
https://dx.doi.org/10.4314/dujopas.v11i1a.31
ISSN (Print): 2476-8316

ISSN (Online): 2635-3490
Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 11 No. 1a March 2025

*Author for Correspondence

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 338

Identifying Financial Fraud Transactions
Using Decision Tree Classifier Algorithm

Ayoade Akeem Owoade

Department of Computer Science

Tai Solarin University of Education,
Ijagun,

Ijebu Ode,
Nigeria.

Email: owoadeaa@tasued.edu.ng

Abstract

Fraud in financial transactions is a critical issue for businesses, governments, and consumers, causing
substantial financial losses and eroding trust in financial systems. Rule-based systems and other
conventional fraud detection techniques have trouble identifying complex fraudulent activity. This
research applies various machine learning (ML) algorithms to detect fraud in financial transactions.
The research compares the performance of supervised ML techniques, such as random forest,
logistic regression, and decision tree classifier, using a publicly available Kaggle dataset. It
evaluates the models based on accuracy, precision, recall, and F1 scores. To address data imbalance in
both undersampling and oversampling techniques, with a focus on oversampling techniques such as
Synthetic Minority Over-Sampling Method (SMOTE) to enhance model performance. Results show
that the Decision Tree Classifier, when used with oversampling, outperforms other models, achieving a
99% accuracy in detecting fraudulent transactions. This highlights the effectiveness of using ensemble
and hybrid models in combination with oversampling to enhance the identification of fraud. The
findings emphasize the importance of using advanced ML techniques and robust data preprocessing for
detection of financial fraud.
.
Keywords: Fraud Detection, Machine learning, Financial Transaction, Sampling,
Oversampling

INTRODUCTION
In the ever-evolving financial world, fraudulent activities pose significant risks to businesses,
governments, and individuals. These illegal practices not only result in huge financial losses
but also erode confidence in the economy and threaten its stability. As digital transactions
continue to proliferate, there is a need to develop effective and accurate methods to detect
fraudulent activity to protect the integrity of financial systems. The advent of machine
learning (ML) techniques has revolutionized fraud detection by providing sophisticated tools
to identify and analyze complex patterns in financial transactions ML algorithms have
demonstrated the skills that they are surprisingly demonstrated in modifying the evolving
fraudulent methods. It is to examine its effectiveness in detecting fraud in financial
transactions. Considering the pressing demand for effective and efficient fraud detection
systems, the purpose of this study is to create an artificial intelligence-based approach to
detect fraudulent in financial transactions by exploring advanced ML techniques possible

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 339

hybrid methods and ways to overcome the semantic problems associated with data
imbalance. This research minimizes fraud detection to reduce economic loss to rebuilding
consumer confidence in financial services.

In recent years, financial fraud has become an increasingly prevalent issue, posing significant
challenges to financial services, government and private customers. With the rapid
development of digital technology and online transactions, fraudulent activity has continued
to intensify, negatively affecting the economy and undermining consumers’ trust in the
economy (Chou et al., 2020). Conventional techniques for detecting fraud like rule-based
systems and manual inspections, frequently do not detect complex and well-developed
fraudulent behaviors (Ngai et al., 2011). Machine learning (ML) models have shown
promising results in addressing the limitations of traditional fraud detection methods through
complex pattern recognition, modification of evolving fraud techniques, and large amounts
of data implementation control (Kou et al., 2021). However, in fraud-identification, ML is a
suitable technique used. Traditionally, rule-based measures have been used to combat fraud
in the financial sector, however, this system is inherently rigid and struggle to keep up with
the active role of deception. Fraudulent individuals are always coming up with new ways to
avoid detection, constructing conventional rule-based systems inadequate. In this context,
machine learning has emerged as a beacon of hope due to its ability to identify complex
patterns in large datasets. ML. This study seeks to look into the potential of ML methods in
financial deception and fraud detection.

Several empirical research has shown the effectiveness of ML techniques in detecting
fraudulent financial transactions (Sánchez et al. 2020) employed a hybrid approach
integrating supervised and unsupervised learning to detect credit card fraud, achieving an F1
score of 0.991. Fu et al. 2020 suggested a framework based on deep learning, FD-GAN for
financial fraud detection and outperformed traditional methods. In another study, Pumsirirat
and Nukoolkit (2020) developed a real-time model for detecting credit card fraud using a one-
class OC-SVM, or support vector machine and attained an accuracy of 99.75%.

Tsai et al. 2018 developed an ensemble model integrating Artificial neural networks, decision
trees, and logistic regression, achieving better performance than individual models. The
following review highlights key empirical findings from recent studies applying ML methods
to address fraud detection challenges.

Sánchez et al. 2021 proposed a hybrid approach integrating supervised and unsupervised
learning for credit card fraud detection, achieving an F1 score of 0.991. Fu et al. 2020
introduced FD-GAN, a deep learning-based framework for financial fraud detection,
outperforming traditional ML methods.

In order to detect fraudulent financial transactions Tsai et al., 2018 created an ensemble model
that combined Artificial neural networks, logistic regression, and decision trees
outperforming individual models. Credit card fraud and other forms of cybercrime are
becoming more and more of a worry since they may cause serious harm to companies of all
kinds. The main aim of fraud is the actual card transaction; in recent instances, stolen data has
been exploited. Automated fraud detection techniques are essential for safeguarding users'
online safety and thwarting thieves. For many applications, machine learning has emerged as
the industry standard; nonetheless, the quality of training data determines how well it
performs (Strelcenia et al., 2023).

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 340

Financial fraud is the illegal and fraudulent use of money to gain financial benefits in various
sectors, including insurance, banking, taxation, and corporate sectors. Despite efforts to
reduce fraud, it continues to negatively impact the economy and society. Conventional
techniques, such as manual detection, are expensive, time-consuming, and inaccurate.
Machine learning and data mining are being used to identify fraudulent activity in the
financial sector because to advancements in artificial intelligence (AI). The most often used
techniques for identifying financial fraud are classification approaches. However, recent
increases in fraud activities in health sectors have led to a need for more comprehensive
approaches (Ali et al 2022).

Several important ideas need to be taken into account in order to use machine learning
techniques to identify financial transaction fraud. To improve model performance, data
preprocessing is essential, including feature selection and data balancing (Eryu, 2024). ML
models' prediction capabilities can be further enhanced by ensemble learning and model
stacking strategies (Kou et al., 2021).

METHODOLOGY
By analyzing large and varied datasets, the primary objective of this study is to determine and
assess which machine learning methods are most effective in detecting fraudulent activity.
Data gathering, data preprocessing, feature and model selection, training, validation, and
assessment are some of the phases that make up this study. The target population for this
study is the historical financial transaction on credit card, the source of the data set is
kaggle.com, which is an online opensource platform to get dataset to train machine learning
models. The sampling procedure involve randomly selecting a subset of the credit card
transactions from the Kaggle dataset, with the goal of obtaining a sample size of
approximately 10,000 or more transactions. A training set and a test set is created from the
sample, with roughly 8,000 transactions (or 80% of the chosen data set) in the training set and
2,000 transactions (20% of the chosen data set) in the test set.

Method of data collection
The data for this work is obtained from the Kaggle dataset, which contains historical credit
card transactions labeled as either fraudulent or legitimate. All data is sourced from publicly
available datasets, and strict conformity to ethical principles and data laws pertaining to
confidentiality of data is ensured throughout the data collection process.

 Procedure for data analysis
The Logistic Regression technique, a method for supervised machine learning suitable for
classification applications is used to examine the data. The following steps are included in the
data analysis:

i. Importing necessary libraries
ii. Data Preprocessing: Raw data is subjected to a series of cleaning, transformation, and

normalization procedures to ensure data quality and consistency. Missing values is
imputed, and outliers is identified and handled accordingly.

iii. Model Selection: A range of machine learning algorithms, specifically logistic
regression, is considered for the development of predictive models. The choice of
algorithm is guided by its performance in similar applications and its suitability for
processing the size and complexity of the dataset.

iv. Model Training and Validation: To evaluate the chosen model's performance, a subset
of the dataset is used for training, and another subset is used for validation.

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 341

Techniques for cross-validation are used to guarantee stable model performance and
reduce the possibility of overfitting.

v. Model Evaluation: Accuracy is the metric used to assess the produced model's
performance

The Python programming language and well-known machine learning packages, including
Scikit-learn, sklearn, pandas, numpy, and others, are used to analyze the data. Kaggle.com, a
well-known online venue for data science competitions and collaboration provided the
dataset used in this study. This dataset was selected because it is publicly available and
pertinent to the study's goals.

Programming selection with python
Python is a high-level, object-oriented, interpreted programming language with dynamic
semantics. Its high-level built-in data structures, dynamic typing, and dynamic binding make
it very attractive for creating applications quickly and for use as a scripting or glue language
to connect pre-existing components. Readability is given priority in Python's simple syntax,
which reduces the cost of software maintenance. Python's support for modules and packages
encourages software modularity and code reuse. The Python interpreter and the extensive
standard library are freely distributable and accessible in source or binary form for all major
systems. The following applications were also used in solving the problem:

Google collaboratory
Google Collaboratory is a free cloud-based platform that lets users utilize Jupyter notebooks
to write, run, and share Python code. Without requiring complicated setup and preparation,
Colab offers a collaborative environment for data scientists, researchers, and developers to
work on machine learning and data science projects.

Jupyter notebook
A server-client application called the Jupyter Notebook App allows notepad entries to be
changed and accessed from a web browser. The Jupyter Notebook App can be deployed on a
remote server and accessible online, as this paper demonstrates, or it can be used locally
without requiring web connectivity. In addition to displaying, editing, and executing note pad
archives, the Jupyter Notebook App has a "Dashboard" (Notebook Dashboard), a "control
board" that shows nearby records and lets you read note pad reports or close down their
sections.

Numpy
NumPy is much the same as SciPy, Scikit-Learn, Pandas, and so forth, one of the bundles that
you cannot miss when you are learning information science, principally in light of the fact
that this library gives you a cluster information structure that holds a few advantages over
Python records, for example, being increasingly reduced, quicker access in perusing and
composing things, being progressively advantageous and increasingly productive. NumPy
exhibits are somewhat similar to Python records, yet at the same time particularly unique in
the meantime.

Pandas
A server-client application called the Jupyter Notebook App allows notepad entries to be
changed and accessed from a web browser. The Jupyter Notebook App can be deployed on a
remote server and accessible online, as this paper demonstrates, or it can be used locally
without requiring web connectivity. In addition to displaying, editing, and executing note pad
archives, the Jupyter Notebook App has a "Dashboard" (Notebook Dashboard), a "control

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 342

board" that shows nearby records and lets you read note pad reports or close down their
sections.

Description of the data collected
The dataset used for the detection was collected from kaggle. The figures 1, 2 and 3 show the
sample of the dataset used for the detection.

Figure 1: Shows the sample of the dataset used for the prediction.

Figure 2: Shows continuation of the dataset used for the prediction

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 343

Figure 3: Shows amount and class of the dataset used for the prediction.

Preprocessing
The pre-processed dataset was split into two groups with 80:20 ratios. The training set which
represents 80% of all the data and testing which represents 20% of the data set. A comparison
is made between the two techniques which are: Logistics Regression and Decision Tree
Classifier. The first 5 data.head is displayed in figure 4. A DataFrame's first few rows are
returned by Data.head(); by default, the first five rows are returned. It is useful for quickly
checking the contents of a DataFrame, such as column names, data types, and a preview of
the data in the dataset. While in figure 5, the last 5 data.tail of the dataset is diaplayed. A
DataFrame's last few rows are returned by Data.tail(); by default, the last five rows are
returned. This function is useful for quick checking the end of a DataFrame to identify any
trailing data issues or ensure data integrity.

Figure 4: Displays the first 5 data.head of the dataset.

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 344

Figure 5: Displays the last 5 data.tail of the dataset

The data.info () is displayed in figure 6. A DataFrame's data types, memory utilization, and
number of non-null elements are all summarized in a succinct manner via Data.info (). It is
helpful for rapidly comprehending the DataFrame's structure. While in figure 7 data.isnull
().sum() is displayed. Data.isnull(). Sum () provides a summary of the missing values in each
column. It counts the number of null entries in each column, which is useful for data cleaning
and preprocessing.

Figure 6: Checking the data type and any missing values in the dataset

Figure 6: Checking the data type and any missing Values in the dataset

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 345

Figure 7: Displaying the data.isnull().sum() and data type

In figure 8, the provided code standardizes the Amount column in the DataFrame data using
StandardScaler from sklearn.preprocessing. It first imports the necessary libraries,
StandardScaler from sklearn.preprocessing and pandas for DataFrame manipulation. A
sample DataFrame data is created with columns Name, Amount, and City. An instance of
StandardScaler is initialized and assigned to the variable sc. The fit_transform method of the
scaler is then applied to the Amount column. The fit_transform method expects a 2D array,
so the column is converted to a DataFrame before applying the method. This method
computes the mean and standard deviation for the Amount column, scales the data, and
returns the transformed values, which replace the original values in the Amount column. The
transformed Amount values will have a mean of 0 and a standard deviation of 1. The code
then prints the updated DataFrame, showing the standardized Amount column. From
sklearn.preprocessing import StandardScaler sc = StandardScaler() data[‘Amount’] =
sc.fit_transform(pd.DataFrame(data[‘Amount’]))

Figure 8: Standardizing the amount column to fit to the other column data type

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 346

The train_test_split function from the sklearn.model selection module is used to divide a
dataset into training and testing sets, as demonstrated in the code snippet supplied in figure
9. This is a description of the code.

1. Bringing in the Necessary Library: Sklearn.model_selection's train_test_split method
is imported. Arrays or matrices can be divided into random train and test subsets
with this function.

2. Dividing the Information: The feature matrix X and the target vector y are passed to
the train_test_split function. Additionally, the function accepts two more parameters.

i. test_size=0.2: This value indicates what percentage of the dataset should be used
in the test split. In this case, the test set receives 20% of the data, while the
training set receives the remaining 80%.

ii. To make sure the split is repeatable, use the random_state=42 argument. Every
time the code is executed with the same random_state value, the same split will
be produced.

3. Assigning the Split Data: The function returns four values:
i. X_train: The features' training set

ii. X_test: The features’ testing set.
iii. y_train: The target's training set
iv. y_test: The target's testing set

The corresponding variables are then assigned to these four returning values. By training a
machine learning model on the training set and testing it on the test set to see if it can
generalize to new data, this division is crucial for assessing the model's performance.
Train_test_split is imported from sklearn.model_selection. train_test_split(X, y, test_size = 0.2,
random_state = 42) = X_train, X_test, y_train, y_test.

Model simulation
Import sklearn.linear_model import numpy as np Importing logistic regression from
sklearn.ensemble The RandomForestClassifier import from sklearn.tree The sklearn.metrics
DecisionTreeClassifier program import recall_score, precision_score, f1_score, and
accuracy_score. The popular Python library for numerical operations, numpy, is imported as
np. It supports arrays, matrices, and a number of mathematical functions.

LogisticsFor binary classification issues, regression from sklearn.linear_model is imported. It
simulates the likelihood that a specific input point is a member of a particular class. Imported
is the RandomForestClassifier from sklearn.ensemble. This classifier is an ensemble learning
technique that builds several decision trees during training and produces a class that is the
mean prediction (regression) or the mode of the classes (classification) of the individual trees.
It is renowned for its great accuracy, resilience, and capacity to manage sizable datasets with
more dimensions.

Importing the DecisionTreeClassifier from sklearn.tree allows you to build a model that learns
basic decision rules derived from the features of the data to forecast a target variable's value.
It creates a decision tree-like model by separating the dataset into subsets based on each
stage's most crucial aspect.

Precision_score, recall_score, f1_score, and accuracy_score from Sklearn.Imported
measurements are used to assess how well categorization models function. The ratio of
successfully predicted instances to total instances is computed by accuracy_score. Precision

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 347

and recall are balanced by the f1_score, which is the harmonic mean of the two metrics.
Recall_score evaluates the classifier's capacity to identify every positive sample, whereas
precision_score gauges the accuracy of the positive predictions. These imports set up the
environment for building, training, and evaluating various machine learning models on a
given dataset using metrics to assess their performance.

In figure 9 the code defines a dictionary classifier with two classifiers: LogisticRegression and
DecisionTreeClassifier. It then iterates over this dictionary, fits each classifier to produce
predictions on the test data (X_test) based on the training data (X_train, y_train). The accuracy,
precision, recall, and F1 score performance metrics used to compare the predictions to the
actual test labels (y_test) are printed for each classifier.

Figure 9: Shows the performance metrics score on each algorithm.

Figure 9: Shows the performance metrics score on each algorithm.

Undersampling
One method employed in data analysis, especially when dealing with unbalanced datasets, is
undersampling. One class may substantially exceed other classes in a large number of real-
world datasets. Biased models that perform badly on the minority class may result from this
imbalance. This problem is solved by undersampling, which balances the distribution of
classes by lowering the number of examples in the majority class. To achieve this, samples
from the majority class can be randomly removed until there are roughly equal numbers of
samples in each class. The objective is to enhance the learning algorithm's performance on the
minority class while preventing it from becoming overloaded by the majority class. It is crucial
to remember that undersampling may not always be the optimal strategy and can result in
the loss of critical information, particularly if the dataset is tiny. Depending on the particular
issue and dataset properties, other options like oversampling the minority class or applying
sophisticated methods like SMOTE (Synthetic Minority Oversampling Technique) may also
be taken into consideration. Figures 10 and 11 display the undersampled data and the
outcome following undersampling.
.

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 348

 Figure 10: Shows the undersampled data

 Figure 11: Shows the result after undersampling.

Oversampling
By expanding the minority class's number of instances, oversampling is a strategy used to
address class imbalance in datasets. By doing this, the distribution of classes is balanced, and
machine learning models that could otherwise favor the majority class perform better.
Oversampling can be done in a number of ways. Duplicating examples from the minority
class at random until the distribution of classes is balanced is known as random oversampling.
Simple and efficient, it copies current data without adding additional information, which
might result in overfitting. The Synthetic Minority Over-Sampling Technique (SMOTE) is an
additional technique that creates synthetic examples instead of replicating preexisting ones.
In order to create a new, synthetic instance that combines two or more similar examples from

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 349

the minority class, SMOTE first chooses which instances to use. Compared to random
oversampling, this lessens the chance of overfitting and helps to establish a more generic
decision boundary. A variation of SMOTE called ADASYN (Adaptive Synthetic Sampling)
creates synthetic data with an emphasis on cases that are challenging to learn. It makes sure
that more synthetic data is produced for minority instances that are more difficult to
categorize by adaptively determining how many synthetic examples to create for each
minority instance based on the neighborhood's density. Figures 12 and 13 display the
oversampled data and the outcome following oversampling.

Figure 12: Shows the Over sampled data

 Figure 13: Shows result after Oversampling.

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 350

Building a detecting system
dtc = DecisionTreeClassifier() initializes a new instance of the DecisionTreeClassifier from
sklearn.tree. This classifier creates a decision tree to predict the target variable based on the
input features. dtc.fit(X_res, y_res) trains the decision tree classifier using the resampled
training data. Here, X_res represents the resampled feature matrix and y_res represents the
resampled target vector. The fit method builds the decision tree by finding the optimal splits
in the data to predict the target variable. The process of using decisiontreeClassifier as a
detecting system is shown in figure 14.

 Figure 14: Shows the built system for detection

RESULTS AND DISCUSSION
This section summarizes the main findings of the study, including the accuracy and
performance of the machine learning models and the relationships between the variables.
Table 1 shows the results of all algorithms with their metric scores.

Table 1 All the algorithms used with their metric scores

Model Accuracy Precision Recall F1 Score

Logistics
Regression

0.9992200678359603 0.8870967741935484 0.6043956043956044 0.718954248366013

Decision Tree
Classifier

0.9989298605191084 0.66 0.7252747252747253 0.6910994764397906

Undersampling

Logistics
Regression

0.9157894736842105 0.93 0.9117647058823529 0.9207920792079208

Decision Tree
Classifier

0.868421052631579 0.8407079646017699 0.9313725490196079 0.883720930232558

Oversampling

Logistics
Regression

0.9448562811148661 0.9728282925886559 0.9152046252022616 0.9431371079551841

Decision Tree
Classifier

0.997974126966823 0.9972947456334653 0.9986546188389724 0.9979742189842026

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 351

Based on the above analysis, it is shows that Decision Tree after oversampling have the best
accuracy of 99% across all the evaluation metrics, which make Decision tree the best model to
build our system with. When a decision tree is used with unbalanced data, oversampling is
frequently more effective than undersampling. Although undersampling lowers the number
of cases in the majority class, it can also result in the loss of crucial information and impair the
quality of the model. Without erasing any data from the majority class, oversampling raises
the number of occurrences of the minority class. This method enhances the decision tree's
learning capabilities and boosts performance indicators including F1-score, precision, and
recall. Oversampling guarantees the model has sufficient data to correctly distinguish
between classes by include more representative examples from the minority class. The
findings of this study may be compared to those of Sadgalia et al. (2018), who investigated the
effectiveness of machine learning methods in identifying financial fraud. The study's goal is
to determine which approaches and strategies produce the best outcomes out of all those that
have been refined to date. According to this poll, hybrid fraud detection strategies which
combine the benefits of numerous traditional detection techniques—are the most widely used.
In the investigation, it was found that the decision tree classifier performed better than all the
machine learning techniques individually.

CONCLUSION
The study comes to the conclusion that machine learning approaches can successfully identify
fraudulent financial transactions, especially when paired with oversampling techniques. The
study's most accurate model turned out to be the Decision Tree Classifier. This outcome
emphasizes how crucial it is to resolve data imbalance in order to improve model
performance.

Furthermore, the results emphasize how important it is to keep refining machine learning
algorithms in order to accommodate changing fraud strategies. The study shows that
sophisticated fraud schemes are frequently difficult to detect using conventional fraud
detection techniques. Financial organizations can increase their capacity to detect fraud by
utilizing sophisticated machine learning algorithms, which will improve security and lower
losses. The paper also suggests that in order to preserve the effectiveness of fraud detection
models as fraud strategies change, future research should concentrate on real-time detection
capabilities and adaptive learning systems.

This research work also highlights how crucial strong preprocessing procedures and high-
quality data are to the effectiveness of ML models. To train precise and dependable models,
high-quality data must be ensured. Additionally, ML models must be transparent and
explainable in order to win over stakeholders and guarantee that the judgments they make
are reasonable and comprehensible.

Financial institutions should use sophisticated oversampling methods like SMOTE and
ADASYN to enhance the effectiveness of fraud detection models in light of the findings. ML
models must be regularly reviewed and updated in order to remain successful against
emerging fraud trends. To capitalize on each ML algorithm's advantages and increase
detection accuracy, think about creating hybrid models that incorporate several of them. To
improve model training and performance, make sure to use high-quality data and thorough
preprocessing procedures. Use techniques to make ML models more interpretable so that
stakeholders can comprehend and have faith in the model's judgments.

Identifying Financial Fraud Transactions Using Decision Tree Classifier Algorithm

A. A. Owoade, DUJOPAS 11 (1a): 338-352, 2025 352

In order to give prompt alerts and solutions, future research could investigate the creation
and assessment of machine learning models that are able to detect fraud in real-time. Examine
how blockchain technology and machine learning-based fraud detection may be combined to
improve security and transparency. Examine adaptive learning systems that enhance their
fraud detection skills by continuously learning from fresh data. Expand the study to areas
other than financial transactions, such as insurance and healthcare to assess how broadly
applicable the suggested techniques are. To guarantee equitable and responsible use of
technology, address ethical issues pertaining to data protection and potential biases in ML
models. The efficiency and resilience of fraud detection systems can be greatly increased by
putting these suggestions into practice and investigating potential avenues for future study
which will help to ensure the safety and stability of financial systems.

REFERENCES
Chou, C. Y., Lee, C. Y., & Chiang, C. (2020). A novel hybrid financial fraud detection method

integrating clustering and text mining. Applied Intelligence, 50(7), 2291–2313.
Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining

techniques in financial fraud detection: A classification framework and an academic
review of literature. Decision Support Systems, 50(3), 559–569.

Kou, Y., Lu, C.-T., & Sirwongwattana, S. (2021). Survey on fraud detection techniques. IEEE
Transactions on Network Science and Engineering, 8(3), 1643–1658.

Sánchez, D. C., Channouf, L., Vallejo, E. E., & Bolívar, M. C. P. R. (2020). A hybrid method for
fraud detection in credit card transactions based on unsupervised and supervised
learning. IEEE Access, 8, 70907–70918.

Fu, Y., Cao, J., & Shi, W. (2020). FD-GAN: A deep learning-based financial fraud detection
framework. IEEE Access, 8, 78017–78025.

Pumsirirat, R., & Nukoolkit, T. (2020). Real-time credit card fraud detection using one-class
SVM with semantic embedding. Journal of Intelligent & Fuzzy Systems, 39(3), 3147–
3159.

Tsai, C.-F., Lin, Y.-C., & Chang, Y.-C. (2018). A hybrid machine learning model for fraud
detection in financial transactions. Journal of Physics: Conference Series, 1168(5), 052015.

Sánchez, D. C., Channouf, L., Vallejo, E. E., & Bolívar, M. C. P. R. (2021). A review of
applications of machine learning techniques for fraud detection. In 2021 16th Iberian
Conference on Information Systems and Technologies (CISTI), 1–6. IEEE.

Strelcenia, E., & Prakoonwit, S. (2023). Improving classification performance in credit card
fraud detection by using new data augmentation. AI, 4(1), 8.

Ali, A., Razak, S. A., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T.,
Elshafie, H., & Saif, A. (2022). Financial fraud detection based on machine learning:
A systematic literature review. Applied Sciences, 12(19), 9637.

Eryu, P. (2024). Machine Learning Transaction Fraud Detection and Prevention. Transactions
on Economics, Business and Management Research. 5(1), 243-249.

Sadgalia, I Saela, N Benabboua, F (2018). Performance of Machine Learning Techniques in the
Detection of Financial Frauds, F. Second International Conference on Intelligent
Computing in Data Sciences. Procedia Computer Science 148 (2019) 45–54.

