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Abstract 
Artificial Intelligence, particularly predictive modelling, is increasingly influencing education. For 
instance, a specific algorithm predicted with 74% accuracy the students that would fail within three 
weeks of the course. These results could lead to interventions that promote inclusivity and personalized 
learning, supporting the UN's goals of quality education and reducing inequalities. While predictive 
analytics holds great promise for education, datasets often suffer from small sample sizes and class 
imbalances which can result in inaccurate predictions and biased machine learning models. In this 
study, we evaluate the significance of various data engineering techniques in the context of educational 
data mining using a multi-factor supervised learning experiment. We applied data augmentation and 
balancing techniques to assess their impact on model performance. Additionally, data discretization for 
continuous features and feature selection, to identify the most relevant features for model training, were 
implemented and evaluated. The experimental design followed a 2 X 2 X 3 X3 factorial structure, 
incorporating different combinations of these techniques. We employed three models: Random Forest, 
Decision Tree, and Feed Forward Neural Network. The performance was measured using accuracy and 
F1 score metrics. The results also show that the data augmentation and balancing techniques seem to 
improve testing accuracy and F1 scores slightly, particularly for simpler models like Decision Trees. 
Feedforward Neural Networks perform more consistently across different datasets, while Decision Trees 
and Random Forests are more prone to overfitting, particularly without proper data balancing or 
augmentation. 
 
Keywords: Data Engineering, Feature Selection, Data Augmentation, Educational Mining  
 
INTRODUCTION 
There has been growing evidence of the impact of Artificial Intelligence in education 

especially in predictive modelling(Bates et al., 2020; Gkontzis et al., 2022).  For instance, 
(Akçapınar et al., 2019) conducted a study with 76 second-year university students registered 
in a computing course at two Peruvian universities from 2020-2022. They estimated that 74% 

of the students who were unsuccessful at the end of term could be accurately predicted 
through the use of a specific algorithm in as short as 3 weeks from the beginning of the course. 
Similarly, (Tsai et al., 2020)investigated the use of big data and artificial intelligence to predict 
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dropout probabilities. Using data from 3,552 students at a Taiwanese university, statistical 
and deep learning methods were employed. The results showed accuracies of 68% and 77% 
for the statistical and deep learning methods, respectively. These findings could inform 

interventions that could improve inclusiveness and adaptation to individual learners’ 
differences thereby contributing to achieving SDGs Goal No.4 (Quality Education) and Goal 
No. 10(Reduced Inequalities). 

 
Despite the enormous potential of predictive analytics in educational mining and the 
increasing availability of educational data, educational datasets often present significant 

challenges, including small sample sizes and class imbalances, which can adversely affect the 
performance of machine learning models (Ghosh et al., 2024; Rekha et al., 2021; Selim & Rezk, 
2023). These issues can lead to inaccurate predictions and biased learning models(Thabtah et 

al., 2020; Thölke et al., 2023). In the context of educational data mining, a machine learning 
model that fails to accurately predict student performance can have serious consequences. For 
example, it might mistakenly identify struggling students as high achievers or vice versa. This 

can lead to students not receiving the appropriate support they need. Similarly, the same 
model can misclassify a successful student, potentially limiting their educational 
opportunities.  

 
Many studies proposed different data engineering techniques to remedy the problem. For the 
challenge of a small dataset, data engineering techniques exist for generating synthetic 

datasets(Ghaleb et al., 2023; Majeed & Hwang, 2023a). These techniques can increase the 
dataset size, balance the distribution of different student types, and ultimately enhance the 
model's accuracy. For the imbalance datasets, studies proposed different data engineering 

techniques and data pre-processing pipelines to address it(Ashraf et al., 2020; Bujang et al., 
2021; López-García et al., 2023; Walid et al., 2022). For instance, (Ashraf et al., 2020)employed 
a multi-classifier ensemble approach to enhance accuracy in students’ performance prediction 

using a pedagogical dataset that was compiled by the University of Kashmir.  Similarly, 
feature selection and data balancing in combination were proposed in(Ghaleb et al., 2023). In 

the study, after pre-processing the data, Multiple Criteria Decision Making (MCDM) methods 
were utilized for feature extraction. In addition, Adaptive Synthetic Sampling 
(ADASYN)(López-García et al., 2023) was employed to balance the dataset through 

oversampling. At the end of the pipeline, Extreme Gradient Boosting (XGBoos) was then used 
to build an ensemble of decision trees. However, the results in  (Ashraf et al., 2020; López-
García et al., 2023) could have been influenced by the interaction with the ensemble technique 

and there is the need to test the data engineering techniques, separate from the ensembling.  
 
A more comprehensive study (Zhang et al., 2023) explored the combination of data re-

sampling and feature selection and which technique should be applied before the other by 
applying feature selection before or after data re-sampling in a large number of experiments, 
with a total of 9225 tests, on 52 publicly available datasets. The study used different feature 

selection and data resampling methods on three classification algorithms. They found that 
neither method consistently outperformed the other, suggesting that both should be 
considered when working with imbalanced data. This implies that more studies are needed 

to either generalize the results obtained the previous study (Zhang et al., 2023) or refute them. 
Despite significant advances in leveraging machine learning for educational data mining, 
existing studies often focus on either ensemble methods or tuning model parameters without 

systematically examining the individual and combined effects of foundational data 
engineering techniques. Many works report improvements primarily in training accuracy, 
which may indicate overfitting rather than genuine model robustness. Additionally, the 
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majority of prior studies address only one or two data challenges (e.g., class imbalance or 
small dataset size) without exploring their interplay or implications for multiple model types. 
Our study addresses these gaps by rigorously evaluating data discretization, feature selection, 

data balancing, and data augmentation both in isolation and in combination. Unlike previous 
efforts, this work adopts a factorial experimental design, and ensures unbiased model 
comparisons through hyperparameter optimization. The novelty of this study lies in its 

holistic approach to assessing data engineering impacts across both shallow models (Decision 
Tree, Random Forest) and deep models (Feedforward Neural Network), thus providing a 
comprehensive understanding of how these techniques enhance model reliability and 

generalization.  
 
The motivation for this paper stems from the critical need to improve the performance and 

reliability of machine learning models used in educational data mining. Most existing studies 
that report high accuracy often reflect the training accuracy(Guabassi et al., 2021), which 
suggests that the model may have overfitted to the noise in the training data. This overfitting 

is particularly concerning in high-stakes educational settings where misclassifications can 
significantly impact students' learning opportunities and support systems. The ultimate goal 
is to assess the effectiveness of data augmentation, data balancing, and feature selection 

techniques in improving the performance of supervised learning models for multi-class 
prediction tasks, thereby contributing to better educational outcomes and data-driven 
decision-making in education. 

 
Thus, the following are the specific objectives of the paper. 

1. To compare the performance of Random Forest, Decision Tree, and Neural Network 

models in terms of accuracy and F1 score when applied to small and unbalanced 
datasets. 

2. To investigate the extent to which data augmentation techniques can reduce 

overfitting in supervised learning models. 
3. To determine the effectiveness of data balancing techniques in enhancing the F1 

scores of multi-class prediction models. 
4. To evaluate how feature selection contributes to model efficiency and accuracy in 

multi-class prediction tasks. 

 
The structure of the remainder of the paper is as follows: The next section provides the 
theoretical foundation for the components utilized in the Methodology section. Section 3.0 

(Methodology) elaborates on the methods employed in the study. Section 4 presents the 
results, followed by discussions. Finally, Section 5 concludes the paper. 
 
THEORETICAL ANALYSIS 
This section presents the theoretical basis of the components utilized in the Methodology 

section and the metrics used in evaluating the machine learning model.  
 
Hyperparameter tuning using Grid Search cross-validation:  
Hyperparameters are settings that determine the structure and behaviour of a machine 
learning model. Hyperparameters are set before training begins as they control the learning 

process itself.  Thus, hyperparameter tuning is the process of finding the best settings for a 
model's hyperparameters(Feurer & Hutter, 2019). 
Grid Search Cross-Validation is an automated approach that aims to find the optimal 

hyperparameters ∅∗ that minimize the loss function 𝐿. More specifically, given the parameter 
grid: 
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 Ƿ:Ƿ ={(∅1,1,∅1,2, … , ∅1,𝑛 ), (∅2,1,∅2,2, … , ∅2,𝑛 ), … , (∅𝑚,1,∅𝑚,2, … , ∅𝑚,𝑛 )}……………………..(1) 

Where m, in (1) above is the number of combinations in the grid. Then for each 𝑝𝑖 𝜖Ƿ: the 

model, 𝑀, is trained with hyperparameters ∅𝑖  on k fold cross validation using the dataset, 𝐷, 
and the average loss 𝐿𝑖 is calculated across all folds. The combination of 𝑝∗ that minimizes 
loss:𝑝∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝∈𝑃 𝐿𝑖

   are then selected. The optimal hyperparameters ∅∗ are the 

hyperparameters corresponding to: 

 𝑝∗ : ∅ =  (∅𝑝,1,∅𝑝,2, … , ∅𝑝,𝑛 )… (2) 

 
Equal-width feature discretization 
For equal-width discretization, the range of values for each feature is divided into equal-
width intervals. The width of each bin or interval given by Equation (3) 

∆𝑥 =  
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑛𝑏𝑖𝑛𝑠
…………………………………………………(3) 

 

Where 𝑥𝑚𝑎𝑥the maximum value of a feature is is,  𝑥𝑚𝑖𝑛  is the minimum value of a feature, 
𝑛𝑏𝑖𝑛𝑠  is the number of bins (intervals) 
 
Gini index for determining feature importance 

Gini Index 𝐺(𝐹) = 1 − ∑ 𝑝𝑖𝐾
𝑖=1     …………….. (4) 

 

Where: 𝑝𝑖  is the proportion of samples in a feature set 𝐹 that belong to class 𝑖 𝑎𝑛𝑑  𝐾 is the 
total number of classes. Gini index is a measure of impurity or entropy and the feature 
importance is on how much it reduces the impurity across all the nodes of the trees in which 

it appears because it contributes more to the overall predictive power of the model. 
 
Multiclass prediction 
In machine learning, when the goal is to predict a categorical outcome (one of several possible 
choices) by training a model on labelled data, the task is called a classification problem. If 

there are only two possible outcomes, such as 0 and 1, true or false, or positive and negative, 
the problem is referred to as a binary classification problem. However, if the goal is to predict 
one of more than two possible outcomes, it is known as a multi-class classification problem. 

More specifically, let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝,) represent the vector of p predictor variables (features) 

and Y represent the response variable, where Y takes values in the set {1,2, … , 𝐾} with K being 
the number of classes in the multi-class classification problem, the goal of training the machine 

learning model is to find a function 𝐹(𝑋) that maps the feature vector X to a predicted class 
label Ŷ. 
Formally, the predicted outcome, Ŷ, is such that: 

Ŷ= 𝑎𝑟𝑔𝑘∈{1,2,…𝐾}𝑚𝑎𝑥  𝑃(𝑌 = 𝑘|𝑋 = 𝑥)   ……………………………………………….(5) 

 
Equation (5) represents the class 𝑘 ∈ 𝐾  that maximizes the conditional probability Y belonging 

to class k given the observed features 𝑋 = 𝑥. 
2.4.1 Metrics 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑦𝑚𝑏𝑒 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 X 100 …………………………………….….(6)  

 

𝐹1 = 2X
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
……………………………………………………………..… (7)   

 

The Precision and the Recall are given in Equations (7) and (8) respectively 
 

Precision =  
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
………………………..(8) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
…………………………..(9) 

 
METHODOLOGY 
 
Data collection, pre-processing, augmentation, and balancing 
 

 
Figure 1: Summary of the methods used 

 

Figure 1 represents the flowchart of the methods used.  Two datasets were used in the study. 
The first dataset (AUK-dataset) was collected from the final year computing students of Al-
Qalam University Katsina, Nigeria after getting clearance from the Research Ethics 

Committee of the University and as part of other research(Umar & Ado, 2021, 2022) to 
understand students’ pain points. Relevant protocols of the Nigerian Data Protection 
Regulations were also strictly observed(Abubakar et al., 2022).  As the sample drawn was only 

for the students who undertook software development projects, the size was found to be 
small, 96 records to be precise, which can be prone to overfitting the machine learning model. 
In addition, the AUK dataset was imbalanced as the grades were mostly As, followed by Bs 

and the small number of Cs. The second dataset (xAPI-dataset) was the academic performance 
dataset obtained from a public repository1. As shown in Figure 1, at the pre-processing step, 
the data was pre-processed to remove null values, especially in the AUK dataset as some 

students were found to have dropped one course or the other.   
 

Algorithm 1: Data augmentation using CTGAN 

Input: Original dataset D 
Output: Augmented dataset D_aug 
1) Create metadata 
2) Train CTGAN on dataset D using the created metadata 
3) Generate synthetic samples using trained CTGAN 
4) Combine original dataset D and synthetic samples to form D_aug 

                          5)   Return: D_aug 

 

To augment the datasets, the Conditional Tabular Generative Adversarial Network 
(CTGAN)(Xu et al., 2019) (see Algorithm 1), which extends the conventional Generative 
Adversarial Network (GAN) framework(Goodfellow et al., 2020; Gui et al., 2023).  CTGAN 

was used to ensure that the synthetic samples not only resemble the marginal distribution of 
the original data but also maintain conditional dependencies between attributes. As presented 
in Step 4, and Step 5 of Algorithm 1, the synthetically generated samples and the original 

dataset were combined to produce a new dataset that would be used for training the models. 
 

 
1 https://www.kaggle.com/datasets/aljarah/xAPI-Edu-Data  

https://www.kaggle.com/datasets/aljarah/xAPI-Edu-Data


Evaluating the Significance of Data Engineering Techniques in Multi-Class Prediction: Multi-Factor Educational 
Data Mining Experiments 

 

A.Z. Umar, H.S. Tuge, Y.G. Ibrahim, DUJOPAS 10 (4b): 249-262, 2024                                                      254 

 

Similarly, the Synthetic Minority Over-sampling Technique (SMOTE) (Elreedy & Atiya, 2019) 
was used to balance the dataset (see Algorithm 2). SMOTE is a popular data balancing 
technique which works by creating synthetic data points for the minority class, effectively 

increasing its size and reducing the imbalance between the classes. Algorithm 2 represents the 
processes of balancing the dataset using SMOTE. As shown in Step 3 of Algorithm 2, minority 
samples were generated to balance the dataset. 

 
 

Algorithm 2: Data balancing using SMOTE 

Input: Dataset D with minority class imbalance 
1) Output: Balanced dataset D_bal 
2) Encode categorical features 
3) Initialize the SMOTE algorithm 
4) For each minority class sample: 

a)  generate synthetic samples by interpolating between it and its nearest 
neighbors 

5) Add synthetic samples to original dataset D 
                                    6)            Return: D_bal 

  
Consequently, after the data augmentation and the data balancing, there are three versions of 
each of the two datasets: raw dataset, dataset augmented with CTGAN, and dataset balanced 

with SMOTE.  
 
For the Discretization, equal-width discretization was implemented (see Equation (3) in 

section 2.3 and Algorithm 3) in such a way that it could be toggled on/off in the course of the 
experiments.   
For the feature Selection,  we utilized Recursive Feature Elimination (RFE)(Ramírez-

Hernández & Fernandez, 2007) to determine the most important features for the use in 
Decision Tree and Random Forest(Feature Selection in Figure 1). RFE considers feature 
interactions and dependencies(Chen & Jeong, 2007) and is also a flexible technique compatible 

with various machine learning algorithms and metrics. In this study, we leveraged the Gini 
Index (see Equation (4) in section 2.3 above) for determining feature importance in RFE, as 
employed in the Decision Tree(Myles et al., 2004).  

As shown in Figure 1, the combination of discretization and feature selection was also 
evaluated. It should also be noted that, for comparison, the models were initially trained and 
evaluated on the datasets before applying the discretization and the feature selection. 

 

Algorithm 3: Data balancing using SMOTE 

Input: Feature vector X 
1) Output: Discretized feature vector X_disc 
2) Define the number of bins n_bins 
3) Calculate the bin width using Equation (3) 
4) For each feature value x in X: 

a. Assign x to a bin based on its range 
                                 5)  Return: X_disc 

 
 

Algorithm 4 Feature Selection using Recursive Feature Elimination Algorithm 

1) 𝑋0 = 𝑋 

2) 𝑀0 = 𝑇𝑟𝑎𝑖𝑛𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑜𝑑𝑒𝑙(𝑋0,𝑦) 
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3) 𝐼 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑀0) 
4) X0 = EliminateLeastImportantFeatures(X0, I) 

5) M1 = TrainModel(X1, y) 
6) Repeat: 

a) Xi+1 = EliminateLeastImportantFeatures(Xi+1, I) 
b) Mi+1 = TrainModel(X1+1, y) 

7) Until: X=k 
                                 8)  SelectedFeatures =FeaturesFrom(Xfinal) 

 
 

Algorithm 4 was adopted from(Umar et al., 2023) for feature selection. In algorithm 4, X0 is 

the initial feature matrix (a matrix where each row represents a sample and each column 
represents a feature). M0 is the initial model; Mi is the model at ith iteration; Xi is the feature 
matrix at ith iteration. y is the target variable (a vector containing the labels or values you’re 

trying to predict) and k is the number of features to select or retain. 
 
Before training and evaluating each of the models, the best hyperparameters were obtained 

using the Grid Search cross-validation library (GridSearchCV2) (See Equation 1) and 
parameterized with 5 cross validation (see HP tuning in Figure 1). The optimal parameters 
represented in Equation 2 were used to train the respective models. 

 
Machine learning models 
As shown in Figure 1, three machine learning modelling techniques were considered for this 

study: Decision Trees(Vanneschi & Silva, 2023), Random Forest(Breiman, 2001), and 
Feedforward Neural Networks(Gabella, 2021). These modelling techniques are elaborated in 
the following subsections: 
 
Decision Tree 
Decision Tree provide a transparent and interpretable approach to modelling complex 
relationships between variables. A Decision Tree predicts the output by splitting the dataset 

based on feature values to minimize impurity. In this study, the Gini Index, as presented in 
Equation (4) was used as the measure of impurity to determine the optimal split point for a 
node.  The Decision Tree recursively splits the feature space, choosing the feature and 

threshold that minimize the Gini Index at each node. The tree grows until a stopping criterion 
is met (e.g., max depth)(Vanneschi & Silva, 2023). 
 
Random Forest 
Random Forest is an ensemble method that leverages multiple decision trees to enhance 

predictive accuracy and robustness (Majeed & Hwang, 2023b). Each tree is trained on a 
random subset of features and samples from the dataset. Prediction in Random Forest is 
determined by majority voting(Breiman, 2001): 

ŷ = 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑛(𝑥)) ------------------------------------------------------------ (10) 
𝑇𝑖(𝑥) in Equation (10) is the  prediction of the i-th tree. 

Feedforward Neural Network (FNN) 
An FNN consists of multiple layers: an input layer, hidden layers, and an output layer. Each 
layer applies a linear transformation followed by a non-linear activation function(Gabella, 
2021). In this study, the first hidden layer contains 32 neurons and utilizes the ReLU activation 

function. To enhance training stability and generalization, a batch normalization layer is 
placed after this layer. A second dropout layer with a 30% dropout rate is then applied to 

 
2 https://scikit-learn.org/stable/modules/generated/sklearn.mod el_selection.GridSearchCV.html  

https://scikit-learn.org/stable/modules/generated/sklearn.mod%20el_selection.GridSearchCV.html
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further regularize the model. The final hidden layer also consists of 32 neurons with ReLU 
activation. The output layer is a dense layer with the number of neurons corresponding to the 
number of classes in the dataset. A softmax activation function was applied to generate class 

probabilities. The model is compiled using categorical cross-entropy as the loss function, the 
Adam optimizer, and accuracy as the evaluation metric. To optimize training efficiency and 
prevent overfitting, early stopping, and learning rate reduction techniques are employed. 

Feature selection and discretization were not applied to the FNN as they are less relevant. 
Consequent to the above, the experimental design was treated as a 2 × 2 × 3 × 3 factorial 
design with the following factors and levels:  

1. Feature Selection: Two levels - with and without feature selection. 
2. Discretization: Two levels - with and without discretization. 
3. Data Augmentation/Balancing: Three levels - no augmentation, augmentation using 

GAN, and balancing using SMOTE (considered a form of augmentation). 
4. Model Type: Three levels - Decision Tree, Random Forest, and Feedforward Neural 

Network. 

Each combination was evaluated across multiple datasets to assess the impact on model 
performance, measured by training accuracy, testing accuracy, and F1 score. 
 
RESULTS AND DISCUSSION 
                 

 
Figure 2:  Models’ performance on the Al-Qalam University raw dataset 

 
 

Looking at Figure 2, for the Decision Tree, high training accuracy (97%) can be observed when 
features are discretized, but testing accuracy is moderate (50%). The F1 score is relatively low 
(47), indicating possible overfitting. The Random Forest shows better generalization than the 

Decision Tree, with a higher testing accuracy (55%) and F1 score (48%) without feature 
selection or discretization. For the Feedforward Neural Network, a balance between training 
and testing accuracy (67% and 50%, respectively) can be observed, with an F1 score of 50, 

indicating it performs consistently across training and testing. 
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Figure 3: Models’ performances on student’s academic performance dataset 

 
Looking at Figure 3, Decision Tree generally performs low across the board, with the highest 

testing accuracy being 42% and F1 score being 39. Discretization improves performance 
slightly. For the Random Forest, it achieves high training accuracy (up to 85%). However, the 
testing accuracy and F1 scores remain low (40%-43%), again indicating potential overfitting.  

The Feedforward Neural Network achieves a balance between training and testing with both 
accuracies around 47%-50%, and an F1 score of 40. 
 

       
Figure 4: Models’ performances on the Al-Qalam University dataset balanced with SMOTE 

Looking at Figure 4, the Decision Tree exhibits improved testing accuracy (up to 54%) and F1 
score (54) with discretization, showing that balancing the dataset helps. The Random Forest 

shows consistent performance with F1 scores up to 54% and testing accuracy also improving 
significantly (up to 54%). The Feedforward Neural Network maintains consistent training and 
testing accuracy of 77%-42%, but the F1 score is lower (42). 
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Figure 5: Models’ performances on students’ academic performance dataset 

 

In Figure 5, the Decision Tree recorded training accuracy of up to 99% with discretization, but 
testing accuracy remains low (42%-47%), again highlighting overfitting. F1 scores are 
consistent with testing accuracy. For the Random Forest, better generalization can be observed 

with testing accuracy and F1 scores around 49%-49%. For the Feedforward Neural Network, 
low training accuracy (49%) was recorded, but relatively balanced testing accuracy (44%) and 
F1 score (44). 

 

 
Figure 6: Models’ performances on Al-Qalam University dataset that has been augmented with CTGAN 

In Figure 6, the Decision Tree shows consistent training and testing accuracy at 56%, with F1 

scores around 40-41%. The Random Forest’s testing accuracy is slightly lower (47%-50%) and 
F1 scores are in the 38-39% range, indicating that CTGAN augmentation might not have 
provided significant improvement for this model in this case. The same Figure 6 shows 

Feedforward Neural Network achieves balanced performance with 56% in all metrics, which 
might suggest good generalization from training to testing. 
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Figure 7: Models’ performances of student academic performance dataset that has been augmented with CTGAN 

 
Figure 7 shows that the Decision Tree’s testing accuracy is consistent with training (54%-55%), 
but F1 scores are lower (38%-40%), showing only modest performance. The Random Forest 

shows some overfitting with higher training accuracy (75%-78%) but moderate testing 
accuracy (50%) and F1 scores (40%-43%). For the Feedforward Neural Network, the result 
shows a balance across metrics with 54%-51% and an F1 score of 51, indicating decent 

performance with the augmented data. 
 
The results obtained underscore that while Decision Trees and Random Forests often achieve 

high training accuracy, their testing accuracy frequently falls short, a clear indicator of 
overfitting as observed in(Guabassi et al., 2021). This overfitting is particularly pronounced 
when these models are applied to raw, unbalanced datasets. In contrast, Feedforward Neural 

Networks consistently exhibit a more balanced performance across training and testing, 
suggesting a stronger generalization capability, which is crucial for real-world applications. 
Data augmentation techniques, particularly CTGAN, were evaluated for their ability to 

mitigate overfitting. The results show a modest reduction in overfitting, with slight 
improvements in testing accuracy and F1 scores for simpler models like Decision Trees. 
However, the improvement is not uniform across all models, indicating that while 

augmentation helps, it is not a panacea for overfitting in complex models like Random Forests. 
This is in line with the findings in(Zhang et al., 2023)   The application of SMOTE for data 
balancing demonstrated significant enhancements in both testing accuracy and F1 scores. This 

improvement was particularly notable for Decision Trees, where the balanced datasets led to 
better generalization and reduced overfitting. The Random Forest also benefited from 
SMOTE, but to a lesser extent, indicating that while data balancing is effective, its impact 

varies depending on the model complexity and the inherent characteristics of the 
dataset(Zhang et al., 2023). Feature selection played a pivotal role in improving model 
efficiency and accuracy. For Decision Trees and Random Forests, the application of feature 

selection, particularly when combined with discretization, led to better performance metrics. 
This highlights the importance of carefully selecting and engineering features, especially in 
multi-class prediction tasks where irrelevant features can detract from model performance. 

From the results, it can be summarized that many models, especially Decision Trees and 
Random Forests, show high training accuracy but lower testing accuracy, indicating 
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overfitting. However, the Feedforward Neural Networks tend to have more balanced 
performance across training and testing, suggesting they may generalize better. The results 
also show that the data augmentation and balancing techniques like SMOTE and CTGAN 

augmentation seem to improve testing accuracy and F1 scores slightly, particularly for 
simpler models like Decision Trees. Overall, the choice of pre-processing (like feature 
discretization and selection), data balancing (SMOTE), and augmentation (CTGAN) impacts 

the model's ability to generalize to unseen data. Feedforward Neural Networks seem to 
perform more consistently across different datasets, while Decision Trees and Random Forests 
are more prone to overfitting, particularly without proper data balancing or augmentation. 
 
CONCLUSION  
In conclusion, this paper assessed the effectiveness of feature discretization, data 
augmentation, data balancing, and feature selection techniques in improving the performance 
of supervised learning models for multi-class prediction tasks. This study reaffirms the critical 

role of data engineering techniques, including discretization, feature selection, balancing, and 
augmentation, in enhancing the performance and generalization of machine learning models. 
While Feedforward Neural Networks demonstrate robust and consistent performance across 

different datasets, traditional models like Decision Trees and Random Forests require more 
careful handling to avoid overfitting. The findings suggest that a tailored approach, 
combining appropriate data engineering techniques with model selection, is essential for 

achieving optimal performance in predictive analytics, particularly when dealing with small 
and unbalanced datasets. This study provides a roadmap for practitioners aiming to enhance 
model reliability and accuracy in real-world applications. 

 
 
REFERENCES  
Abubakar, M. M., Armaya’u, Z. U., & Abubakar, M. (2022). Personal Data and Privacy 

Protection Regulations: State of compliance with Nigeria Data Protection Regulations 

(NDPR) in Ministries, Departments, and Agencies (MDAs). 2022 5th Information 
Technology for Education and Development (ITED), 1–6. 

Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-

warning system for at-risk students. International Journal of Educational Technology in 
Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0172-z 

Ashraf, M., Zaman, M., & Ahmed, M. (2020). An Intelligent Prediction System for Educational 

Data Mining Based on Ensemble and Filtering approaches. Procedia Computer Science, 167, 
1471–1483. https://doi.org/10.1016/j.procs.2020.03.358 

Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform 

higher education? In International Journal of Educational Technology in Higher Education 
(Vol. 17, Issue 1). https://doi.org/10.1186/s41239-020-00218-x 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 
Bujang, S. D. A., Selamat, A., Ibrahim, R., Krejcar, O., Herrera-Viedma, E., Fujita, H., & Ghani, 

N. A. M. (2021). Multiclass Prediction Model for Student Grade Prediction Using 

Machine Learning. IEEE Access, 9, 95608–95621. 
https://doi.org/10.1109/ACCESS.2021.3093563 

Chen, X. W., & Jeong, J. C. (2007). Enhanced recursive feature elimination. Proceedings - 6th 

International Conference on Machine Learning and Applications, ICMLA 2007. 
https://doi.org/10.1109/ICMLA.2007.44 

Elreedy, D., & Atiya, A. F. (2019). A Comprehensive Analysis of Synthetic Minority 

Oversampling Technique (SMOTE) for handling class imbalance. Information Sciences, 



Evaluating the Significance of Data Engineering Techniques in Multi-Class Prediction: Multi-Factor Educational 
Data Mining Experiments 

 

A.Z. Umar, H.S. Tuge, Y.G. Ibrahim, DUJOPAS 10 (4b): 249-262, 2024                                                      261 

 

505, 32–64. https://doi.org/10.1016/j.ins.2019.07.070 
Feurer, M., & Hutter, F. (2019). Hyperparameter Optimization. https://doi.org/10.1007/978-3-

030-05318-5_1 

Gabella, M. (2021). Topology of Learning in Feedforward Neural Networks. IEEE Transactions 
on Neural Networks and Learning Systems, 32(8), 3588–3592. 
https://doi.org/10.1109/TNNLS.2020.3015790 

Ghaleb, F. A., Saeed, F., Al-Sarem, M., Qasem, S. N., & Al-Hadhrami, T. (2023). Ensemble 
Synthesized Minority Oversampling-Based Generative Adversarial Networks and 
Random Forest Algorithm for Credit Card Fraud Detection. IEEE Access. 

https://doi.org/10.1109/ACCESS.2023.3306621 
Ghosh, K., Bellinger, C., Corizzo, R., Branco, P., Krawczyk, B., & Japkowicz, N. (2024). The 

class imbalance problem in deep learning. Machine Learning, 113(7), 4845–4901. 

https://doi.org/10.1007/s10994-022-06268-8 
Gkontzis, A. F., Kotsiantis, S., Panagiotakopoulos, C. T., & Verykios, V. S. (2022). A predictive 

analytics framework as a countermeasure for attrition of students. Interactive Learning 

Environments, 30(6), 1028–1043. https://doi.org/10.1080/10494820.2019.1709209 
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., 

& Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 

139–144. https://doi.org/10.1145/3422622 
Guabassi, I. El, Bousalem, Z., Marah, R., & Qazdar, A. (2021). Comparative Analysis of 

Supervised Machine Learning Algorithms to Build a Predictive Model for Evaluating 

Students’ Performance. International Journal of Online and Biomedical Engineering. 
https://doi.org/10.3991/ijoe.v17i02.20025 

Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2023). A Review on Generative Adversarial 

Networks: Algorithms, Theory, and Applications. IEEE Transactions on Knowledge and 
Data Engineering, 35(4), 3313–3332. https://doi.org/10.1109/TKDE.2021.3130191 

López-García, A., Blasco-Blasco, O., Liern-García, M., & Parada-Rico, S. E. (2023). Early 

detection of students’ failure using Machine Learning techniques. Operations Research 
Perspectives, 11. https://doi.org/10.1016/j.orp.2023.100292 

Majeed, A., & Hwang, S. O. (2023a). CTGAN-MOS: Conditional Generative Adversarial 
Network Based Minority-Class-Augmented Oversampling Scheme for Imbalanced 
Problems. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3303509 

Majeed, A., & Hwang, S. O. (2023b). Quantifying the Vulnerability of Attributes for Effective 
Privacy Preservation Using Machine Learning. IEEE Access, 11, 4400–4411. 
https://doi.org/10.1109/ACCESS.2023.3235016 

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to 
decision tree modeling. In Journal of Chemometrics (Vol. 18, Issue 6, pp. 275–285). 
https://doi.org/10.1002/cem.873 

Ramírez-Hernández, J. A., & Fernandez, E. (2007). Control of a re-entrant line manufacturing 
model with a reinforcement learning approach. Proceedings - 6th International Conference 
on Machine Learning and Applications, ICMLA 2007, 330–335. 

https://doi.org/10.1109/ICMLA.2007.35 
Rekha, G., Tyagi, A. K., Sreenath, N., & Mishra, S. (2021). Class Imbalanced Data: Open Issues 

and Future Research Directions. 2021 International Conference on Computer Communication 

and Informatics, ICCCI 2021. https://doi.org/10.1109/ICCCI50826.2021.9402272 
Selim, K. S., & Rezk, S. S. (2023). On predicting school dropouts in Egypt: A machine learning 

approach. Education and Information Technologies, 28(7), 9235–9266. 

https://doi.org/10.1007/s10639-022-11571-x 
Thabtah, F., Hammoud, S., Kamalov, F., & Gonsalves, A. (2020). Data imbalance in 

classification: Experimental evaluation. Information Sciences. 



Evaluating the Significance of Data Engineering Techniques in Multi-Class Prediction: Multi-Factor Educational 
Data Mining Experiments 

 

A.Z. Umar, H.S. Tuge, Y.G. Ibrahim, DUJOPAS 10 (4b): 249-262, 2024                                                      262 

 

https://doi.org/10.1016/j.ins.2019.11.004 
Thölke, P., Mantilla-Ramos, Y. J., Abdelhedi, H., Maschke, C., Dehgan, A., Harel, Y., Kemtur, 

A., Mekki Berrada, L., Sahraoui, M., Young, T., Bellemare Pépin, A., El Khantour, C., 

Landry, M., Pascarella, A., Hadid, V., Combrisson, E., O’Byrne, J., & Jerbi, K. (2023). Class 
imbalance should not throw you off balance: Choosing the right classifiers and 
performance metrics for brain decoding with imbalanced data. NeuroImage. 

https://doi.org/10.1016/j.neuroimage.2023.120253 
Tsai, S. C., Chen, C. H., Shiao, Y. T., Ciou, J. S., & Wu, T. N. (2020). Precision education with 

statistical learning and deep learning: a case study in Taiwan. International Journal of 

Educational Technology in Higher Education, 17(1). https://doi.org/10.1186/s41239-020-
00186-2 

Umar, A. Z., & Ado, S. G. (2021). Emergency Remote Learning During COVID-19 Lockdown: 

Al-Qalam University Katsina Students’ Experience. In Prof. Afolayan A. Obiniyi, Prof. 
Rasheed Gbenga Jimoh, Dr. Uyinomen O. Ekong, Prof. Steve Adesina, & Prof. 
Folorunsho Olaiya (Eds.), International Conference on Information Technology in Education 

and Development (ITED) (pp. 167–174). 
Umar, A. Z., & Ado, S. G. (2022). Emergency remote teaching during COVID-19 lockdown: 

Al-Qalam University Katsina lecturers’ experience. Bayero Journal of Pure and Applied 

Sciences, 13(1), 393–399. 
Umar, A. Z., Galadima Ibrahim, Y., & Ndanusa, A. (2023). Detecting Anomalies In Network 

Traffic Using a Hybrid of Linear-based and Tree-based Feature Selection Approaches. 

Researchgate.NetYG Ibrahim, A Ndanusaresearchgate.Net, 21–23. 
Vanneschi, L., & Silva, S. (2023). Decision Tree Learning. In Natural Computing Series (pp. 149–

159). https://doi.org/10.1007/978-3-031-17922-8_6 

Walid, M. A. A., Ahmed, S. M. M., Zeyad, M., Galib, S. M. S., & Nesa, M. (2022). Analysis of 
machine learning strategies for prediction of passing undergraduate admission test. 
International Journal of Information Management Data Insights, 2(2). 

https://doi.org/10.1016/j.jjimei.2022.100111 
Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular 

data using conditional GAN. Advances in Neural Information Processing Systems, 32. 
Zhang, C., Soda, P., Bi, J., Fan, G., Almpanidis, G., García, S., & Ding, W. (2023). An empirical 

study on the joint impact of feature selection and data resampling on imbalance 

classification. Applied Intelligence, 53(5), 5449–5461. https://doi.org/10.1007/s10489-022-
03772-1 

 


