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Abstract 

The shales from the Gombe formation were investigated by gas chromatography-flame ionization 
detector (GC-FID) for the n-alkanes and isoprenoids compositions, and gas chromatography-mass 
spectrometry (GC-MS) for the polycyclic aromatic hydrocarbons (PAHs) compositions within the 
context of the origin of organic matter, depositional environments and conditions, and thermal 
maturity. The n-alkane distribution in the samples indicated organic matter mainly derived from 
marine settings. All the samples studied relatively showed enriched amounts of PAHs. However, the 
relatively low abundance and lack of the 6-ring indeno[1,2,3-cd]pyrene and benzo[ghi]perylene in some 
samples suggested the absence of larger, high-temperature wildfires, either due to inadequate 
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seasonality of the humid-arid climate, or limited terrigenous organic matter input. The geochemical 
ratios computed from the n-alkanes and isoprenoids in the shales indicated mixed inputs of terrigenous 
and marine organic matter but with higher contribution from marine and deposited under oxidizing 
and reducing conditions with low – marginal maturity status. Also, the geochemical ratios calculated 
from the PAHs indicated mixed inputs of petrogenic and pyrogenic sources for the shales but with 
major input from petrogenic sources. This study showed that biomarkers were effective in evaluating 
the origin, depositional conditions, and maturity of organic matter in the shales from Gombe formation, 
Gongola Basin, Nigeria. 
 
Keywords: Shales, biomarkers, origin, depositional conditions, Gombe formation. 
 
INTRODUCTION 
Sediments from extinct organisms contain complex molecular fossils known as biomarkers 
(Mackenzie et al., 1984; Welte and Tissot, 1984; Peters et al., 2005; Ogbesejana et al., 2023). A 
biomarker is a material that preserves the structure of its biological precursor (Ogbesejana et 
al., 2023; Peters et al., 2005; Huc, 1997; Mackenzie et al., 1984). The use of biomarkers to infer 
paleoflora, paleoenvironments, and the origin of life on Earth, as well as to provide a zonation 
for diagenetic change, has been reported (Mackenzie et al., 1984; Brassell, 1992; Peters and 
Moldowan, 1993; Huc, 1997; Simoneit, 1998). Early investigations have indicated that the 
information contained within biomarker distribution can be effectively employed for the 
differentiation and evaluation of depositional settings (Brassell et al., 1978; Farrimond, 1987; 
Jiamo et al., 1990), particularly in the delineation and characterization of ancient marine and 
nonmarine petroleum source rocks (Moldowan et al., 1985; Brassell et al., 1986), or even in 
more specific subenvironments, such as lacustrine freshwater and hypersaline, marine 
carbonate and deltaic sediments (Palacas et al., 1984; Brassell et al., 1986; Philp and Gilbert, 
1986; Fu, 1986; Mello et al., 1988). The constituents of sediment extracts and crude oils serve 
as indicators of both paleoenvironmental contexts and the precursor compounds present 
within the organisms that contributed organic matter (OM) during the sediment deposition 
phase, thereby offering critical insights regarding the organic matter input and the dominant 
depositional environment (Brassell et al., 1978; Jiamo et al., 1990). The source facies can be 
identified through the comparative analysis of structurally analogous chemicals found in 
sediments and crude oils alongside their probable biological precursors (Brassell et al., 1978; 
Jiamo et al., 1990; Ogbesejana et al., 2021a, 2021b). The thermal history of the sediments can be 
reconstructed by modifying the biomarker architecture (Peters et al., 2005; Ogbesejana et al., 
2021a, 2021b). Certain biomarkers function as indicators of biochemical processes or 
environmental conditions.  
 
The aromatic hydrocarbons sequestered within sedimentary deposits emerge from the 
biochemical transformations of biological precursors, which occur either via microbial 
mechanisms or as a consequence of thermal effects, pressure, and the catalytic influence of the 
mineral matrix throughout the diagenetic process (Albrecht and Ourisson, 1971). Aromatic 
hydrocarbons serve as a valuable source of information regarding both the provenance of the 
accumulated organic matter and the geochemical alterations that occur during the 
progression of thermal maturity (Ogbesejana et al., 2023). Polycyclic aromatic hydrocarbons 
(PAHs) identified within the geosphere predominantly originate from three distinct sources: 
those derived from combustion processes (commonly referred to as pyrolytic PAHs), those 
originating from higher plants, and those produced through diagenesis.  
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Fig. 1: Generalised geological map of Nigeria showing the location of the Gongola Basin (Abubakar, 2014). 

 
The combustion-derived PAHs that predate deposition have been ascribed to the byproducts 
of ancient wildfires, signifying the incomplete combustion of biomass, solid fuels, or plant 
material (Laflamme and Hites, 1978; Wakeham et al., 1979, 1980a; Prahl and Carpenter, 1983; 
Jiang et al., 1998; Hasegawa, 2001; Yunker and Macdonald, 2003; Luo et al., 2006; Grice et al., 
2007; Yunker et al., 2011; Jiang and George, 2019; Xu et al., 2019; Adedosu et al., 2020). Typically, 
combustion-derived PAHs are characterized by the absence of substituents and possess three 
or more aromatic rings, encompassing compounds such as phenanthrene, anthracene, 
fluoranthene, pyrene, benzo[a]anthracene, benzo[b]anthracene, triphenylene, chrysene, 
benzo[e]pyrene, benzo[a]pyrene, benzo[b,j,k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-
cd]pyrene, and coronene. The analysis of combustion-derived PAHs can facilitate the 
reconstruction of ancient environments and climatic conditions. 



Organic Geochemical Characteristics of the Upper Cretaceous Shales from Gombe Formation, Gongola Basin, 
Upper Benue Trough, Nigeria   

 

A. B. Ogbesejana et al, DUJOPAS 11 (1a): 224-238, 2025                                                                             227 

 

 
Fig. 2: Stratigraphic successions of Upper Benue Trough (Obaje et al., 2006). 

 
PAHs originating from natural biological precursors, particularly higher plants, are 
designated as higher-plant PAHs. This category includes compounds such as cadalene, 
retene, and simonellite, which may form during sedimentary diagenesis (Simoneit, 1977; 
Wakeham et al., 1980b) or as a result of kerogen decomposition during catagenesis (Lu and 
Kaplan, 1992). Perylene and benzo[ghi]perylene are classified as diagenetic PAHs, which 
exhibit a sedimentary distribution that markedly differs from those of combustion-derived 
PAHs and higher-plant PAHs. 
 
The Gombe Formation is the most recent lithostratigraphic unit of the Cretaceous period in 
the north-south trending Gongola sub-basin of the Northern Benue Trough (Popoff et al., 1986; 
Nwajide, 2013). It is characterized by its unconformable relationship with the underlying Fika 
Shale and is later overlain by the Palaeocene Keri-Keri Formation. The lithological 
components of the Gombe Formation are systematically divided into three distinct units 
(Zaborski et al., 1997): the basal interbedded unit, the middle bedded facies, and the upper red 
sandstone facies. The basal unit is composed of alternating thin layers of silty shales that 
contain plant detritus and fine to medium-grained sandstones that are interspersed with 
flaggy ironstones. Its center is composed of uniformly horizontally stratified fine to medium-
grained quartz arenite with silts, silty clays, and ironstones; the upper part of the formation is 
primarily composed of brick-red sandstone, with grain sizes ranging from pebble-sized to 
medium-grained sandstones, such as trough, tabular, and planar cross-bedding 
configurations. The Gombe Formation is dated to the Maastrichtian period (Popoff et al. 1986). 

. 
A comprehensive study of the organic geochemistry of n-alkanes, isoprenoids, and polycyclic 
aromatic hydrocarbons (PAHs) in the shales of the Gombe formation is conspicuously absent 
or insufficiently documented, despite the invaluable contributions of earlier researchers who 
have examined the organic geochemical characteristics of the shales from this formation 
(Adedosu et al., 2020; Jimoh et al., 2020; Ojo et al., 2019; Onoduku et al., 2013; Abubakar et al., 
2008; Akande et al., 1998). The organic geochemistry of n-alkanes, isoprenoids, and PAHs in 
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the Gombe formation's shales was investigated to close this gap; the majority of the PAHs 
were reported for the first time in Gombe shales in this work. 
 

 
Fig. 3: Representatives of the total ion chromatograms of the (a) saturated fractions showing the distribution of n-
alkanes and isoprenoids and (b) aromatic fractions showing the distribution of polycyclic aromatic hydrocarbons 
in the Gombe shales. 

 
MATERIALS AND METHODS 
 
Sampling 
Due to the difficulties in obtaining subsurface samples and the limitations imposed by 
government regulations, outcrop samples were used for this investigation. Twenty outcrop 
samples were carefully selected from shaly sequences in the Gombe Formation in the Gongola 
Basin, which comprise a wide variety of sedimentary logs and facies. Since weathering is 
always a significant obstacle for inorganic geochemical analyses of outcrop sediments, 
weathered rock surfaces were carefully removed by excavating to a depth of about 0.5 m at 
each sampling location to obtain samples that were both fresh and unweathered. The 
geological map and stratigraphic column of the Benue trough are shown in the figures 1 and 
2. 
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Extraction and Fractionation 
Agate mortar was used to crush the shale samples into powder. A solvent extractor was used 
to extract the homogenized powdered samples using a solvent mixture of 
dichloromethane/methanol (9:1 v/v). Two-step silica gel column liquid chromatography was 
used to separate the extractable organic matter (EOM). The first column's total hydrocarbons 
were extracted by eluting it with n-hexane/dichloromethane (4:1 v/v). Aliphatic 
hydrocarbons (elution with n-hexane) and aromatic hydrocarbons (elution with n-
hexane/dichloromethane (4:1 v/v)) were separated from the total hydrocarbons on a second 
column. To make sure there was no mixed elution of aliphatic and aromatic hydrocarbons, 
UV light monitoring was employed (Xu et al., 2019). 
 
Gas chromatography-flame ionization detector (GC-FID) 
The Hewlett Packard 5890 Series II, which was outfitted with a Gerstel on-column injector, an 
electronic pressure control (EPC), a fused silica capillary column (HP Ultra I) of 50 m length, 
0.2 mm inner diameter, and 0.33 m film thickness, as well as a standard flame ionization 
detector (FID), was used to analyze the aliphatic fractions by capillary gas chromatography 
for the characterization of the n-alkanes, pristane, and phytane Hydrogen gas was used as a 
carrier gas (pressure regulated) at a flow rate of 1 ml min1. The oven temperature was set to 
rise at a rate of 4 °C min−1 from 90 °C (hold time of 5 minutes) to 310 °C. Retention periods 
and peak areas were processed and stored using a Multichrom 2-online data system (Fisons). 
 
Gas chromatography-mass spectrometry (GC-MS) 
An Agilent GC (6890N) connected to an Agilent Mass Selective Detector (5975B) with a J&W 
DB-5MS fused silica column (length 60 m, inner diameter 0.25 mm, film thickness 0.25 m) was 
used to analyze the aromatic hydrocarbon fractions on gas chromatography-mass 
spectrometry (GC-MS). After three minutes of holding the inlet at 35 °C, it was designed to 
reach 310 °C (0.4 min isothermal) at a rate of 700 °C per minute. Splitless injection was used 
for the samples. The GC oven's temperature was first maintained at 35 °C for 4 minutes, then 
it was programmed to reach 310 °C at a rate of 4 °C per minute, and finally, it was maintained 
for 40 minutes. The carrier gas was helium (99.999%). The carrier gas flow rate (constant flow) 
was 1.5 mL/min. The ion source of the mass spectrometer was operated in EI mode at 70 eV. 
The MS data were acquired in full scan mode. The relative abundance of compounds was 
determined from peak areas (using selected mass chromatograms for the integration of the 
compounds) (Xu et al., 2019). 
 
RESULTS AND DISCUSSION 
The source, depositional environment, and thermal maturity status of the organic matter 
contained in the shale samples were determined based on the distributions and abundance of 
aliphatic and PAH biomarkers in the shale extracts.  
 
n-Alkanes and Isoprenoids  
Most samples have an n-alkane distribution that varies from C8 to C40, with C17 being the 
maximum (Figs. 3 and 4). Organic matter primarily originating from marine environments is 
indicated by this distribution pattern (Ogbesejana et al., 2021a; Adedosu et al., 2020; Peters et 
al., 2005). One of the most widely used geochemical parameters, the pristane/phytane (Pr/Ph) 
ratio has been used as an indicator of the depositional environment. However, because of the 
interferences of thermal maturity and the initial evaluation of organic matter source inputs, it 
has low specificity (Onojake et al., 2015; Peters et al. 2005). It is also frequently employed as an 
indicator of the depositional environment's redox potential. Ten Haven (1996), for example, 
emphasized that low Pr/Ph (<0.8) implies anoxic/hypersaline or carbonate environments, 
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while high Pr/Ph (>3.0) shows terrigenous input under oxic conditions. High Pr/Ph values 
(up to 10) are associated with peat swamp depositional settings (oxidizing conditions), while 
low values (<2) imply aquatic depositional environments, including fresh, brackish, and 
marine water (reducing conditions) (Roushdy et al. 2010). The Pr/Ph ratios for the examined 
samples range from 0.18 to 17.5 (Table 1), indicating mixed inputs of terrigenous and marine 
organic matter deposited under oxidizing and reducing conditions for the shales (Onojake et 
al., 2015; Peters et al., 2005). The amount of aquatic to terrigenous derived n-alkanes, or short-
chain to long-chain n-alkanes, in geological samples is determined by the aquatic/terrigenous 
ratio (ATR) of hydrocarbons (Wilkes et al. 1999; Adedosu et al., 2020). While values above 0.5 
suggest marine organic matter, values below 0.5 imply an increased inflow of long-chain n-
alkanes or organic matter from terrestrial sources. Mixed contributions of marine and 
terrigenous organic matter in the samples are supported by the TAR and nC31/nC19 values in 
the investigated shales, which vary from 0.08 to 0.84 and 0.11 to 27.32 (Table 1), respectively 
(Wilkes et al., 1999; Adedosu et al., 2020). A plot of Pr/nC17 vs Ph/nC18 has been used by many 
authors to categorize geological materials into various groups (Fig. 5).  The samples' varied 
terrestrial and marine organic matter origins are further demonstrated by this figure (Peters 
et al., 2005). In geological samples, the Carbon Preference Index (CPI) has been used 
extensively as a maturity indicator (Peters et al. 2005; Muhammad et al. 2010). According to 
some researchers, the CPI values of immature rocks were frequently high (>1.5). The CPI 
values (Table 1) in this study fall between 0.01 and 11.38. Low-marginal maturity status of the 
samples is reflected in these values (Adedosu et al., 2020; Onojake et al., 2015; Peters et al., 
2005).  
 

 
Fig. 4: The histogram showing the distribution of n-alkanes in Gombe shales 
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Table 1: Geochemical ratios computed from the n-alkanes and isoprenoids in the studied 
shales 

Ratios Nmsgs 1 Nmsgs 2 Nmsgs3 Nmsgs4 Nmsgs5 Nmsgs6 Nmsgs7 Nmsgs8 Nmsgs9 Nsmgs10 

Pr/Ph 1.27 0.37 1.32 0.31 0.55 0.28 0.93 1 1.87 17.5 

Pr/nC17 1.08 0.55 1.48 0.29 1.82 0.12 0.03 26.04 80.09 0.49 

Ph/nC18 0.5 0.71 0.74 0.57 1.61 2.39 0.21 0.49 0 0.56 

Pr+nC17/Ph +nC18 0.82 0.43 0.95 0.5 0.53 1.18 6.82 0.5 0.92 2.52 

Pr+Ph /Ph+C18 0.76 0.57 0.99 0.47 0.96 0.9 7.12 1.82 9.66 0.42 

C30/Pr+Ph 0.2 0.17 0.27 1.47 0.17 1.9 0.4 3.16 0.38 4 

nC18/Ph 2 1.4 1.35 1.77 0.26 0.42 4.6 1.07 0 18 

CPI 0.01 1.96 2.84 1.12 1.07 0.71 0.14 1.2 1.03 2.8 

ATR 0.69 0.5 0.68 0.22 0.43 0.47 0.63 0.47 0.84 0.15 

nC31/nC19 0.34 1.40 0.86 3.71 0.84 1.05 1.02 0.95 1.60 5.54 

 
Table 1: Contd 

Ratios Nmsgs 1a Nmsgs 2a Nmsgs3a Nmsgs4a Nmsgs5a Nmsgs6a Nmsgs7a Nmsgs8a Nmsgs 9a Nmsgs10a 

Pr/Ph 15.5 3.61 0.18 6.7 1.21 0 2.37 8.89 2.93 5.08 

Pr/nC17 0.3 0.26 0.92 3.94 1.06 0 0.26 4.63 1.59 1.25 

Ph/nC18 0.44 0.76 12.65 0.34 0 9.82 0.36 0.08 0.25 0.02 

Pr+nC17/Ph +nC18 20.92 7.44 0.34 3.05 1.79 0.14 3.11 0.82 0.87 1.17 

Pr+Ph /Ph+C18 5.08 1.99 1.09 2.47 1.68 0.34 0.28 13.4 2.48 6.99 

C30/Pr+Ph 1.42 0.33 0.46 1.45 3.27 0.31 1.17 0.04 0.61 3.53 

nC18/Ph 2.25 1.32 0.08 26.5 0 0.1 2.78 12.25 2.82 52.77 

CPI 1.07 0.93 2.09 2.03 0.6 1.5 11.38 1.2 1.2 1.13 

ATR 0.72 0.8 0.08 0.55 0.26 0.37 0.47 0.3 0.68 0.45 

nC31/nC19 27.32 0.92 0.13 0.34 0.00 1.10 0.11 0.68 0.19 0.41 

*Pr= pristane; Ph= phytane; CPI= Carbon preference index; ATR= Aquatic-terrigenous ratio 
 

 
 
 

Fig.  5: Cross plot of Pr/nC17 against Ph/nC18 of shale samples from Gombe formation    
             (Modified after Shanmugam, 1985)  
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Polycyclic Aromatic Hydrocarbons 
The concentrations (ppm) and geochemical ratios of the eighteen (18) PAHs found in the shale 
samples in this study are shown in Tables 2 and 3, respectively. All of the samples examined 
exhibit relatively enriched amounts of PAHs (Table 2, Figs. 6); however, the relatively low 
abundance and absence of the 6-ring indeno[1,2,3-cd]pyrene and benzo[ghi]perylene in some 
samples suggests that there were no larger, high-temperature wildfires, either because of the 
humid-arid climate's insufficient seasonality or the limited input of terrigenous organic matter 
(Xu et al., 2019) (Table 2). The PAH ratios of Fla/(Fla + Py), BaA/(BaA + Chy), InPy/(InPy + 
BghiP), and A/(A+P) have been proposed for assessing origins from fossil fuel/petroleum 
(petrogenic sources: thermal alteration of natural biolipids due to normal burial processes 
during diagenesis and catagenesis in sedimentary basins) or the combustion of biomass/solid 
fuel (pyrogenic sources) (Grice et al., 2007; Quiroz et al., 2011; Zakir Hossain et al., 2013; Fang 
et al., 2015; Huang et al., 2015; Yunker et al., 2015; Jiang and George, 2019;  Xu et al., 2019). 
Relatively low values for these ratios (Fla/(Fla + Py) < 0.4; InPy/(InPy + BghiP) < 0.2; BaA(BaA 
+ Chy) < 0.2) collectively indicate petrogenic inputs, whereas high ratios (Fla/(Fla + Py) > 0.5; 
InPy/(InPy + BghiP) >0.5; and BaA/(BaA + Chy) > 0.35) indicate pyrogenic sources (Jiang and 
George, 2019; Xu et al., 2019). Ratios of A/(A+P) >0.1 are typical of combustion-related 
sources, whereas ratios <0.1 are regarded as typical of petrogenic sources (Fang et al, 2015; 
Huang et al., 2015). The studied samples from the Gombe formation have values of Fla/(Fla + 
Py), BaA/(BaA + Chy), InPy/(InPy + BghiP), and A/(A + P) range from 0.09 to 0.88, 0.08 to 
0.97, 1.3 to 1.76, 0.09 to 1.0, respectfully (Table 3), indicating mixed inputs of petrogenic and 
pyrogenic sources in the shales. The samples analyzed fall within the range of fossil 
fuel/petroleum (petrogenic) origin and biomass/solid fuel combustion origin (Xu et al., 2019; 
Yunker et al., 2015), indicating that extensive wildfires did not occur in the studied area during 
the deposition of the Gombe Formation (Fig. 9). These parameters suggest a dominant 
petrogenic source for the PAHs, and in some samples a mixed fossil fuel/petroleum 
(petrogenic) and combustion (pyrogenic) source. 
 

 
Fig. 6: The histogram showing the distribution of PAHs in Gombe shales 
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Table 2:  Concentrations (ppm) of PAHs in the studied shales 

Compounds 
Nmsgs

1. 
Nmsg

s2 
Nmsg

s3 
Nmsg

s4 
Nmsg

s5 
Nmsg

s6 
 Nmsgs 

7 
Nmsgs 

8 
Nmmsg

s 9 
Nmsgs 

10 

 Benzene, 1,2,3-
trimethyl-  1.2 0.3 0.14 0.24 0.44 0.15 0.9 0.61 0.21 0.74 

Naphthalene  0.4 0.28 0.15 0.11 0.25 0.39 0.12 1 1.52 N.D. 
 2-

Methylnaphthalene  0.73 0.15 0.52 0.21 0.42 0.22 0.47 3.09 2.18 N.D. 

Acenaphthylene 0.44 0.31 0.52 0.12 0.32 0.32 0 0.86 1.72 N.D. 

 Acenaphthene  0.52 0.25 1.14 0.22 0.13 0.15 0.05 0.86 1.72 N.D. 

 Fluorene  0.54 0.18 1.14 0.22 0.21 0.13 1.41 0.97 1.29 N.D. 

 Anthracene 0.32 0.11 0.02 0.02 0.11 0.23 0.87 1.36 0.7 1.66 

 Phenanthrene  0.25 0.22 2.13 0.21 0.28 0.32 0.03 0.49 0.7 1.06 

 Fluoranthene  1.16 0.17 0.8 0.12 0.13 0.03 0.36 0.32 1.72 0.37 

 Pyrene  0.65 0.12 0.87 0.08 0.22 0.32 0.4 0.06 0.82 0.49 

 Benz(a)anthracene  0.65 1.06 1.54 0.02 0.1 0.28 0.09 0.96 0.3 0.96 

 Chrysene  0.97 1.46 0.45 0.14 0.73 0.35 1.12 0.72 1.52 N.D. 
 

Benzo(b)fluoranthen
e  1.05 1.01 0.92 0.22 1.33 0.41 2.04 2.69 1.67 N.D. 
 

Benzo(k)fluoranthen
e  0.33 2.01 0.08 0.37 0.16 0.4 1.2 1.94 0.13 N.D. 

 Benzo(a)pyrene  0.18 0.49 1.49 0.23 0.4 0.4 1.66 0.06 0.82 0.49 
 

Diben(a,h)anthracen
e 1.05 0.05 N.D 0.33 1.12 1.44 N.D. N.D. N.D. N.D. 

 Indeno(1,2,3-
cd)pyrene 0.33 0.37 N.D 0.44 1.12 0.58 N.D. N.D. N.D. N.D. 

 
Benzo(g,h,i)perylene  0.03 0.76 N.D 0.66 0.45 0.36 N.D. N.D. N.D. N.D. 

* N.D = Not determined 

 
Table 2: Contd 

Compounds 
Nmsg 

1a 
Nmsg 

2a 
Nmsg 

3a 
Nmsg 

4a 
Nmsg 

5a 
Nmsgs 

6a 
Nmsgs

7a 
Nmsgs 

8a 
Nmsgs

9a 
Nmsgs1

0a 

 Benzene, 1,2,3-
trimethyl-  0.21 1.17 0.49 0.05 0.57 0.06 1.91 0.7 N.D. 0.02 

Naphthalene  0.15 0.41 0.52 0.77 2.6 0.76 0.4 0.19 0.14 0.29 
 2-

Methylnaphthalene  0.21 0.3 0.79 0.14 0.57 0.04 0.18 0.59 0.98 0.69 

Acenaphthylene 0.33 1.6 1.14 0.31 0.37 0.41 1.09 0.59 0.88 0.32 

 Acenaphthene  0.33 0.75 1.14 0.31 0.37 0.41 0.09 0.59 0.88 1.41 

 Fluorene  0.61 0.71 0.8 0.63 0.19 0.18 0.35 0.19 1.6 0.29 

 Anthracene 0.65 1.95 0.87 0.19 0.36 0.1 0.69 1.77 0.21 0.68 

 Phenanthrene  0.65 0.95 1.54 2.8 0.28 0.97 0.9 0.91 0.96 2.82 

 Fluoranthene  0.97 0.15 0.45 0.6 0.74 1.38 0.14 0.23 0.85 0.19 

 Pyrene  1.45 0.94 0.08 0.64 0.31 1.53 0.99 0.78 0.73 1.94 

 Benz(a)anthracene  1.76 0.84 0.92 0.06 0.35 1.35 0.99 0.46 0.4 0.13 

 Chrysene  2.15 0.82 0.52 0.32 1.74 0.76 0.4 0.19 0.14 0.49 
 

Benzo(b)fluoranthe
ne  N.D. 0.97 0.02 1.99 0.88 0.56 0.04 0.48 1.09 0.59 
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Benzo(k)fluoranthe

ne  N.D. 1.74 2.13 2.5 0.02 0.28 1.75 2.21 0.32 0.39 

 Benzo(a)pyrene  N.D. 1.28 1.49 0.36 0.85 0.69 N.D. 0.78 0.27 0.59 
 

Diben(a,h)anthrace
ne N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

 Indeno(1,2,3-
cd)pyrene N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

 
Benzo(g,h,i)perylen

e  N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

 
 
Table 3: Geochemical ratios computed PAHs in the studied shales 

Ratios 
Nmsgs 

1 
Nmsgs 

2 
Nmsgs

3 
Nmsgs

4 
Nmsgs

5 
Nmsgs

6 
Nmsgs

7 
Nmsgs

8 
Nmsgs

9 
Nsmgs1

0 

FL/FL+PY 0.7 0.3 0.56 0.6 0.37 0.09 0.62 0.42 0.65 0 

BaA/BaA+Ch 0.76 0.61 0.08 0.13 0.12 0.44 0.08 0.6 0.29 0.74 

A/A+P 0.58 0.6 0.95 0.09 0.31 0.42 0.63 0.58 0.93 0 
Inpy/Inpy+Bgh

iP 1.3 1.76 N.D 1.66 1.45 1.36 N.D N.D N.D N.D 

*N.D= Not determineD; FL= Fluoranthene; PY= Pyrene; BaA= Benz[a]anthracene; Ch= Chrysene; A= Anthracene; P= 
Phenanthrene; Inpy= Indeno[1,2,3-cd]pyrene; BghiP= Benzo[ghi]perylene. 

 
Table 3: Contd 

Ratios 
Nmsgs 

1a 
Nmsgs 

2a 
Nmsgs

3a 
Nmsgs

4a 
Nmsgs

5a 
Nmsgs

6a 
Nmsgs

7a 
Nmsgs

8a 
Nmsgs 

9a 
Nmsgs1

0a 

FL/FL+PY 0.48 0.27 0.48 0.77 0.35 0.64 0.34 0.1 0.88 0.3 

BaA/BaA+Ch 0.4 0.77 0.77 0.82 0.27 0.41 0.87 0.8 0.53 0.97 

A/A+P 1 0.36 0.01 0.8 0.98 0.67 0.02 0.18 0.77 0.6 
Inpy/Inpy+Bg

hiP N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 
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Fig. 7: PAHs ratio cross-plots for the Gombe shale samples, characterizing the origins of the PAHs (a) Fla/(Fla + 
Py) versus BaA/(BaA + Chy) and (b) Fla/(Fla + Py) versus InPy/(InPy + BghiP) (after Xu et al., 2019; Yunker et 
al., 2015). 

 
CONCLUSION 
The n-alkane distribution in the samples ranges from C8-C40 in most samples maximizing at 
C17. This pattern of distribution indicates organic matter mainly derived from marine settings 
All the samples studied relatively showed enriched amounts of PAHs. However, the relatively 
low abundance and lack of the 6-ring indeno[1,2,3-cd]pyrene and benzo[ghi]perylene in some 
samples suggested the absence of larger, high-temperature wildfires, either due to inadequate 
seasonality of the humid-arid climate, or limited terrigenous organic matter input. The 
geochemical ratios computed from the n-alkanes and isoprenoids in the shales indicated 
mixed inputs of terrigenous and marine organic matter but with higher contribution from 
marine and deposited under oxidizing and reducing conditions with low – marginal maturity 
status. The geochemical ratios calculated from the PAHs indicated mixed inputs of petrogenic 
and pyrogenic sources for the shales but with major input from petrogenic sources. This study 
showed that biomarkers were effective in evaluating the origin, depositional conditions, and 
maturity of organic matter in the shales from the Gombe formation, Gongola Basin, Nigeria. 
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