ o¢ (r))e_fﬂ o5(5) ds) dndtda (81)

By dividing both sides of (81) by 1 (1 # 0), we get the following characteristic equation about
the eigenvalue ¢

) a o . )
1= J ﬁ(a)J GS(T)SO(T)e_‘p(a_T)f g~ Iy o2(9)ds (04(77)e_f77 o3(s) ds
0 0

T

+ 0g (r])e_fﬂ o5(5) ds) dndtda (82)

denote the expression on the right-hand side of (79) by F(¢p), i.e.,
A a a T a
F(p) = f B(a) f Gg(T)SO(T)e—(p(a—T) f e_fﬂ o2(s)ds (64(77)€_f’7 o3(s)ds
0 0 T

+ 0g (r])e_fﬂ o5(s) ds) dndtda (83)

and define the basic reproductive number as R, = F(0), i.e.,
A a a T a
%o = [ 8@ [ 0s@s°@ [ ¢ HO (g,ape O
0 0 T
+ og (r])e_fﬂ o5(s) ds) dndtda (84)
Now, we establish the following results from equation (84)
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Theorem 2.3

The disease-free equilibrium of the system (2) - (9) is locally asymptotically stable, if Ry < 1
and unstable if Ry > 1.

Proof: Suppose we differentiate F(¢), we then have

A a a . a
F@) == @ [ @-00,@s°@e e [ e 70 (o, e
0 0 T

+ og (n)e_ffl 05() ds) dndrtda

it is observed that F is a decreasing function of ¢ as
F'(p) <0, ggl_r)go F(p) =0, ¢limwF(¢) = to0
we know that equation (84) has a unique negative real solution ¢*, if and only if F(0) < 1, or
Ry < 1. and a unique positive (zero) real solution if F(0) > 1 (F(0) =1),or Ry > 1 (R, = 1).
To show that ¢* is the dominant real part of the roots of F(¢), we let ¢ = x +iy (x,y €R,
where i is the imaginary unit and R is the set of real numbers) be an arbitrary complex
solution to equation (84). we note that

1=F(p) = [F(x +iy)| < F(x)
which indicates that Re¢p < ¢*, where Re denotes the real part. It follows that the disease-free
equilibrium is locally asymptotically stable if Ry < 1, and unstable if R, > 1.

Analytical Solution of the Model Using Laplace Transform
Our model equations are coupled. It cannot be solved analytically without breaking the
couplings. To decoupled the equations, we have to perturbed the equations. At this point, S,
Vo, Eo, My, Io, Hy are the varying compartments and Sy, Vo", Eo*, My", 1", Hy" are the Laplace
transform of the compartments respectively.
Let 0 < B(a) < 1 and let us define the following

S(a,t) = Sp(a,t) + B(a)S;(a,t) + -

V(a,t) = Vy(a,t) + B@)Vi(a,t) + -

E(a,t) = Ey(a,t) + B(@)E (a,t) + -+
M(a,t) = My(a,t) + B(@)M;(a,t) + -

I(a,t) =Ip(a,t) + B (a,t) + -

H(a,t) = Hy(a,t) + B(a)H (a,t) + -
Then, we have for

B(a)? (Order zero):

S, S,

o7t 35 T M@ + kd(@)]S, = b(a) (85)
v, av,

—o 5 @V = kd(@)S, + n(a)H, (86)
9E, OE,

=t T3t [u@) +6(a)]E; =0 (86)
aM, 9M, P

af])T + Ia—a + [n@@) +z(@)]M, = (1 —j)B(a)E, (87)
a_to + a—; + [u@@) + q(a) + a(a)]l, =j6(a)E, (88)
oH, 0OH,

—p 2+ @ +n(@) + a(@]Ho = @)l +2(a)Mo (89)

B(a)! (Order one):

0S; 0S A

a_tl + a_al + [u(@) + kd(@)]S; = —(1 = k)g(a) UO [Io + Mo] da] So (90
v, av,

—o o+ @Vi = kd(@s, +n(a)H, oD
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0F;

FTa a_ + [n(a) +8(a)]E; = (1 —K)g(a) U [lo + M ]da] So (92)
oM; oM

T a_ +[n(@) +z(@]IM; = (1 - )6(a)E, (93)
o, I

= T 72+ M@ + @ + a@]l = 8()E; (99)
oH; 0H,

St T oq T M@ + 1) +a(@]H; = q(@)l; +2z(2)M, (95)
P(a,t) = S(a,t) + V(a,t) + E(a,t) + M(a,t) + I(a,t) + H(a, t) (96)

For conveniency, let
oo = (@) +kd(a), oy =kd(@), o, = (@) +6@@) , o3 =p@) +z@) ,
os =@ +q(@ +a@ , o, =(1-))06() , 06 =j6(a) ,
o; = p@) +n@) +a@), og=(1-k)g()
Now, consider equation (96) in the form
B0 90, s =b(a) 97
at " da + 0¢50 = b(a (97)
Applying the Laplace transform to all terms in (2.11.14), we have

oS
Le{52} + Lo {52} + 0oLelSo) = Lelb(@))

That is

dSp(a, b
o(@5) +5Sp(a,s) — Sp(a,0) + 0¢Sp(a,s) = g

dSg(a, s) b(a)

+ (s +09)Sp(a,s) = ——+Sy(a) (98)

Solving equation ((98), we obtam

SB (a,s) = e—(s+0'o)aj (@ + SO( )) e(8+00)X qx 1 f(s)e—(s+0'0)a
0 S

— e—(s+co)a;<b(a) So(a)) e(s+0‘0)X| + f(s)e~(s*00)a
s+op\ s

b
So(a,s) = To ﬁ + So(a)) (1- e—(s+0‘o)a) + f(s)e~(s+o0)a
Oy
B
SO (0' S) = f(S) = ;
Therefore,

RN

b(a) 1 —(s+0p)a
G“@‘7;>Q+%e( ?)

So,
b b b(a
So(a,t) =L '{Ss(a,8)} = @, (So(a) - ﬁ) f+ <B - Q) ~o0%u(t)
0o 0o (o
(So(a) _ %) ug (e %% —oo(t—a) (99)
0

Where,
u,(t) ={(1)' iiz ,fora=0
Unit step function (delayed)
Consider equation (99) in the form:

OEo L OEo L 5By =0 (100)

at " aa 1O T
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Applying the Laplace transform to all terms in (2.11.17), we have
dEg(a,s)
4 + (s + 03)Eq(a,s) = Eg(a) (101)

Solving equation (100), we obtain

a
Eg(a,s) = e‘(5+02)af Eo(a) e(5+02)X 4y + f(s)e—(s+02)a
0

— g~ (stoz)a Eo(a) e(s+02)xlzl + f(s)e—(s+02)a

s+ o,
Ei(a, )_ Eo(a) ( e—(s+02)a) + f(s)e—(s+02)a
+ 0,
Eg(0,s) = f(s) =0
Therefore,
E(a,s) = 0(a)( e~ (st02)a) (102)
+ 0,
So,
Eo(a,t) = L H{Eg(a,5)} = Eo(a)(e7%2" — e™ 2%, (t)e 2" 9))
Eo(a t) = Eg(a)e™%2¢(1 — u,y(0) (103)
Also, consider equation (103) in the form
oM, 0JM,
E‘l‘ a + G3MO —_ 64E0(a t)
That is,
oM, oM
—o et 05Mo = 04Eg(a)e ™2 (1~ uy (1)) (104)
Applying the Laplace transform to all terms in (2.11.2), we have
dMEk’(a’s)+(+ YM;(a,s) = My(a) + 6,Eq(a) ! e’ 105
da 5T 03)M0ld5) = Mold) T 04E0ld s+o, s(s+o0y) (105)

Solving equation (105), we obtain

a
Mj(a,s) = e—(s+03)af o (5+03)x (Mo(a) + 04Eq(a) < >> dx + f(s)e~(s+os)a
0

a 1 0,Eq(a
_ e—(s+c3)aj ((Mo(a) + 04E(a) (S — )) e(st0o3)x _ L()e%x) dx + f(s)e—(5+03)a
0 2

s(s+0,)
1 04Eq(a)
M E ( ) (stoz)x _ 4 0V  o3x f —(s+03)a
< o(@) + 04Ep(a) sto, >e 03s(s+02)e 0 + f(s)e

1 1 0,4Eq(a)
_ p—(s+03)a _ 4700 (pmas _ p—(st+03)a
3 (MO(a) T 04Eo(a) (s + 02)> (1 ¢ ) G3S(S +0,) ( )

s+o
+ f(s)e~(5+o2)a

e—XS

s+o0, s(s+0y)

a

— e—(s+0'3)a <

S+ 03

M*(a S) — MO(a) 0-4,E0(a) _ Mo(a) e—(s+03)a _ 0'4E0(a) —(S+0'3)a
O T st0; (s+o)(s+03) s+ (s +0)(s + 03)
_ 04Eo(a) -as 04Eo(a) —(s+o3)a —(s+o3)a
e + f(s)e
035(s + 03) 035(s + 03)
Mg(0,s) =f(s) =0
Therefore,
My (a o.Eqp(a 1 1 e—as
M;(a,s) = o(a) 4 0 o(a) ( _ )—Mo(a)e"’Sa
s+o0;3 (03—03)\s+0, s+o03 s+ 03

04E(a) —oya ( 1 1 )e‘“s B 04Eq(a) (1 1 )e‘“s
(03—02) s+0, s+o0; 030, \s s+o0,
N 04E(a) =030 (1 1 ) p-as

0305 s s+o,

Atanyi Y. E., DUJOPAS 11 (1a): 1-32, 2025 13



Age-Structured Modeling of COVID-19 Transmission and Vaccine Response

So,
Mo(a,t) = L '{M5(a,s)}
Eg(a
= M,(a)e %3t + 64—0()( —02t _ g=03t) _ Mo(a)e"’3aua(t)e“’3(t‘a)
sl Eo(a)
O4kp(a _ _ _ _ _ O4kp(a _ _
_me o3aua(t)(e ox(t-a) _ p—os(t a)) _‘;—oua(t)(l_e o, (t a))
Eo(a
+ G‘*—O()e—cgaua(t)(l - e—Gz(t—a)) (106)
0302
Also, consider equation (106) in the form:
dl, 0l
aa —+—— It + 0-510 = G6E0(a, t)
That is,
20+ 22+ 6510 = 06Eo(a)e (1 — uy (1)) (107)
Applymg the Laplace transform to all terms in (107), we have
UlI‘*S(a’S)+( +05)I5(a,s) = Iy(a) + 04E¢ () - 108
da 5T 050018 5) = Told) T O6Bold s+o0; s(s+0y) (108)

Solving equation (108), we obtained

a
Io(a,s) = e_(s“’S)aj g(stos)x (Io(a) +06Eq(a) (

0

= ¢~ (s+05)a fa I,(a) + o4E (a)( 1 ) e(stos)x _ L"(a)ecsx dx + f(s)e~(5*os)a
0 0 6=0 s+ o0, s(s+0,)

e—XS

s+02_s(s+02)

)) dx + f(s)e~(stos)a

! 1 —(s+05)a Eo(a) —as _ p—(stos)a
= 5(10(3)+0'6E0(a)(s+o_2)>(1—e (s+os) )_ 96%0ld ( ( 5))

s+o 055(s + 03)
+ f(s)e~(5t09s)a
That is,
I*(a S) _ IO(a) G6E0(a) _ IO(a) e_(5+0'5)a _ 0-6E0(a) e—(5+0'5)a
O Tst+os (s+oy))(s+os) s+os (s +0,)(s + 09)
_ L()(a) —as L()(a)e_(s"'o-s)a + f(s)e—(s+0'5)a
05s(s + 0y) 05s(s +0y)
15(0,s) = f(s) =0
Therefore,

5 (as) = Ih(a) N o6Eo(a) ( 11 )—Io(a)e“’sa(e_aS)

s+os (05—0y)\s+0, s+og s+ o5

3 o6Ep(a) e—csa< 1 1 )e_as_céEO(a) (%_ 1 )e—as

(05 —03) s+0, s+o0;5 050, s+o0,
+ 06Eo () e~ 0sa (1 _ 1 ) e—as
050, s s+o0,
So,
Ih(at) =L {I5(a 8)}
ogEp(a
— Io(a)e—cst + ( 6 0( ))( —oyt __ e—dst) _ Io(a)e—csaua(t)e—cs(t—a)
05 — 03
o6E(a) . oo (f— o (t— o6Eo(a) oo (t—
—_——¢ Sau (t) e GZ(t a) —e 0-S(t a) —_—u (t) 1 —e Gz(t a)
(05 — 02) “ ( ) 050, ( )
oeEp(a
+ L()e_o-saua(t)(l J— e_GZ(t_a)) (109)
050>
Also, consider equation (109) in the form:
0H, 0JH,
Fa +— ot + o,Hy = q(a)ly + z(a)M, (110)

Applying the Laplace transform to all terms in (110), we have

Atanyi Y. E., DUJOPAS 11 (1a): 1-32, 2025 14



Age-Structured Modeling of COVID-19 Transmission and Vaccine Response

dHg(a,s) X
———+ (s + 07)Hp(a,s)
da
= Ho(a)
+q(a ) (a) o6Eo(a) ( 1 _ 1 )_ lh(a) o—(s+05)a
05—02) s+o0, s+o05/ s+o;g
3 G6E0(a) ( 1 1 )e_(s+cs)a_06E0(a) (l_ 1
(05 —03)\s+0, s+os 050, \s s+o0,

n 0-6E0(a) (1 1 )e—(s+05)a

050, S S + (o))

)e—as

+Z( ) Mo(a) 04E0(a) ( 1 _ 1 )_ MO(a) e_(s+g3)a
3_02) S+O-2 S+O-3 S+O-3
3 G4E0(a) ( 1 B 1 )e_(s+63)a 3 04E(a) (1_ 1 )e‘as
(0-3 _02) S+02 S+03 030, S S+02
+ 04Fo(a) (l _ )e‘(5+°3)a] (111)
030, \S S+ o0,
Solving equation (111), we obtained
a
H;(a, S) — e—(s+c7)af e(s+c7)x [Ho(a)
0
+ ( ) IO(a) GGEO(a) ( 1 _ 1 ) _ IO(a) e_(s+65)x
65—02) s+o, s+os5/ s+og
— GGEO(a) ( r 1 )e—(S+65)x — M(E — ;> e—SX
(05 —0y)\s+0, s+os 050, \s s+o0,

n O-GEO(a) (1_ 1 )e—(S+65)X]
S

050, S +0'2

1

+2(a ) Mo(a) 0,Eq(a) ( 1 _ 1 ) _ My (a) o—(s+03)x
03—02) s+0, s+o03/ s+o03
_ 04E0(3) ( 1 _ 1 )e'(s+°3)x _ 0,Eq(a) (1_
(03 —03)\s+0, s+o0; 0305 \S

+ 0'4,E0(a) (1 _ 1 )e—(s+63)x]
030, \s s+o0,
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_ ,—(s+0y)a q(@)lo() _ ,—(s+0y)a
(1 € )+(s+05)(s+07)(1 ¢ )
q(a)ogEq(a) 1 1 —(s+07)a
(o5 —03,) ((s +0,)(s+ 05) B (s+o5)(s+ 07)) (1 —¢ )
_ q(@)Io(a) (e—(s+0'5)a _ e—(s+c7)a)
(?7)— %5) ((S)+ 105) .
_ q1a)0sEold __ -sa _ ,—(s+07)a
?2)05(]27 ( )(s ) S+ 012> (e ¢ )
qla)ogkpla - —(s+og)a _ ,—(s+oy)a
0205((317\/[—(05) (s s+ 02> (e ¢ )
z{a)Mola _ ,—(s+0,)a
G+ o)(s 07 1 ‘ ) 1
z(a)o,Eq(a B _ _(stopa
(62— 0,) ((s To)G+0,) GHonGt 07)) (1-e )
z(2)Mo(2) (e—(s+a3)a _ e—(s+67)a)
(07 —03)(s + 03)
0-72(3(;?(}4];0 (38-3 1 1 —(s+0o3)a —(s+07)a
- (<(57)— %3)((%3;02) <15+02 _5+03> (e —¢ )
2{a)04bp(a (__ )( —sa __ —(s+c7)a)
+ e e
0,030 s s+4o0,
z(a)a4Eo () 1_ 1 —(s+03)a _ ,—(s+0;)a —(s+0,)a
0,03(0; — 03) (s s+ 02> (e ¢ ) T f(s)e

Ho(a)
s+ o5

Ho(a,s) =

Hy(0,s) = f(s) =0
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Ho(a,s) =

Ho@ oo @@ 11\
s+07(1_e ¢ )+0'7—0'5 ((s+05) (s+c7))(1 ¢ e
q(a)ogEq(a) [ 1 ( 11 )
(05 —03) llo;—0)\(s+0;) (s+o07)
_ 1 1 _ 1 — g~07a p-as
(6, — 05) ((s Tos) (s+ 07))] (1=e™%e™)
q@)lo(a) (953 — g=073)gas
(07 — 05)(s + 03)
_ q(a)ogEq(a) (e=558 — ¢=072) ( 1 _ 1 ) oas
(05 — 03)(07 — 05) (s+o0;) (s+os)
_ q(a)ogE(a) (1 — e~572) (1 1 )e_as

620507

s s+o,
q(a)ogEo(a) —6sa _ ,—0qa 1_ 1 _as
+ ch)sl\g[cz ; 65)1(6 1e ) (s s+ 02> ¢
z{a)Mpa —-0,a ,—as
+(07—03)(s+03_s+07)(1_e e
N z(a)o4Eq(a) [ 1 ( 1 3 1 )
(031_ 02) (({7 —03) (5i+ 02) (s+o7)
(L 1 ) eone
(07 —03)\(s+03) (s+o07)
z(2)Mo (a) (=933 — g=073)gas
(07 —03)(s + 03)
_ z(a)o4E(a) (e=933 — =072 ( _
(?7)— (]733)(((;3 —03) . . sto; s+to3
z(a)o4Eq(a —oyay (L “as
B 0,0307 (1-e )(s s+02>e
z(a)o,Eq(a) —0sa _ ,—0ya 1_ 1 -as
+0203(07—03) (e ¢ )(s s+62)e

1 1
)e—as

So,
HO(a' t) = Lzl{HS(a' S)}
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= Ho(a)(e "' — e‘°7aua(t)e_°7(t_a))

a@@; o o o
+ﬁ(e Ost _ =07t _ o °7aua(t)(e os(t—a) _ g—oy(t a)))
q(a)ocEo(a)[ 1 )

(e—ozt _ e—c7t) _

(e—cst — e o7t

)

(050—302) (07 — 03) (07 —05)
e_ 7
e (Oe 0 — o0
(07_07(;2)
o (e — )
7 — Os
?cfa)loc(;a§ (€775 — e~y (t)e o5
7 — Os
. (G q(aczo-)é(];::(a)o_ )(e—osa _ e—o'7a)ua(t)(e—02(t—a) _ e—GS(t—a))
5 — 02)(07 — 05
20507
E
i L o cmi
7
Z(E)_a)MO(fa)) ( 03t _ p=07t _ e‘67aua(t)(e—63(t—a) — e‘07(t—a)))
7 — 03
z(a)o,Eq(a) [ 1 (e=02t — g=07t) — ; (e~03t — =07t
(030—302) (07 —03) (07 — 03)
e_ 7
_ — ua(t)(e—cz(t—a) _ 6—07(t—a))
(02_07(;2)
o )ua(t)(e_"3(t_“) - 6_67“_‘1))]
7 ~ 03
Z((o_a)M—(;(a)) (€779 = e~y (H)e o3~
— 03
— © Z(aj(j;(io (a)c ) (e7%32 — e‘°7a)ua(t)(e‘02(t—a) — e—cs(t—a))
7 — 03)(03 — 03
0B ey (1 - et
20307
GZS)&4EO(Z))( ~038 _ =07y, (1) (1 — e~02(-) (112)
203(07 — 03
Also, consider equation (112) in the form:
oVy, 0dV,
FTaR n@Vy, = 0,S, + n(a)H, (113)

Applying the Laplace transform to all the terms in (113), we have
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dvy(a,s)

i + (s + u(a))VO (a,s)

V(@) 4 o b(a) ( ) <So(a) _ @) (S 4—100) + (B béj)) (s —(S+0'o)a)

b(@) 1 —(s+0p)a
<S°<a> ‘c—0> (s e )]

0@ e A@L@ 11 e
+ ( )[ (1 ( ) )+ 7 — Og ((S"‘O-s) (S+07)>(1 ¢ ( ) )
(a)GeEo(a) ( 1 _ 1 )
(05 —0;) L(o; — 02) (s+o0;) (s+o07)

R L
@ T
50 ik RN

0,050, \S S+o0,
Yoy
+Z(3)Mo(3)( 1 S+G7)(1 e~ (5+07)a)

(07 —03) \s+ 03
N z(a)04E0(a)[ 1 ( 11 )
(03 —03) Loy —0x)\(s+03) (s+o07)

1 ( 1 3 1 )](1_6_(s+o7)a)]

" (0;—03)\(s+03) (s+o0,)
" (o Z_(?j)dgs( i) oy e T — i)
e e
R e
e e e [Ce A o

Solving equation (114) we obtained

Atanyi Y. E., DUJOPAS 11 (1a): 1-32, 2025 19



Age-Structured Modeling of COVID-19 Transmission and Vaccine Response

Vi(a,s) = e—(S+u(a))af e (s+u(@)x [V (@) + 0, (0) (S) <So( )_@>( 1 )

0 0 S+ op
b(a) —(s+00)x b(a) 1 —(s+0o)x
+<B GO>(5 (o) - (So(a)‘c—o)(s+coe( )>]
@ (1 1 v
+ ()[s+07 (s+05) (s+07)>(1_e( ))
q(a)osEo(a) ( 11 )
(051_ 03) (C157 —03) (i +0y) (s+o7)
_ _ _ ,—(s+o7)x
(0, —05) ((s +o0s) (s+ 07))] (1 ¢ )

Q(a)lo(a) e~ (sto5)x _ 5—(sto7)x
Tl oG o & et

__ q(@aeEy(a) 1 —(s+05)x _ ,—(s+0,)x
(05 — 02)(07 — os)( to) G+ os)) (e ) )
q(a)GGEO(a) 1 —(s+03)x —(sto7)x
e —oz)(o7—os(+ ) e et
Q(a)ceEo(a) ( 1 ) —(s+05)x _ —(S+67)X)
(((55);/[0(2))(07 —105) to
z(a)Mpla —(s+o07)x
+(07—03)(s+03 s+0)(1_e( ))
N z(a)o,Eq(a) [ 1 ( 1 3 1 )
(03 —03) Loy —0x)\(s+03) (s+o07)

1 1 1
_ _ _ ,—(s+o,)x
(07, —03) ((s +03) (s+ 07))] (1 ¢ )]

_ Z(a)Mo(a) (e_(s.mz)x _ e—(s+c7)x)
(07, —03)(s +03)

_ z(a)o,4Eo(a) ( 11 ) (e—(s+63)x — e—(S+07)X)
(07 —03)(03—03)\s+0, s+o03

3 z(a)o,Eq(a) ( 1 )(e‘(s+°2)x _ e—(s+0'7)X)
(07 —03)(03 — 03) \s + 0,
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* — ; @ 1 _ @ 1 _ p—(stu(@))a
Via,9) = s Val@ +01( = (S>+<So(a) = )(S+GO)>(1 e=(s+u@)a)
01 _ b(a) l —(stop)a _ ,—(s+u(a))a

+(ll(a)—00)<B % )s(e e ITHR)

01 _b@)_ 1 ~(stop)a
(@) —og) <S°(a) % ) Grog

_ p—(s+p(a))a n(a)Ho(a) 1 _ p—(s+u(@)a
emsTHWR) (sto7) \(s+p@) (1 - erlomut)

1
_ m (e—(s+07)a _ e—(s+u(a))a)>

+n(a)q(a)lo(a)< 1 1 )( ! (1 — e~(s+u(@)a)

(6, —05) \s+o05 s+o0y (s + n@)

_ m (e—(s+67)a _ e—(s+u(a))a)>
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Table 2.2: Values for Variables used for the Graphical Presentation

Variables Values per year Source

S (a’ 0) 2000 Assumed
V (a’ 0) 1000 Assumed
E (a, 0) 1800 Assumed
M (a_ 0) 900 Assumed
I (a’ 0) 600 Assumed
H (a’ O) 100 Assumed
P ( a, 0) 6400 Estimated

Table 2.3: Values for Parameters used for the Graphical Presentation

Parameters Value Description Unit Source
ﬂ(a) 0.0404 Transmission rate /Day Wang et al. (2021)
b(a) 0.075 Recruitment rate for all /Day Assumed
ages
a [0, 80] Age of individual at time /Year Assumed
t
a(a) 0.01 Force of mortality rate /Day Assumed
g (a) 0.033 Contact ratio /Day Assumed
¢(a) 0.85 Vaccinated rate for /Year Signorelli and Odone (2020)
susceptible individuals
/j(a) 0.018 Natural death rate /Year Assumed
9(3.) 0.1923 Exit rate from latent class /Year Wang et al. (2021)
n(a) 0.85 Vaccinated rate for /Year Signorelli and Odone (2020)
hospitalized individuals
q(a) 0.06 Hospitalized rate of /Day Wang et al. (2021)
symptomatic individuals
z(a) 0.04 Hospitalized rate of /Day Wang et al. (2021)
asymptomatic
individuals
RESULTS AND DISCUSSION

Simulation Graphs
Graphical representations showing the variations in human population in relation to age a
and time t are provided in Figures below;
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Figure 1: Plot of vaccinated population versus age a

Figure 1 Here, we found that an increase in vaccination rate ¢(a), lead to corresponding
increase in vaccinated population across different age group. Figure 1 also indicates that up
to 85% of world populace between the age of 0 to 80 accepted vaccination campaign despite
the propaganda on the COVID-19 vaccines by both some health workers and the society.
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Figure 2: Plot of hospitalized population versus time t

Figure 2 showed that there is a decrease in the hospitalized population as vaccination rate
n(a) of recovered individuals increases over time. This occurs because as hospitalized people

received vaccines after treatment, they gain immunity. Hence, reduce the population of the
susceptible class
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Figure 3: Plot of asymptomatic infectious population versus time t

Figure 3 showed that there is a decrease in the asymptomatic infectious population over time
as asymptomatic hospitalized rate z(a) increases. This occurs because asymptomatic infected
individuals who are detected are hospitalized, treated and vaccinated after recovery.

Figure 4: Plot of asymptomatic infectious population versus age a and time t

Figure 2.4 showed that there is a decrease in the asymptomatic infectious class over time and
across all ages as the rate of asymptomatic hospitalized increases. This occurs because
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asymptomatic infected individuals who are detected are hospitalized, treated as a result of
medical attention are vaccinated and move to vaccination class, hence increasing the
vaccinated population and reducing the susceptible class which in turns lead to the decrease
in the number of individuals who become exposed to the disease. Figure 2.4 also revealed that
this rate of movement of asymptomatic infectious individuals into the hospitalized class for
treatment is not influenced by age. This means that asymptomatic infectious individuals are
detected and treated equally across all age groups.
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Figure 5: Plot of symptomatic infectious population versus time t

Figure 5 Here, we found that there is a decrease in the symptomatic infectious population as
symptomatic hospitalized rate q(a) increases. This occurs because symptomatic infectious
individuals are hospitalized, treated as a result of medical attention are vaccinated.

I(a1) |

Figure 6: Plot of symptomatic infectious population versus age a and time t
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Figure 2.6 showed that there is a decrease in the symptomatic infectious class over time and
across all ages as symptomatic hospitalized rate increases. This occurs because symptomatic
individuals are hospitalized, treated, get vaccinated and move to vaccination class. Figure.6
also revealed that the rate of hospitalization of symptomatic infectious individuals has
nothing to do with age of people.

160

0 20 40 60 20 100

Figure 7: Plot of asymptomatic infectious population versus time t

o(a) = 0.25 — — o(a) =0.50 * * * * ¢(a) = 0.85|

Figure 7 showed that there is a decrease in the asymptomatic infectious class as vaccination
rate ¢(a) of susceptible individuals increases. This suggests that vaccinating more people
helps reduce the number of asymptomatic carriers.

Figure 8: Plot of asymptomatic infectious population versus age a and time t

Atanyi Y. E., DUJOPAS 11 (1a): 1-32, 2025 29



Age-Structured Modeling of COVID-19 Transmission and Vaccine Response

Figure8 showed that over time, there is a decrease in the asymptomatic infectious population
across all ages as the vaccination rate of susceptible individuals increases. This occurs as a
result of decrease in the number of both the susceptible and exposed population as
vaccination rate of susceptible individuals increases.

B0
T0
li]

S0
Iia, 1
(a. 1) :

Figure 9: Plot of symptomatic infectious population versus time t
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Figure 9 showed that there is a decrease in the symptomatic infectious class as vaccination
rate ¢p(a) of susceptible individuals increases.

Figure 10: Plot of symptomatic infectious population versus age a and time t

Figure 10 showed that there is a decrease in the symptomatic infectious population over time
and across all ages as the vaccination rate of susceptible individuals increases. This occurs as
a result of decrease in the number of both the susceptible and exposed population as
vaccination rate of susceptible individuals increases.

From figure 7 - 10, the infectious compartments decrease towards 0 as the vaccination rate
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increases to 85%. This indicates that vaccination is effective in reducing the number of
infectious classes due to fewer people being susceptible and exposed to the disease as more
get vaccinated. Furthermore, figure 2-10 suggest that medical interventions, such as
hospitalization and vaccination, effectively reduce the number of infectious compartments.
Simulations results obtained showed that the nationwide eradication of COVID-19 can be
done if at least 85% of the population is vaccinated.

Conclusion

In this research, developed and analyzed an age-structured SVEMIH epidemic model for
COVID-19 transmission dynamics, incorporating vaccinated and hospitalized compartments.
Determined the steady states of the model and established local stability conditions for the
disease-free equilibrium (DFE). Also derived the basic reproduction number and proved that
the DFE is locally asymptotically stable under specific conditions.

Numerical simulations, performed using the Laplace transform method, illustrated how
different parameters affect disease dynamics. Our results show that COVID-19 can be
controlled through vaccination and hospitalization strategies. Both measures significantly
reduce the spread of the disease, with perfect vaccination and treatment not only lowering
the peak of outbreaks but also shortening the disease duration, as demonstrated in figures 10.
Additionally, figure 2 emphasizes the role of boosting immunity post-treatment, showing that
increased vaccination among recovered individuals reduces the hospitalized population.
Overall, this study concludes that COVID-19 vaccines, along with hospitalization and
treatment of infected individuals, are crucial for effectively controlling and eradicating the
disease within a population.
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