Sulaiman, Asmau Nna¹*; Arzai, Auwalu Halliru²; Taura, Dalha Wada²

^{1*}Department of Microbiology, Ahmadu Bello University, Zaria.

² Department of Microbiology, Bayero University, Kano.

Email: sulaimanasmau@yahoo.co.uk

Abstract

Plants are of therapeutic value due to their diverse phytochemicals that confer numerous pharmacological benefits. Bridelia ferruginea, Khaya senegalensis, and Psidium guajava, contain bioactive components with potential therapeutic applications, particularly in treating gastrointestinal diseases. To investigate their chemical composition, the bark of Brideliaferruginea, Khaya senegalensis bark, and Psidium guajava leaves were analyzed using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), and Gas Chromatography-Mass Spectrometry (GC-MS). The functional groups and chemical compositions were identified and quantified using advanced spectrometers from Agilent Technologies. The GC-MS analysis revealed distinct phytochemical profiles for each plant, with 18 compounds detected in B. ferruginea, 11 in K. senegalensis, and 32 in P. guajava. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) analysis confirmed the presence of phenols, alcohols, aromatic compounds, esters, ethers in all three plants. These findings suggest that the bioactive compounds in these plant extracts may contribute to their pharmacological activities, particularly in the treatment of gastrointestinal diseases.

Keywords: Bridelia ferruginea, Khaya senegalensis, Psidium guajava, Bioactivity, Functional groups

INTRODUCTION

The application of medicinal plants against gastrointestinal diseases has attracted growing interest recently due to their therapeutic potentials and the increasing awareness towards alternative medicine. Of these plants, *Bridelia ferruginea, Khaya senegalensis* and *Psidium guajava* are the most popularly used in traditional medicine (Sulaiman *et al.*, 2022). These plants are important in the health sector among locals, traditional medical practitioners and they also have diverse bioactive compounds which make them medicinal plants. *Bridelia ferruginea,* (Euphorbiaceae), is known to possess antioxidant activity attributable to its diverse phytochemical composition, encompassing flavonoids and alkaloids. Studies have shown that extracts derived from this plant possess inhibitory effects on lipid peroxidation, thereby mitigating oxidative stress-induced tissue damage (Adeleye, 2020). The antioxidant properties

of *Bridelia ferruginea* hold significant implications for gastrointestinal health, as oxidative stress exacerbates various digestive disorders (Gholamnezhad *et al.*, 2018). Moreover, traditional medicinal applications of this plant, particularly in the management of dysentery and diarrhoea, underscores its ethnopharmacological relevance (Alowanou *et al.*, 2015).

Khaya senegalensis, commonly known as African mahogany, has diverse medicinal properties. Traditionally, this plant has been employed to combat gastrointestinal disorders, specifically alleviating symptoms of diarrhoea and dysentery (Senouci *et al.*, 2022). The therapeutic effects of *Khaya senegalensis* can be attributed to its potent anti-inflammatory and antimicrobial activities, which effectively manage infections affecting the gastrointestinal tract (Karimi *et al.*, 2017).Numerous ethnobotanical studies revealed the plant's efficacy in treating digestive issues, highlighting its importance in traditional healing practices (Senouci *et al.*, 2022; Es-safi *et al.*, 2020). These findings demonstrate the potential of *Khaya senegalensis* as a valuable natural remedy for gastrointestinal health.

Psidium guajava, commonly known as guava, is a medicinal plant with a long history of treating gastrointestinal issues. The leaves of this versatile plant have been traditionally used to alleviate diarrhoea, dysentery, and other digestive disorders, thanks to their astringent properties and ability to regulate intestinal motility (Bahmani *et al.*, 2014). Previous studies have validated its therapeutic potential, revealing that its leaf extracts possess potent antimicrobial properties effective against pathogens responsible for gastrointestinal infections (Palombo, 2006). The widespread cultural use of *Psidium guajava* for digestive health underscores its significance as a natural remedy, with diverse traditional practices attesting to its efficacy (Pérez-Ochoa *et al.*, 2019).

This study has the potential to uncover detailed chemical profiles of these plants that are currently underexplored, and bridges the gap between phytochemical analysis and pharmacological application, leading to a better understanding of the mechanisms underlying the medicinal properties of these plants

METHODOLOGY

Plant Collection and Identification

The plant species used in this study were selected based on a comprehensive literature review, field surveillance, and a questionnaire administered to traditional medical practitioners in Kano State, Nigeria. A taxonomist at the herbarium unit of Bayero University Kano, Department of Biological Sciences identified the plants. Three species – *Bridelia ferruginea*, *Khaya senegalensis*, and *Psidium guajava* - were identified and assigned voucher numbers BUKHAN 0049, BUKHAN 0116, and BUKHAN 0336, respectively.

Pre-treatment of Plant Parts

The leaves were gently wiped clean with a cloth and then laid out alongside the stem bark in the laboratory to air-dry at ambient temperature. Once thoroughly dried, the plant materials were ground into a fine powder using a mortar and pestle. The resulting powders were stored in clean, screw-cap containers and labelled for future reference.

Extraction of Plant

The extraction protocol employed was based on the methodology described by Sulaiman *et al.* (2024). Briefly, 200 g of the pulverized plant material was loaded into a Soxhlet thimble and subjected to solvent extraction using 1 L of 95% (v/v) ethanol. The extraction process was

continued until exhaustion, as indicated by the absence of colour change in the ethanol solvent. The resulting ethanolic extract was then concentrated under reduced pressure using a rotary evaporator, yielding a crude extract. Residual solvent was removed by drying the extract in porcelain dishes at 80°C until a constant weight was achieved. The dried extract was then transferred to a clean, screw-cap container, labelled, and stored at 4°C for future use.

Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy Exactly 10 mg of each crude extract was placed on the diamond crystal of the ATR accessory and flattened using a compression clamp to ensure optimal contact. ATR-FTIR spectra were recorded using a Cary 630 spectrometer (Agilent Technologies, USA) over the range of 4000-400 cm⁻¹ with a resolution of 4 cm⁻¹ and 32scans (Fadare *et al.*, 2015).

Gas Chromatography- Mass Spectrometry (GC-MS) Analysis

Gas Chromatography-Mass Spectrometry (GC-MS) analysis was performed on the ethanolic extracts of *Khaya senegalensis* bark, *Bridelia ferruginea* bark, and *Psidium guajava* leaves using an Agilent Technologies GC-7890B/MSD-5977A system, equipped with an HP-5MS UI column (30m x 250µm x 0.25µm). The GC-MS detection employed electron ionization at 70eV, with high-purity Helium (99.995%) as the carrier gas at a flow rate of 1mL/min. The temperature program consisted of an initial gradient from 50°C to 150°C at 3°C/min, followed by a 10-minute isothermal hold, and a final ramp to 300°C at 10°C/min. One microliter of each 1% extract, diluted in an appropriate solvent, was injected in split less mode, and the relative abundance of each chemical component was quantified based on chromatogram peak areas which were interpreted using the National Institute of Standards and Technology (NIST) database, which contains over 62,000 patterns, to identify known compounds by matching their spectra with the NIST library (Buss and Butler, 2010).

RESULTS

ATR-FTIR spectrometer is a powerful instrument that can be used to determine the functional groups of compounds and chemical bonds of specific molecules. This accessory provides for the non-destructive infrared measurement of both transmittance and absorbance spectra of samples with little or no preparation. Figure 1-3 shows the ATR-FTIR absorption spectra of ethanolic extracts of *Bridelia ferruginea* bark, *Khaya senegalensis* bark and *Psidium guajava* leaves respectively. The peak values and its corresponding functional group for each extract is indicated in Tables 1-3 respectively.

 Table 1: Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Profile of

 Ethanolic Extract of Brideliaferruginea bark

Peak Value (cm ⁻¹)	Functional Group
3198.1	OH Stretching (Hydroxyl Group)
2105.9	C≡N Stretching (Nitrile Group)
1908.4	C=C Stretching (Aromatic Ring)
1602.8	C=C Stretching (Aromatic Ring)
1520.8	C=C Stretching (Aromatic Ring)

Figure 1: Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrum of Ethanolic Extract of *Bridelia ferruginea* bark

 Table 2: Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Profile of

 Ethanolic Extract of Khaya senegalensis bark

Peak Value (cm ⁻¹)	Functional Group
3209.2	OH Stretching (Alcoholic or Phenolic,) - likely a Hydroxyl (OH) group
2922.2	C-H Stretching (Alkane or Alkyl Group) - likely a Methyl (CH3) or Methylene (CH2)
	group
2120.9	C≡N Stretching (Nitrile Group) or C≡C Stretching (Alkyne Group) - likely a Nitrile
	(CN) group
1871.1	C=O Stretching (Unsubstituted Aldehyde or Ketone) or C=C Stretching (Aromatic
	Ring) - likely an Unsubstituted Aldehyde (CHO) or Ketone (CO) group
1699.7	C=O Stretching(Carboxylic Acid or Esters)
1602.8	C=C Stretching (Aromatic Ring)
1520.8	C=C Stretching (Aromatic Ring)

Figure 2: Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrum of Ethanolic Extract of *Khaya senegalensis* bark

Peak Value (cm ⁻¹)	Functional Group
3235.3	OH Stretching (Alcoholic, Phenolic, or Hydroxyl Group) - likely a Hydroxyl (OH) group
2918.5	C-H Stretching (Alkane or Alkyl Group) - likely a Methyl (CH3) or Methylene (CH2) group
2851.4	C-H Stretching (Alkane or Alkyl Group) - likely a Methyl (CH3) or Methylene (CH2) group
2113.4	C≡N Stretching (Nitrile Group) or C≡C Stretching (Alkyne Group) - likely a Nitrile (CN) group
1684.8	C=O Stretching(Carboxylic Acid or Esters)
1606.5	C=C Stretching (Aromatic Ring)
1520.8	C=C Stretching (Aromatic Ring)

Table 3: Attenuated Total Reflectance Fourier	Transform	Infrared	(ATR-FTIR)	Profile of
Ethanolic Extract of <i>Psidium guajava</i> leaves				

Figure 3: (FT-IR) Spectrum of Ethanolic Extract of Psidium guajava Leaves

Gas chromatography-mass spectrometry (GC-MS) analysis was performed on ethanolic extracts of *Brideliaferruginea* bark, *Khaya senegalensis* bark, and *Psidium guajava* leaves. The resulting chromatograms (Figures 7-9) exhibited distinct peak profiles, indicative of diverse phytochemical constituents. Quantification of peak areas revealed varying concentrations of detected compounds. Subsequent identification and characterization of the compounds yielded 18 bioactive molecules in *B. ferruginea*, 11 in *K. senegalensis*, and 32 in *P. guajava* (Tables 7-9). The compiled data encompass retention times, peak areas, compound names, molecular formulas, and molecular weights, providing valuable insights into the phytochemical composition of these plant extracts

Figure 4: GC-MS Chromatograph of Ethanolic extract of Bridelia ferruginea bark

Peak	RT	Area	Name of Compound	Molecular	Molecular	Molecular
				formula	Structure	weight
1	3.4	367851.21	4-Vinyl-imidazole	$C_5H_6N_2$	B1	94
			5-Vinyl-pyrazole	$C_5H_6N_2$	B2	94
2	4.3	12115.83	1,3,8-p-Menthatriene	C ₁₀ H ₁₄	B3	134
3	4.6	21030.09	o-Cymene	C ₁₀ H ₁₄	B4	134
			n-Butylbenzene	$C_{10}H_{14}$	B5	134
4	5.3	93891.5	2,6-Diaminopimelic acid	$C_7 H_{14} N_2 O_4$	B6	190
5	7.8	108033.82	1-Tridecene	C ₁₃ H ₂₆	B7	182
6	8.9	12225.89	3-Propylglutaric acid	C ₈ H ₁₄ O ₄	B8	174
			PET-cGMP	$C_{18}H_{15}N_5O_7P$	B9	444
7	9.4	12883.46	Decynediol, tetramethyl,	C ₁₈ H ₃₄ O ₄	B10	314
			di(2-hydroxyethyl) ether Isophthalic acid, 2- formylphenyl propyl ester	$C_{18}H_{16}O_5$	B11	312
8	10. 2	108833.29	Phytol	$C_{20}H_{40}O$	B12	296
9	11. 4	17852.61	Silane, [(6a,7,8,10a- tetrahydro-6,6,9- trimethyl-3-pentyl-6H- dibenzo[b,d]pyran -1,8- diyl)bis(oxy)]bis[dimethy lphenyl-, [6ar- (6aα,8β,10aβ)]-	C ₃₇ H ₅₀ O ₃ Si ₂	B13	598
10	12. 4	73711.94	Phytol	$C_{20}H_{40}O$	B14	296

Table 4: Bioactive compounds for	ound in Ethanoli	c Extract of	Bridelia ferruginea	bark usin	g
GC-MS					-

B1 —	NH	B2 NH-	B3 B4 B4	B5	\sim	B6 NH2 NH2
			8-Isopropyl-5-methyl- 5,6,7,8-tetrahydro-2,4- quinazolinedione	C ₁₂ H ₁₈ N ₂ O ₂	B25	222
18	23. 5	94288.73	Isoproturon Genistin	$\begin{array}{c} C_{12}H_{18}N_2O\\ C_{21}H_{20}O_{10} \end{array}$	B23 B24	206 432
17	16. 5	67501.4	methoxy-4-methyl-3- quinolinyl)-3-methyl-1H- pyrazol-4-yl]acetate	C ₁₉ H ₂₁ N ₃ O ₄	DZZ	505
16	15. 8	3438.36	Methyl stearate	C ₁₉ H ₃₈ O ₂	B21	298
15	15. 5	23549.44	Silicic acid, diethyl bis(trimethylsilyl) ester	$C_{10}H_{28}O_4Si_3$	B20	296
14	15. 5	7316.7	Proadifen	$C_{23}H_{31}NO_2$	B19	353
13	14. 5	32893.59	Oxirane, [(hexadecyloxy)methyl]-	C ₁₉ H ₃₈ O ₂	B18	298
12	14. 3	18443.54	Benzene, 2-methoxy-4- methyl-1-(1- methylethyl)-	C ₁₁ H ₁₆ O	B17	164
11	13. 8	51751.32	Decanoic acid, 2-methyl- Tridecanoic acid, methyl ester	$C_{11}H_{22}O_2$ $C_{14}H_{28}O_2$	B15 B16	186 228

Figure 5: GC-MS Chromatograph of Ethanolic extract of Khaya senegalensis leaves

Table 5: Bioactive compounds found in Ethanolic Extract of <i>Khaya senegalensis</i> bark usin	ng
GC-MS	

Peak	RT	Area	Name of Compound	Molecular	Molecular	Molecular
				formula	Structure	weight
1	6.2	13194.66	Ethanol	C_2H_6O	K1	46
			L-Lactic acid	$C_3H_6O_3$	K2	90
2	7.4	10907.47	Trinexapac-ethyl	$C_{13}H_{16}O_5$	K3	252
			7-Methoxyflavanone	$C_{16}H_{12}O_3$	K4	252
			Temefos	$C_{16}H_{20}O_6P_2S_3$	K5	466
0	7.0	0.47(0.0			T/	01/
3	7.9	34763.3	(25,45)-2,4- Dimethallocations disis	$C_{11}H_{20}O_4$	K6	216
			dimethylaster	CHNOS	V7	157
			aimetnyi ester	C5H7IN3O5	κ/	157
			2.6-Dimethyl-3-thioxo-5-oxo-			
			2,3,4,5-tetrahydro-1,2,4-			
			triazine			
4	9.4	28853.99	3,5-Dimethoxycinnamic acid	$C_{11}H_{12}O_4$	K8	208
			1-Octanone, 1-(2-			
			octylcyclopropyl)-	C19H36O	К9	280
5	10.4	16330.07	Tetradecanoic acid, 10,13-	$C_{17}H_{34}O_2$	K10	270
			dimethyl-, methyl ester			
6	10.7	256925.24	Dibutyl phthalate	$C_{16}H_{22}O_4$	K11	278
7	10.9	55315.7	Dodecanoic acid, ethyl ester	$C_{14}H_{28}O_2$	K12	228
8	11.7	111464.18	Trimethyl[4-(2-methyl-4-oxo-	$C_{15}H_{24}O_2Si$	K13	264
			2-pentyl)phenoxy]silane			
9	12.5	93660.37	Palmitoyl ceramide	$C_{34}H_{67}NO_3$	K14	537
			.			200
			Imipramine	$C_{19}H_{24}N_2$	K15	280
10	127	18396 55	1 2 4-Benzenetricarboxylic	$C_{11}H_{10}O_{c}$	K16	238
10	12.7	10070.00	acid. 1.2-dimethyl ester	01111006	Rib	200
			acia, 1,2 aniculy i ester			
			Quinomethionate	$C_{10}H_6N_2OS_2$	K17	234
11	20.3	136620.59	2,4-Cyclohexadien-1-one, 3,5-	$C_{14}H_{22}O_2$	K18	222
			bis(1,1-dimethylethyl)-4-			
			hydroxy-			

Figure 6: GC-MS Chromatograph of Ethanolic Extract of Psidium guajava Leaves

Table 6: Bioactive compounds found in Ethanoli	c Extract of	Psidium guajava	Leaves	using
GC-MS		0,		U

Peak	RT	Area	Name of Compound	Molecular formula	Molecular Structure	Molecular weight
1	7.3	19989.91	a-Bisabolol	$C_{15}H_{26}O$	P1	222
			Methyl 4-hydroxybenzoate	$C_8H_8O_3$	P2	152
2	7.8	15146.27	Dioxatricyclo[5.1.0.0(3,5)]octa ne, 1-methyl-5-(1- methylethyl)-, (1α,3α,5α, 7α)-	$C_{10}H_{16}O_2$	Р3	168
			Germacrene D			
				$C_{15}H_{24}$	P4	204

3	8.4	34403.72	6-(3-Methyl-3-cyclohexenyl)- 2-methyl-2,6-heptadienol	C ₁₅ H ₂₄ O	Р5	220
			Aromandendrene			
4	8.6	7011.81	Germacrene D	$\begin{array}{c} C_{15}H_{24} \\ C_{15}H_{24} \end{array}$	P6 P7	204 204
5	8.7	22235.26	Aromandendrene Germacrene D	$\begin{array}{c} C_{15}H_{24} \\ C_{15}H_{24} \end{array}$	P8 P9	204 204
			cis-muurola-3,5-diene	$C_{15}H_{24}$	P10	204
6	9.3	30369.28	cis-muurola-4(14),5-diene Naphthalene, 1,2,4a,5,6,8a- hexahydro-4,7-dimethyl-1-(1- methylethyl)-	$\begin{array}{c} C_{15}H_{24} \\ C_{15}H_{24} \end{array}$	P11 P12	204 204
			1H-3a,7-Methanoazulene, 2,3,4,7,8,8a-hexahydro- 3,6,8,8-tetramethyl-, [3R- (3α,3aβ, 7β,8aα)]-	C ₁₅ H ₂₄	P13	204
			Cedrene			
7	9.4	11120.06	3-Phosphoglyceric acid	C ₁₅ H ₂₄ C ₃ H ₇ O ₇ P	P14 P15	204 186
			2-Phosphoglyceric acid 3-Buten-2-one, 4-(2,5,6,6-	C ₃ H ₇ O ₇ P	P16	186
			yl)-	C ₁₄ H ₂₂ O	P17	206
8	9.6	49098.43	3H-1,2,4-Triazol-3-one, 4-[4- [(2- aminoethyl)amino]phenyl]- 2,4-dihydro -2-[[4- (trifluoromethyl)phenyl]meth yl]-	C ₁₈ H ₁₈ F ₃ N ₅ O	P18	377
			Ethanone, 1-(1,3a,4,5,6,7- hexahydro-4-hydroxy-3,8- dimethyl-5-azulenyl)-	$C_{14}H_{20}O_2$	P19	220
9	10	30794.6	1-Methylene-2b- hydroxymethyl-3,3-dimethyl- 4b-(3-methylbut-2-enyl)- cyclohexane	C ₁₅ H ₂₆ O	P20	222
			Cyclohexene, 3-methyl-6-(1- methylethenyl)-, (3R-trans)-	$C_{10}H_{16}$	P21	136
10	10.1	11702.07	Germacrene D	C ₁₅ H ₂₄	P22	204
			Dihydro-cis-a-copaene-8-ol	$C_{15}H_{26}O$	P23	222
			Naphthalene, 1,2,3,5,6,7,8,8a- octahydro-1,8a-dimethyl-7- (1-methylethenyl)-, [1R-(1α, 7β,8aα)]-	C ₁₅ H ₂₄	P24	204
11	10.2	19261.38	Quinic acid	$C_7H_{12}O_6$	P25	192
			2,3-Dehydro-4-oxo-β-ionone	$C_{13}H_{16}O_2$	P26	204

Sulaiman A. N., Arzai A. H., Taura D. W., DUJOPAS 10 (4b): 301-324, 2024

12	10.4	94417.1	Dihydro-cis-a-copaene-8-ol	C ₁₅ H ₂₆ O	P27	222
			2-(3-Methyl-but-1-ynyl)- cyclohexene-1- carboxaldehyde	$C_{12}H_{16}O$	P28	176
			Viridiflorol	C15H26O	P29	222
10	10.0			- II20-		
13	10.9	21918.88	Aromandendrene	$C_{15}H_{24}$	P30	204
			all trans-Retinal	C ₂₀ H ₂₈ O	P31	284
14	11	60751.03	Dihydro-cis-a-copaene-8-ol	$C_{15}H_{26}O$	P32	222
15 16 17	11.2 11.4 12.4	45843.47 2791.26 18360	Germacrene D Cholecalciferol Benzene, 2-methoxy-4- methyl-1-(1-methylethyl)-	$\begin{array}{c} C_{15}H_{24} \\ C_{27}H_{44}O \\ C_{11}H_{16}O \end{array}$	P33 P34 P35	204 384 164
			cis-3-Methyl-β-methyl-β- nitrostyrene	$C_{10}H_{11}NO_2$	P36	177
18	12.6	27640.01	2H-1-Benzopyran, 3,4,4a,5,6,8a-hexahydro- 2,5,5,8a-tetramethyl-, (2α,4aα,8aα)-	C ₁₃ H ₂₂ O	P37	194
			2-Butenal, 2-methyl-4-(2,6,6-	C ₁₄ H ₂₂ O	P38	206
19	12.8	16529.81	trimethyl-1-cyclohexen-1-yl)- Citronellic acid	$C_{10}H_{18}O_2$	P39	170
20	12.9	66030.83	Sinapic acid photocitral A	$\begin{array}{c} C_{11}H_{12}O_5 \\ C_{10}H_{16}O \end{array}$	P40 P41	224 152
21	13.1	96072.94	1,4-Methano-3-benzoxepin- 5(4H)-one, 1,2,7,8,9,9a- hexahydro-7,10-dihydroxy-	$C_{15}H_{22}O_4$	P42	266
22	13.1	34133.83	2,2,9,9a-tetramethyl- Cyclohexene-1-methanol, α,4- dimethyl-α-(4-methyl-3- pentenyl)-	$C_{15}H_{26}O$	P43	222
			trans-3-Ethoxy-b-methyl-b- nitrostyrene	$C_{11}H_{13}NO_3$	P44	207
			Phosphoric acid, diethyl 1-	$C_8H_{17}O_4P$	P45	208
23	13.4	14374	methylenepropyl ester 2-Cyclopenten-1-one, 4- hydroxy-3-methyl-2-(2,4-	$C_{11}H_{14}O_2$	P46	178
24	13.7	127419.2	pentadienyl)- 1-Thienylcyclohexene	$C_{10}H_{12}S$	P47	164
			Calarene epoxide	$C_{15}H_{24}O$	P48	220
25	14.3	214562.6	Dibutyl phthalate	$C_{16}H_{22}O_4$	P49	278
26	14.5	101748.28	Hexadecanoic acid, ethyl ester	$C_{18}H_{36}O_2$	P50	284
27	15.6	42385.92	1-Naphthalenepentanoic acid,	$C_{21}H_{36}O_4$	P51	352
			decaĥydro-2-hydroxy- β ,2,5,5,8a-pentamethyl-6 -			
			Decahydro-8a-ethyl-1,1,4a,6- tetramethylnaphthalene	C ₁₆ H ₃₀	P52	222

Sulaiman A. N., Arzai A. H., Taura D. W., DUJOPAS 10 (4b): 301-324, 2024

Sulaiman A. N., Arzai A. H., Taura D. W., DUJOPAS 10 (4b): 301-324, 2024

Table 7: Bioactivit	y of Com	oounds Identifie	ed in Ethanolic	Extract of Bride	lia ferriginea	Bark by GC-MS
					, ,	1

Name of Compound	Bioactivity	Reference
4-Vinyl-imidazole	Antifungal	Yang et al. (2018)
5-Vinyl-pyrazole	antitumor, anti-inflammatory, and antifungal	Wu et al. (2015); Nayak et al. (2020)
1,3,8-p-Menthatriene	Antimicrobial	Neoh <i>et al.</i> (2008)
o-Cymene	antimicrobial and antioxidant	Neoh <i>et al.</i> (2008)
n-Butylbenzene	cytotoxicity	Neoh <i>et al.</i> (2008)
2,6-Diaminopimelic acid 1-Tridecene	Antibacterial Bio pesticide	Neoh <i>et al.</i> (2008). Neoh <i>et al.</i> (2008)
3-Propylglutaric acid	Neuroprotective	Neoh <i>et al.</i> (2008)
PET-cGMP Decynediol, tetramethyl, di(2-	cellular signaling associated with vasodilation and neurotransmission Unknown bioactivity	Neoh <i>et al.</i> (2008)
hydroxyethyl) ether		
Isophthalic acid, 2- formylphenyl propyl ester	anti-inflammatory	Neoh <i>et al.</i> (2008)
Phytol	antioxidant and anti-inflammatory	Neoh et al. (2008)
Silane, [(6a,7,8,10a-tetrahydro- 6,6,9-trimethyl-3-pentyl-6H- dibenzo[b,d]pyran -1,8- diyl)bis(oxy)]bis[dimethylphe nyl-, [6ar-(6aa,8β,10aβ)]-	Therapeutic	Neoh <i>et al.</i> (2008)
Decanoic acid, 2-methyl-	Antimicrobial	Neoh <i>et al.</i> (2008)
Tridecanoic acid, methyl ester	Antimicrobial	Neoh <i>et al.</i> (2008)
Benzene, 2-methoxy-4-methyl- 1-(1-methylethyl)-	insect repellent	Neoh <i>et al.</i> (2008)
Oxirane, [(hexadecyloxy)methyl]-	unknown bioactivity	
Proadifen	drug metabolism and detoxification	Neoh et al. (2008)
Silicic acid, diethyl bis(trimethylsilyl) ester	Therapeutic	Neoh <i>et al.</i> (2008)
Methyl stearate	Antimicrobial	Neoh <i>et al.</i> (2008)

Ethyl methoxy-4-me quinolinyl)-3-1 pyrazol-4-yl]a	[5-hydroxy-1-(6- ethyl-3- methyl-1H- cetate	Antitumor	Neoh <i>et al.</i> (2008)
Isoproturon		Herbicide	Neoh <i>et al.</i> (2008)
Genistin		antioxidant and anti-inflammatory	Neoh <i>et al.</i> (2008)
8-Isopropyl-5- tetrahydro-2,4 quinazolinedi	methyl-5,6,7,8- one	anti-inflammatory	Neoh <i>et al.</i> (2008)

Table 8: Bioactivity of Compounds Identified in Ethanolic Extract of Khaya senegalensis Bark by GC-MS

Name of Compound	Bioactivity	Reference
Ethanol	Antimicrobial	Mujeeb <i>et al.</i> (2014)
L-Lactic acid	Antimicrobial	Mujeeb et al. (2014)
Trinexanac-ethyl	plant growth regulator	Mujeeb et al. (2014)
Timexupue entyr	antioxidant	Will jeeb et ul. (2011)
	antioxidant,	
7-Methoxyflavanone	anti-inflammatory, and anticancer	Mujeeb <i>et al.</i> (2014)
	insecticide	
Temetos	histettette	Mujeeb et al. (2014)
Temeros		
*(2S 4S)-2 4-Dimethylheptanedioic	Synthesis of biodegradable polymers and as	Mujeeb $et al$ (2014)
acid dimethyl ester	a plasticizer enhance the mechanical	
dela anneary ester	properties of polymeric materials	
	properties of polymene materials	
2.6-Dimethyl-3-thioxo-5-oxo-	antimicrohial	
2 3 4 5-tetrahydro-1 2 4-triazine	antimerobia	Mujeeb et al. (2014)
2,5,4,5-tettariy@10-1,2,4-tha2ine		Widjeeb et ut. (2014)
3 5-Dimethoxycinnamic acid	antioxidant and anti-inflammatory	Mujeeb et al. (2014)
5,5-Dimetrioxyeninanic acta	antioxidant and anti-inhaninatory	Widjeeb et ut. (2014)
$1 - \Omega$ ctanone $1 - (2 - 1)$	Antimicrobial and flavouring agent	Mujeeb $et al (2014)$
octylcyclopropyl)-	Antimicrobial and havouring agent	Widjeeb et ul. (2011)
Tetradecanoic acid 10.13-	Antimicrobial	Ferdosi et al. (2022)
dimethyl- methyl ester	A municipolar	1 eruosi et ul. (2022)
*Dibutyl phthalate	Plasticizer and endocrine disrupting effect	Mujeeb $et al (2014)$
Dodocanoic acid othyl octor	antimicrobial properties and food	Fordosi $at al (2012)$
Dodecarioic acia, etityi ester	properties and food	reidosi <i>et ut</i> . (2022)
Trimathull (2 mathul 4 avo 2	Theremoutic	Muioph at $al (2014)$
ninieuryi[4-(2-meuryi-4-0x0-2-	merapeutic	Willjeed et ul. (2014)
Pelusitaal aaraasida	anti influence to me	$M_{\rm rescale} = t_{\rm res} (2014)$
Paimitoyi ceramide	anti-inflammatory	Mujeeb et al. (2014)
T		Main 1 (1 (2014)
Imipramine	antidepressant	Mujeeb et al. (2014)
*1 0 4 Demonstration 1 - 1		Main 1 (1 (2014)
¹ ,2,4-Benzenetricarboxylic acid,	Plasticizer	Mujeeb et al. (2014)
1,2-aimetnyi ester		
	NT	Main 1 (2014)
Quinomethionate	INEUROTOXIC	Nujeeb <i>et al.</i> (2014)
2,4-Cyclohexadien-1-one, 3,5-	Antioxidant	Mujeeb et al. (2014)
bis(1,1-dimethylethyl)-4-hydroxy-		

Key:*Phthalates contamination

Name of Compound	Bioactivity	Reference
α-Bisabolol	anti-inflammatory, antimicrobial, and wound-healing	Nabi <i>et al.</i> (2022)
Methyl 4-hydroxybenzoate Dioxatricyclo[5.1.0.0(3,5)]octane, 1- methyl-5-(1-methylethyl)-, (1a,3a,5a, 7a)-	antimicrobial Unknown bioactivity	Qadeer <i>et al.</i> (2007)
Germacrene D	antimicrobial and insecticidal	Bauta et al. (2003)
6-(3-Methyl-3-cyclohexenyl)-2-methyl- 2,6-heptadienol	flavoring agent and its sensory properties	(Krishnamoorthy and Paulsamy, 2014)
Aromandendrene cis-muurola-3,5-diene	antimicrobial natural insect repellent	Bauta <i>et al.</i> (2003) Nouni, (2023)
cis-muurola-4(14),5-diene Naphthalene, 1,2,4a,5,6,8a-hexahydro- 4,7-dimethyl-1-(1-methylethyl)-	insecticidal Unknown bioactivity	Nouni, (2023)
1H-3a,7-Methanoazulene, 2,3,4,7,8,8a- hexahydro-3,6,8,8-tetramethyl-, [3R- (3α,3aβ, 7β,8aα)]-	Unknown bioactivity	
Cedrene		$\mathbf{P}_{\text{restrict}} = t \cdot t \cdot (2002)$
3-Phosphoglyceric acid	metabolic intermediate	Rani and Kumari, (2014)
2-Phosphoglyceric acid	energy metabolism	Rani and Kumari, (2014)
3-Buten-2-one, 4-(2,5,6,6-tetramethyl-1-cyclohexen-1-yl)-	flavoring and fragrance	Hu et al. (2023)
3H-1,2,4-Triazol-3-one, 4-[4-[(2- aminoethyl)amino]phenyl]-2,4-dihydro -2-[[4-(trifluoromethyl)phenyl]methyl]-	antimicrobial agent	Müller and Applebyki, (2011)
Ethanone, 1-(1,3a,4,5,6,7-hexahydro-4- hydroxy-3,8-dimethyl-5-azulenyl)- 1-Methylene-2b-hydroxymethyl-3,3- dimethyl-4b-(3-methylbut-2-enyl)- cyclohexane	Unknown bioactivity Unknown bioactivity	
Cyclohexene, 3-methyl-6-(1- methylethenyl), (3R-trans),	Unknown bioactivity	
Dihydro-cis-a-copaene-8-ol	Antimicrobial	Bauta et al. (2003)
Naphthalene, 1,2,3,5,6,7,8,8a-octahydro- 1,8a-dimethyl-7-(1-methylethenyl)-, [1R- (1α, 7β,8aα)]-	Unknown bioactivity	
Quinic acid	antioxidant and anti-inflammatory	Hamama <i>et al.</i> (2018)
23 Debudro 1 ave & jongers	flavoring and fragrance	El-Barbary et al. (2001)
Dihydro-cis-α-copaene-8-ol	Insecticidal and antimicrobial	Sun <i>et al.</i> (2020); Mehrzadeh, (2024)

Table 9: Bioactivity of Compounds Identified in Ethanolic Extract of Psidium guajavaLeaves by GC-MS

2-(3-Methyl-but-1-ynyl)-cyclohexene-1- carboxaldehyde	flavoring agents and in fragrances.	Mehrzadeh, (2024)
Viridiflorol	Antimicrobial	Bauta <i>et al.</i> (2003)
Aromandendrene	Antimicrobial, antioxidant and anti- inflammatory	Mehrzadeh, (2024)
all trans-Retinal	vision and retinal health	Makki <i>et al.</i> (2015)
Cholecalciferol	immune function and cellular growth regulation	Газиева and Кравченко, (2014)
Benzene, 2-methoxy-4-methyl-1-(1- methylethyl)-	Unknown bioactivity	
cis-3-Methyl-β-methyl-β-nitrostyrene	Unknown bioactivity	
2H-1-Benzopyran, 3,4,4a,5,6,8a- hexahydro-2,5,5,8a-tetramethyl-,	Unknown bioactivity	
(2α,4aα,8aα)- 2-Butenal, 2-methyl-4-(2,6,6-trimethyl-1-	antioxidant properties	Mal et al. (2020)
cyclonexen-1-yl)- Citronellic acid	insect repellent	Makki <i>et al.</i> (2014)
Sinapic acid	antioxidant and anti-inflammatory	Esseffar et al. (2008)
1,4-Methano-3-benzoxepin-5(4H)-one, 1,2,7,8,9,9a-hexahydro-7,10-dihydroxy- 2,2,9,9a-tetramethyl-	anti-inflammatory or analgesic	López-Sánchez, (2024)
Cyclohexene-1-methanol, α,4-dimethyl- α-(4-methyl-3-pentenyl)-	antimicrobial or antifungal properties	Ganji <i>et al.</i> (2013)
trans-3-Ethoxy-b-methyl-b-nitrostyrene	therapeutic applications	C:1 (. 1. (2010)
Phosphoric acid, diethyl 1- methylenepropyl ester	Unknown bioactivity	Silva <i>et al.</i> (2010)
2-Cyclopenten-1-one, 4-hydroxy-3-	Unknown bioactivity	
nethyl-2-(2,4-pentadienyl)- 1-Thienylcyclohexene	Unknown bioactivity	
Calarene epoxide	Unknown bioactivity	
*Dibutyl phthalate	Plasticizer, endocrine-disrupting	Mujeeb et al. (2014)
Hexadecanoic acid, ethyl ester	antioxidant, anti-inflammatory, and	Nabi et al. (2022)
1-Naphthalenepentanoic acid, decahydro-2-hydroxy-β,2,5,5,8a- pentamethyl-6 -oxo-, methyl ester	anti-inflammatory or analgesic	Vavasori <i>et al.</i> (2003)
Decahydro-8a-ethyl-1,1,4a,6- tetramethylnaphthalene	Unknown bioactivity	
Trimethyl[4-(2-methyl-4-oxo-2- pentyl)phenoxy]silane	Unknown bioactivity	
4H-1-Benzopyran-4-one, 6,7-dimethoxy- 3-phenyl-	Unknown bioactivity	

Silicic acid, diethyl bis(trimethylsilyl) Unknown bioactivity ester

Sterigmatocystin

Unknown bioactivity

Key:*Phthalates contamination

DISCUSSION

The analysis of the extract using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR- FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS) provides valuable insights into the chemical composition and functional groups present in B. ferruginea, K. senegalensis and P. guajava extracts. The ATR-FTIR results for B. ferruginea indicate several peak values, including 3198.1 cm-1, 2105.9 cm-1, 1908.4 cm-1, 1602.8 cm-1, 1520.8 cm⁻¹, 1438.8 cm⁻¹, 1319.5 cm⁻¹, 1282.2 cm⁻¹, 1196.5 cm⁻¹, 1103.3 cm⁻¹, and 1028.7 cm⁻¹ as shown in Figure 1. These peaks correspond to various functional groups which can be associated with the molecular structure of the compounds present in the extract as shown in Table 1. The peak at 3198.1 cm⁻¹ typically indicates the presence of hydroxyl (-OH) groups or amines, which are common in many organic compounds, suggesting potential antioxidant properties (Thummajitsakul et al., 2022). The peaks around 1602.8 cm⁻¹ and 1520.8 cm⁻¹ are often attributed to aromatic C=C stretching vibrations, indicating the presence of aromatic compounds, which can contribute to the extract's biological activities (Thummajitsakul and Silprasit, 2022). In the finger print region, the peaks in the region of 1100-1300 cm⁻¹ are generally associated with C-O stretching vibrations, which further support the presence of alcohols, phenols, or ethers (Farooq et al., 2022).

In conjunction with the ATR-FTIR analysis, the GC-MS results revealed a diverse array of compounds identified in the extract, including 4-Vinyl-imidazole, 5-Vinyl-pyrazole, o-Cymene, and Phytol, among others. These compounds have been documented for various biological activities as shown in Table 4. For instance, o-Cymene is known for its antimicrobial and anti-inflammatory properties (Starlin *et al.*, 2019). Phytol, a common phytochemical, has been associated with antioxidant and anti-inflammatory effects, which may enhance the therapeutic potential of the extract (Chiguvare *et al.*, 2016). The presence of fatty acids such as Decanoic acid and Tridecanoic acid, as well as esters like Methyl stearate, suggests that the extract may also possess lipid-regulating properties, which could be beneficial in various health contexts (Uraku, 2015).

The identification of compounds such as 2,6-Diaminopimelic acid and 3-Propylglutaric acid indicates that the extract may have potential applications in medicinal chemistry, particularly in the development of new therapeutic agents (Nattala, 2019). Additionally, the presence of Isoproturon and Genistin suggests that the extract may exhibit herbicidal and antioxidant activities, respectively (Rădulescu *et al.*, 2020).

For *K. senegalensis*, the ATR- FTIR results reveal several significant peak values, including 3209.2 cm⁻¹, 2922.2 cm⁻¹, 1699.7 cm⁻¹, 1602.8 cm⁻¹, 1520.8 cm⁻¹, and 1200-1300 cm⁻¹ as shown in Figure 2. Each of these peaks corresponds to specific functional groups that are indicative of the chemical nature of the compounds present in the extract as shown in Table 2.The peak at 3209.2 cm⁻¹ is typically associated with O-H stretching vibrations, which suggests the presence of alcohols or phenolic compounds (Morah, 2023). This is further supported by the peak at 1699.7 cm⁻¹, which is indicative of carbonyl (C=O) stretching, commonly found in carboxylic acids and esters (Keskes *et al.*, 2016). The peaks around 1602.8 cm⁻¹ and 1520.8 cm⁻¹ correspond to aromatic C=C stretching, indicating the presence of aromatic compounds that

may contribute to the extract's bioactivity (Thummajitsakul and Silprasit, 2022). Additionally, in the finger print region, the peaks in the region of 1200-1300 cm⁻¹ are often attributed to C-O stretching vibrations, which are characteristic of ethers and alcohols (Yilwa *et al.*, 2022). The presence of these functional groups suggests that the extract may possess various biological activities, including antioxidant and anti-inflammatory properties.

The GC-MS analysis identifies a diverse range of compounds within the extract, including Ethanol, L-Lactic acid, and 7-Methoxyflavanone, among others. Ethanol is the solvent used in the extraction process, and its presence may indicate the extraction method employed (Kamble and Gaikwad, 2016). L-Lactic acid is known for its role in metabolic processes and may contribute to the extract's potential health benefits (Yusof *et al.*, 2014). The identification of 7-Methoxyflavanone, a flavonoid, suggests that the extract may possess antioxidant properties, as flavonoids are well-documented for their ability to scavenge free radicals (Dike, 2023).

Other notable compounds identified include 3,5-Dimethoxycinnamic acid, which is recognized for its anti-inflammatory and antioxidant activities (Thummajitsakul et al., 2022). The presence of fatty acids such as Tetradecanoic acid and Dodecanoic acid, along with their methyl esters, indicates that the extract may have lipid-regulating properties, which could be beneficial in various health contexts (Ovais et al., 2018). The presence of phthalates such as (2S,4S)-2,4-Dimethylheptanedioic acid dimethyl ester, Dibutyl phthalate and 1,2,4-Benzenetricarboxylic acid, 1,2-dimethyl ester in the plant extract suggests a possibility of contamination from the plastic container used in storing the extract or from the soil environment where the plant was sourced. These plants uptake these toxic chemicals through the roots from dissolved plastics with no covalent bond (Omidpanah et al., 2018). Furthermore, compounds like Imipramine, an antidepressant, suggest potential neuroactive properties of the extract, which may warrant further investigation (Mohammed et al., 2023). For *P. guajava*, the ATR-FTIR results reveal several key peak values, including 3235.3 cm⁻¹, 2918.5 cm⁻¹, 2851.4 cm⁻¹, 2113.4 cm⁻¹, 1684.8 cm⁻¹, and 1606.5 cm⁻¹, 1520.8 cm⁻¹, 1442.5 cm⁻¹, 1315.8 cm⁻¹ , 1282.2 cm⁻¹ , 1200.2 cm⁻¹ , 1103.3 cm⁻¹ , 1032.5 cm⁻¹ , and 764.1 cm⁻¹as shown in Figure 3. Each of these peaks corresponds to specific functional groups that are indicative of the chemical nature of the compounds present in the extract as shown in Table 3.

The peak at 3235.3 cm⁻¹ is typically associated with O-H stretching vibrations, suggesting the presence of hydroxyl groups, which are common in alcohols and phenolic compounds (Sobha *et al.*, 2017). This is further supported by the peak at 1684.8 cm⁻¹, indicative of carbonyl (C=O) stretching, often found in carboxylic acids and esters (Ram *et al.*, 2020). The peaks around 1606.5 cm⁻¹ correspond to aromatic C=C stretching, indicating the presence of aromatic compounds that may contribute to the extract's antioxidant and anti-inflammatory properties (Elya *et al.*, 2012). Additionally, the peaks in the finger print region of 1200-1300 cm⁻¹ are typically attributed to C-O stretching vibrations, characteristic of ethers and alcohols (Rasheed and Jabeen, 2022). The presence of these functional groups suggests that the extract may possess various biological activities, including potential therapeutic effects.

The GC-MS analysis identifies a diverse array of compounds within the extract, including α -Bisabolol, Methyl 4-hydroxybenzoate, and Germacrene D, among others. α -Bisabolol is known for its anti-inflammatory and antimicrobial properties, making it a valuable component for potential therapeutic applications (Pakkirisamy *et al.*, 2017). Methyl 4-hydroxybenzoate, also known as methylparaben, is widely used as a preservative and has been shown to possess antimicrobial properties (Mubeen *et al.*, 2022). The presence of

Germacrene D, a sesquiterpene, is notable as it is recognized for its potential antiinflammatory and anticancer activities (Krishnamoorthy and Paulsamy, 2014).

Just like *K. senegalensis* extract, *P. guajava* extract also contained Dibutyl phthalate (phthlate contamination). Other significant compounds identified include various naphthalene derivatives and cyclohexene compounds, which may contribute to the extract's aromatic profile and potential biological activities (Gnanakani *et al.*, 2019). For instance, the presence of 3-Phosphoglyceric acid and Quinic acid suggests metabolic roles that could be beneficial in various physiological processes (Parekh and Chanda, 2010). Furthermore, the identification of compounds like Sinapic acid and all trans-Retinal indicates potential antioxidant properties, as these compounds are known for their ability to scavenge free radicals (Subramanian *et al.*, 2016).

CONCLUSION

The combined ATR-FTIR and GC-MS analyses of *B. ferruginea*, *K. senegalensis* and *P. guajava* provide details of their characterization, revealing a rich profile of functional groups, bioactive compounds and their respective bioactivity. This information is crucial for understanding the potential health benefits and applications of these extracts in medicinal and therapeutic contexts. The presence of various bioactive compounds suggests that the extracts may have significant pharmacological potential, warranting further investigation into its therapeutic applications in its use for treatment of gastro intestinal diseases.

REFERENCES

- Adeleye, O. (2020). *In vitro* Studies on Antioxidant Potential of Aqueous Extract of *Bridelia ferruginea* Stem Bark in Brain and Liver of Wistar-Albino Rats Using Sodium Nitroprusside as Pro-oxidant. *Asian Journal of Biochemistry Genetics and Molecular Biology*, 39-45.
- Alowanou, G.G., Olounlade, A.P., Azando, E.V.B., Dedehou, V.F.G.N, Daga, F.D., and Hounzangbé-Adoté, S.M. (2015). A Review of *Bridelia ferruginea*, *Combretum glutinosum* and *Mitragina inermis* Plants Used in Zootherapeutic Remedies in West Africa: Historical Origins, Current Uses and Implications for Conservation. *Journal of Applied Biosciences*, 87(1), 8003.
- Bahmani, M., Zargaran, A., andRafieian-Kopaei, M. (2014). Identification of Medicinal Plants of Urmia for Treatment of Gastrointestinal Disorders. *Revista Brasileira De Farmacognosia*, 24(4), 468-480.
- Bauta, W., Lovett, D., Cantrell, W., and Burke, B. (2003). Formal Synthesis of Angiogenesis Inhibitor NM-3. *The Journal of Organic Chemistry*, 68(15), 5967-5973. https://doi.org/10.1021/jo034165c
- Buss, A.D., and Butler, M.S. (2010). Natural Product Chemistry for Drug Discovery. *The Royal Society of Chemistry*, Cambridge, 153.
- Chiguvare, H., Oyedeji, O., Matewu, R., Aremu, O., Oyemitan, I., Oyedeji, A., ... and Oluwafemi, O. (2016). Synthesis of Silver Nanoparticles Using Buchu Plant Extracts and Their Analgesic Properties. Molecules, 21(6), 774. <u>https://doi.org/10.3390/molecules21060774</u>
- Dike, C. (2023). GC-MS and FTIR Analyses of Bioactive Compounds Present in Ethanol Leaf Extract of *Sida acuta* from Imo State, Nigeria. *GSC Biological and Pharmaceutical Sciences*, 25(2), 394-404. <u>https://doi.org/10.30574/gscbps.2023.25.2.0500</u>

- El-Barbary, A., El-Badawi, M., and Loksha, Y. (2001). Synthesis of Some Novel 3,7-dimethyl-4h-pyrazolo[5,1-c][1,2,4]triazin-4-ones. *Journal of Heterocyclic Chemistry*, 38(3), 711-716.
- Elya, B., Basah, K., Mun'im, A., Yuliastuti, W., Bangun, A., andSeptiana, E. (2012). Screening of α-glucosidase Inhibitory Activity from Some Plants of *Apocynaceae*, *Clusiaceae*, *Euphorbiaceae*, and *Rubiaceae*. *Journal of Biomedicine and Biotechnology*, 1-6. https://doi.org/10.1155/2012/281078
- Es-safi, I., Mechchate, H., Amaghnouje, A., Jawhari, F., Bari, A., Cerruti, P. and Bousta, D. (2020). Medicinal Plants Used to Treat Acute Digestive System Problems in the Region of Fez-Meknes in Morocco: An Ethnopharmacological Survey. *Ethnobotany Research and Applications*, 20.
- Esseffar, M., Messaoudi, M., Jalal, R., Domingo, L., and Aurell, M. (2008). A Combined Experimental and Theoretical Study of the Alkylation of 3,5-dithioxo-[1,2,4]triazepines. *Journal of Physical Organic Chemistry*, 21(6), 457-463. https://doi.org/10.1002/poc.1348
- Fadare, O.A., Durosimi, O.M., Fadare, R., Izevbekhai, O.U., Awonyemi, I.O. and Obafemi, C.A. (2015). ATR-FTIR and HPLC Spectroscopic Studies and Evaluation of Mineral Content of *Carica papaya* Leaves and Flowers. *Journal of Phytomedicine*. 1 (1).
- Farooq, S., Shaheen, G., Asif, H., Aslam, M., Zahid, R., Rajpoot, S., ... and Zafar, F. (2022). Preliminary Phytochemical Analysis: *In-vitro* Comparative Evaluation of Antiarthritic and Anti-inflammatory Potential of Some Traditionally Used Medicinal Plants. *Dose-Response*, 20(1). <u>https://doi.org/10.1177/15593258211069720</u>
- Ferdosi, M., Khan, I., and Javaid, A. (2022). Composition of Essential Oil Isolated from marigold (*Tagetes erecta* l.) Flowers Cultivated in Lahore, Pakistan. *Bangladesh Journal* of Botany, 51(4), 683-688. https://doi.org/10.3329/bjb.v51i4.63486
- Ganji, S., Bukya, P., Vakati, V., Rao, K., and Burri, D. (2013). Highly Efficient and Expeditious pdo/sba-15 Catalysts for Allylic Oxidation of Cyclohexene to Cyclohexenone. *Catalysis Science and Technology*, 3(2), 409-414. https://doi.org/10.1039/c2cy20627g
- Gholamnezhad, Z., Ghorani, V., Saadat, S., Shakeri, F., and Boskabady, M. (2018). The Effects of Medicinal Plants on Muscarinic Receptors in Various Types of Smooth Muscle. *Phytotherapy Research*, 32(12), 2340-2363.
- Gnanakani, P., Santhanam, P., Premkumar, K., Kilari, E., and Dhanaraju, M. (2019). Nanno chloropsis Extract-mediated Synthesis of Biogenic Silver Nanoparticles, Characterization and In vitro Assessment of Antimicrobial, Antioxidant and Cytotoxic Activities. Asian Pacific Journal of Cancer Prevention, 20(8), 2353-2364. https://doi.org/10.31557/apjcp.2019.20.8.2353
- Hamama, W., El-Bana, G., Mostafa, M., and Zoorob, H. (2018). Synthesis and Acaricidal Activity of Some New 1,2,4-triazine Derivatives. *Journal of Heterocyclic Chemistry*, 56(1), 239-250. https://doi.org/10.1002/jhet.3401
- Hu, L., Gu, Y., Ju, L., Ning, M., Yang, J., Zhang, Y., and Liu, Y. (2023). Discovery of Highly Potent and Selective Thyroid Hormone Receptor β Agonists for the Treatment of Non-alcoholic Steatohepatitis. *Journal of Medicinal Chemistry*, 66(5), 3284-3300. https://doi.org/10.1021/acs.jmedchem.2c01669
- Kamble, V. and Gaikwad, N. (2016). Fourier Transform Infrared Spectroscopy Spectroscopic Studies in *Embelia ribes Burm.* f.: a vulnerable medicinal plant. Asian Journal of Pharmaceutical and Clinical Research, 9(9), 41. <u>https://doi.org/10.22159/ajpcr.2016.v9s3.13804</u>
- Karimi, M., Mardani, M., and Mahmoodnia, L. (2017). Colic Phytotherapy in Iranian Ethnobotany: An Overview of the Ffectiveness of the Most Important Native

Medicinal Plants of Iran on Olic Disease. *International Journal of Pharmaceutical and Clinical Research*, 9(1).

- Keskes, H., Belhadj, S., Jlail, L., Feki, A., Damak, M., Sayadi, S., ... and Allouche, N. (2016). LC-MS-MS and GC-MS Analyses of Biologically Active Extracts and Fractions from Tunisian Juniperus phoenice leaves. Pharmaceutical Biology, 55(1), 88-95. <u>https://doi.org/10.1080/13880209.2016.1230139</u>
- Krishnamoorthy, K. and Paulsamy, S. (2014). Phytochemical Profiling of Leaf, Stem, and Tuber Parts of Solena amplexicaulis (Lam.) Gandhi Using GC-MS. International Scholarly Research Notice, 1-13. <u>https://doi.org/10.1155/2014/567409</u>
- López-Sánchez, B. (2024). Transformation of the Pheromone 3-methyl-2-cyclohexen-1-ol in the Presence of [RuClCp (PTA)2] and [RuCp (OH2)(PTA)2]CF3SO3. *Applied Organometallic Chemistry*, 38(4). <u>https://doi.org/10.1002/aoc.7368</u>
- Makki, M., Abdel-Rahman, R., and Aqlan, F. (2015). Synthesis of Fluorinated Heterobicyclic Nitrogen Systems Containing 1,2,4-triazine Moiety as Cdk2 Inhibition Agents. *International Journal of Organic Chemistry*, 05(03), 200-211. https://doi.org/10.4236/ijoc.2015.53020
- Makki, M., Abdel-Rahman, R., and Khan, K. (2014). Fluorine Substituted 1,2,4-triazinones as Potential Anti-HIV-1 and Cdk2 Inhibitors. *Journal of Chemistry*, 1-14. https://doi.org/10.1155/2014/430573
- Mal, D., Kundu, J., and Pradhan, D. (2020). Cuo {001} As the Most Active Exposed Facet for Allylic Oxidation of Cyclohexene Via A Greener Route. *Chemcatchem*, 13(1), 362-372. <u>https://doi.org/10.1002/cctc.202001645</u>
- Mehrzadeh, M. (2024). A Review of the Ethnobotany, Biological Activity, and Phytochemistry of the Plants in the *Gundelia* genus. *Chemistry and Biodiversity*, 21(3). https://doi.org/10.1002/cbdv.202301932
- Mohammed, J., Oba, O., and Aydinlik, N. (2023). Preliminary Phytochemical Screening, GC-MS, FTIR Analysis of Ethanolic Extracts of Rosmarinus officinalis, Coriandrum sativum 1 and Mentha spicata. Hacettepe Journal of Biology and Chemistry, 51(1), 93-102. https://doi.org/10.15671/hjbc.1073300
- Morah, A. (2023). Identification of Compounds and Functional Groups of N-hexane Seed Extracts of *Citrullus lanatus* and *Elaeis guineensis* Using GC-MS and FT-IR. *GSC Biological and Pharmaceutical Sciences*, 25(3), 107-119. https://doi.org/10.30574/gscbps.2023.25.3.0515
- Mubeen, B., Rasool, M., Ullah, I., Rasool, R., Imam, S., Alshehri, S., ... and Kazmi, I. (2022). Phytochemicals Mediated Synthesis of Aunps from *Citrullus colocynthis* and Their Characterization. *Molecules*, 27(4), 1300. https://doi.org/10.3390/molecules27041300
- Mujeeb, F., Bajpai, P., and Pathak, N. (2014). Phytochemical Evaluation, Antimicrobial Activity, and Determination of Bioactive Components from Leaves of *Agle marmelos*. *Biomed Research International*, 2014, 1-11. <u>https://doi.org/10.1155/2014/497606</u>
- Müller, F. and Applebyki, A. (2011). Weed Control, 2. Individual Herbicides. In Ullmann's Encyclopedia of Industrial Chemistry, (Ed.). <u>https://doi.org/10.1002/14356007.028_001</u>
- Nabi, M., Zargar, M., Tabassum, N., Ganai, B., Wani, S., Alshehri, S., and Shakeel, F. (2022). Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of *Skimmia anquetilia. Plants*, 11(13), 1667. <u>https://doi.org/10.3390/plants11131667</u>
- Nattala, T. S., Gorrepati, R., Kakumanu, B. andKovvada, V. K. (2019). A Study on Phytochemical Composition, GC-MS Analysis and Anti-microbial Potential of Methanolic Leaf Extract of Alstonia scholaris (l.) R. Br.. International Journal of Pharmaceutical Sciences and Research, 10(2). <u>https://doi.org/10.13040/ijpsr.0975-8232.10(3).747-55</u>

- Nayak, S., Poojary, B., and Kamat, V. (2020). Novel Pyrazole-clubbed Thiophene Derivatives Via Gewald Synthesis as Antibacterial And Anti-inflammatory Agents. *Archiv Der Pharmazie*, 353(12). <u>https://doi.org/10.1002/ardp.202000103</u>
- Neoh, T., Tanimoto, T., Ikefuji, S., Yoshii, H., and Furuta, T. (2008). Improvement of Antifungal Activity of 10-undecyn-1-ol by Inclusion Complexation with Cyclodextrin Derivatives. *Journal of Agricultural and Food Chemistry*, 56(10), 3699-3705. https://doi.org/10.1021/jf0731898
- Nouni, C. (2023). Antioxidant and Hypolipidemic Activities of Cinnamic Acid Derivatives. *Molecules*, 28(18), 6732. <u>https://doi.org/10.3390/molecules28186732</u>
- <u>Omidpanah, S.,</u> Saeidnia, S., Saeedi, S., Hadjiakhondii, A., and Manayi, A., (2018). Phthalate Contamination of Some Plants and Herbal Products. *Boletín Latinoamericano Y Del Caribe De Plantas Medicinales Y Aromáticas*, 17 (1): 61 – 67.
- Ovais, M., Ayaz, M., Khalil, A., Shah, S., Jan, M., Raza, A., … and Shinwari, Z. (2018). HPLC-Dad Finger Printing, Antioxidant, Cholinesterase, and α-Glucosidase Inhibitory Potentials of a Novel Plant Olax nana. BMC Complementary and Alternative Medicine, 18(1). <u>https://doi.org/10.1186/s12906-017-2057-9</u>
- Pakkirisamy, M., Kalakandan, S., and Ravichandran, K. (2017). Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of *Curcuma caesiaroxb* (Black Turmeric). *Pharmacognosy Journal*, 9(6), 952-956. <u>https://doi.org/10.5530/pj.2017.6.149</u>
- Palombo, E.A. (2006). Phytochemicals from Traditional Medicinal Plants Used in the Treatment of Diarrhoea: Modes of Action and Effects on Intestinal Function. *Phytotherapy Research*, 20(9), 717-724.
- Parekh, J. and Chanda, S. (2010). Antibacterial and Phytochemical Studies on Twelve species of Indian Medicinal Plants. *African Journal of Biomedical Research*, 10(2). https://doi.org/10.4314/ajbr.v10i2.50624
- Pérez-Ochoa, M., Chávez-Servia, J., Vera-Guzmán, A., Aquino-Bolaños, E., and Carrillo-Rodríguez, J. (2019). Medicinal Plants Used by Indigenous Communities of Oaxaca, Mexico, to Treat Gastrointestinal Disorders. Intech Open.
- Qadeer, G., Rama, N., and Shah, S. (2007). A New Total Synthesis of Natural Isocoumarin, *Thunberginol B. Arkivoc*, (14), 12-19. https://doi.org/10.3998/ark.5550190.0008.e02
- Rădulescu, C., Olteanu, R., Stihi, C., Florescu, M., Ştirbescu, R., Stănescu, S., ... and Bumbac, M. (2020). Chemometrics-Based Vibrational Spectroscopy for Juglandis Semen Extracts Investigation. *Journal of Chemometrics*, 34(6).
- Ram, H., Jaipal, N., Charan, J., Kashyap, P., Kumar, S., Tripathi, R., ... andAbd_Allah, E. (2020). Phytoconstituents of An Ethanolic Pod Extract of *Prosopis cineraria* Triggers the Inhibition of HMG-CoA Reductase and the Regression of Atherosclerotic Plaque in Hypercholesterolemic Rabbits. *Lipids in Health and Disease*, 19(1). <u>https://doi.org/10.1186/s12944-020-1188-z</u>
- Rani, V. and Kumari, Y. (2014). An Efficient and Green Synthesis of Benzylidene-2-n-(carbothioamido)-6-oxo-1,2,5,6- tetrahydro-1-nh-1,2,4-triazine Derivatives and their Antibacterial Activity Evaluation. Asian Journal of Chemistry, 26(18), 5931-5934. <u>https://doi.org/10.14233/ajchem.2014.16333</u>
- Rasheed, H. and Jabeen, Q. (2022). Pharmacological Role of *Capparis decidua* (Forssk.) Edgew in Preventing Cyclophosphamide-Induced Myelosuppression and Modulating Innate and Adaptive Immune Response. *Dose-Response*, 20(3). <u>https://doi.org/10.1177/15593258221123672</u>
- Senouci, F., Ababou, A., Senouci, S., and Bouzada, N. (2022). Traditional Medicinal Plants Applied for the Treatment of Gastrointestinal Diseases in Chlef, Algeria. *Egyptian Journal of Botany*, 63(2), 419-429.

- Silva, F., Jacinto, M., Landers, R., and Rossi, L. (2010). Selective Allylic Oxidation of Cyclohexene by a Magnetically Recoverable Cobalt Oxide Catalyst. *Catalysis Letters*, 141(3), 432-437.https://doi.org/10.1007/s10562-010-0512-z
- Sobha, K., Dumpala, P., Anantha, R., Verma, M., and Kandepu, S. (2017). Evaluation of Therapeutic Potential of the Silver/Silver Chloride Nanoparticles Synthesized with the Aqueous Leaf Extract of *Rumexa cetosa*. *Scientific Reports*, 7(1). <u>https://doi.org/10.1038/s41598-017-11853-2</u>
- Starlin, T., Ps, P., Bka, T., and Gopalakrishnan, V. (2019). Screening and GC-MS Profiling of Ethanolic Extract of *Tylophora pauciflora*. *Bioinformation*, 15(6), 425-429. <u>https://doi.org/10.6026/97320630015425</u>
- Subramanian, S., Nandagopal, B., and Anbarasu, A. (2016). Natural Inhibitors of HMG-CoA Reductase – An Insilico Approach Through Molecular Docking and Simulation Studies. Journal of Cellular Biochemistry, 118(1), 52-57. https://doi.org/10.1002/jcb.2560
- Sulaiman, A.N., Arzai, A.H., Taura, D.W. (2022). Ethnobotanical Survey: A Comprehensive Review of Medicinal Plants Used in Treatment of Gastro Intestinal Diseases in Kano State, Nigeria, *Phytomedicine Plus*. 2. 100180
- Sulaiman, A.N., Arzai, A.H., Taura, D.W. (2024). Susceptibility Pattern of Tetracycline-Resistant Salmonella species to Other Antibiotics and Some Plant Extracts, UMYU Journal of Microbiology Research, 9 (2). 115-128.
- Sun, J., Feng, Y., Wang, Y., Li, J., Zou, K., Liu, H. and Wu, Y. (2020). A-Pinene, Caryophyllene and β-myrcene from Peucedanumterebinthaceum Essential Oil: Insecticidal and Repellent Effects on Three Stored-Product Insects. *Records of Natural Products*, 14(3), 177-189. <u>https://doi.org/10.25135/rnp.149.19.05.1287</u>
- Thummajitsakul, S. and Silprasit, K. (2022). Analysis of FTIR Spectra, Flavonoid Content and Anti-Tyrosinase Activity of Extracts and Lotion from *Garcinia schomburgkiana* by Multivariate Method. *Trends in Sciences*, 19(18), 5780. https://doi.org/10.48048/tis.2022.5780
- Thummajitsakul, S., Boonburapong, B., and Silprasit, K. (2022). Analysis of Flower Extract and Natural Dye Solution from *Sesbania javanica* Using Fourier-Transform Infrared Spectroscopy (FTIR) Chemometrics, and Determination of its Antioxidant and Anti-Glucosidase Activities. *International Food Research Journal*, 29(3), 707-722. <u>https://doi.org/10.47836/ifrj.29.3.22</u>
- Uraku, A. (2015). Determination of Chemical Compositions of *Cymbopogon citratus* Leaves by Gas Chromatography-Mass Spectrometry (GC-MS) Method. *Research Journal of Phytochemistry*, 9(4), 175-187. <u>https://doi.org/10.3923/rjphyto.2015.175.187</u>
- Vavasori, A., Toniolo, L., and Cavinato, G. (2003). Hydro Esterification of Cyclohexene Using the Complex Pd(PPH3)2(TSO)2 as Catalyst Precursor Effect of a Hydrogen Source (TSOH, H₂O) on the TOF and A Kinetic Study (TSOH: p-toluenesulfonic acid). *Journal of Molecular Catalysis a Chemical*, 191(1), 9-21. https://doi.org/10.1016/s1381-1169(02)00358-8
- Wu, Z., Wu, S., Ye, Y., Zhou, X., Wang, P., Xue, W. and Hu, D. (2015). Synthesis and Bioactivities of Novel 1-(3-chloropyridin-2-yl)-n-substituted-5-(trifluoromethyl)pyrazole carboxamide Derivatives. *Journal of Heterocyclic Chemistry*, 54(1), 325-330.
- Yang, W., Zhou, X., and Wu, Z. (2018). Design, Synthesis, Antifungal and Antibacterial Activities of N-Phenyl and N-Pyridinyl-5-(trifluoromethyl)-pyrazole-4-carboxamide Derivatives. *Journal of Heterocyclic Chemistry*, 55(10), 2261-2269. https://doi.org/10.1002/jhet.3277
- Yilwa, V., Egbe, N., Hassan, A., andOzojiofor, U. (2022). Characterization and Evaluation of the Effects of *Indigofera pulchra, Aristolochia albida* and *Andrographis paniculata* Leaves

Extract Phenolics Against the Activity of *Naja nigricollis* and *Echis ocellatus* Snake Venoms. *Journal of Complementary and Alternative Medical Research*, 28-42. https://doi.org/10.9734/jocamr/2022/v18i330353

- Yusof, N., Isha, A., Ismail, I., Khatib, A., Shaari, K., Abas, F., ... and Rukayadi, Y. (2014). Infrared–Metabolomics Approach in Detecting Changes in *Andrographis paniculata* Metabolites Due to Different Harvesting Ages and Times. *Journal of the Science of Food* and Agriculture, 95(12), 2533-2543. <u>https://doi.org/10.1002/jsfa.6987</u>
- Газиева, Г. and Кравченко, А. (2014). Unexpected Formation of Thioglycolurils Precursors. *Journal of Heterocyclic Chemistry*, 52(6), 1858-1863. <u>https://doi.org/10.1002/jhet.2305</u>