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Abstract 
 
This study presents a comprehensive mathematical model to understand the transmission dynamics of 
monkeypox, incorporating multiple compartments for both human and rodent populations, which are 
essential in the spread of the virus. The model captures zoonotic transmission (from rodents to humans) 
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and human-to-human transmission, including compartments for susceptible, exposed, infected, 
quarantined, treated, and recovered humans, as well as susceptible, exposed, and infected rodents. 
Numerical simulations show how interventions such as reducing contact rates, quarantining infected 
individuals, and promoting effective treatment can significantly control the spread of the virus. 
Sensitivity analysis reveals that parameters with positive sensitivity indices, such as contact rates, 
enhance the spread of monkeypox, whereas parameters with negative sensitivity indices, like the 
treatment rate of infected humans, reduce transmission. The results demonstrate that reducing contact 
rates, especially between susceptible and infected humans and rodents, plays a crucial role in disease 
control. This study provides valuable insights for policymakers and public health officials to effectively 
manage monkeypox outbreaks. 
 
Keywords:  Monkeypox dynamics , Human-rodent interactions , Mathematical 
epidemiology, Sensitivity analysis, Endemic equilibrium 
 
INTRODUCTION 
Monkeypox is a zoonotic viral disease that has drawn significant attention due to its potential 

to cause outbreaks in humans, particularly in regions where there is close contact with wildlife 
or among individuals in close proximity to one another. First identified in laboratory monkeys 
in 1958 and reported in humans in the Democratic Republic of the Congo (DRC) in 1970, the 

virus belongs to the Orthopoxvirus genus, which also includes variola (smallpox) and vaccinia 
viruses (Ladnyj et al., 1972). Although smallpox was eradicated in 1980, monkeypox remains 
a global health threat, especially in Central and West Africa, where it continues to circulate in 

animal reservoirs and periodically spills over into human populations (Bunge et al., 2022).In 
recent years, monkeypox has resurfaced as a global concern due to rising infection rates and 
international spread, exacerbated by increased urbanization, deforestation, and climate 

change, which disturb wildlife habitats. These factors elevate the likelihood of zoonotic 
transmission, where humans come into closer contact with the animal species that host the 
monkeypox virus (Nguyen et al., 2022). Furthermore, the disruption of healthcare services 

and vaccination campaigns for smallpox has left many individuals susceptible to monkeypox, 
as cross-protection from the smallpox vaccine is no longer prevalent (Reynolds et al., 2019). 
This combination of environmental, ecological, and healthcare challenges underscores the 

need for thorough investigation into the transmission dynamics of monkeypox. The recent 
surge in monkeypox cases can be attributed to several interrelated factors, including 
environmental, social, and immunological changes. One of the primary causes is the 

increasing encroachment of humans into wildlife habitats due to deforestation and 
urbanization, which has heightened human exposure to the animals that naturally harbor the 
monkeypox virus (Nguyen et al., 2022). Additionally, declining immunity in populations once 

protected by smallpox vaccinations has left many individuals more vulnerable, as the 
cessation of routine smallpox immunization following its eradication has weakened cross-
protection against monkeypox (Bunge et al., 2022). Furthermore, international travel and 

close-contact transmission in dense urban settings have facilitated the rapid spread of the 
virus across borders. Solutions to this growing public health concern involve a combination 
of strategies. These include reviving targeted vaccination programs, particularly for high-risk 

populations, enhancing surveillance and diagnostic capabilities, and promoting early 
quarantine and treatment interventions (Parker et al., 2022). Increasing public awareness 
about preventive hygiene measures and maintaining strong international cooperation to 

contain outbreaks are also vital to mitigating future epidemics. Transmission of the 
monkeypox virus typically occurs through direct contact with the body fluids, skin lesions, or 
respiratory droplets of infected individuals or animals. Human-to-human transmission, while 

less efficient than zoonotic transmission, has been observed primarily in households or 
healthcare settings where close contact is more frequent (Petersen et al., 2019). The incubation 
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period ranges from 6 to 13 days, though it can extend to 21 days in some cases. Symptoms 
often resemble those of smallpox, including fever, headache, muscle pain, and the 
characteristic rash that progresses from macules to pustules before scabbing over (World 

Health Organization, 2022). 
 
Mathematical models provide a powerful tool for understanding the dynamics of infectious 

diseases like monkeypox. Such models can help researchers predict how the virus spreads 
within populations, identify the most critical factors that influence transmission, and evaluate 
the effectiveness of different interventions, such as quarantine and treatment. For example, by 

simulating how various intervention strategies reduce transmission rates or delay outbreaks, 
public health authorities can make informed decisions about resource allocation and 

preparedness (Koopman et al., 2021). This becomes especially relevant in regions where 
healthcare infrastructure is strained, and timely interventions can mean the difference 
between containment and widespread transmission.Current treatment and prevention 

strategies for monkeypox include the use of antiviral drugs like tecovirimat, which has shown 
promise in reducing the severity and duration of symptoms (Parker et al., 2022). In addition, 
supportive care and quarantine remain key strategies in limiting the spread of the virus, 

particularly in areas with limited access to vaccines or medical resources. The global 
community has also recognized the need to revive smallpox vaccination campaigns in 
populations at risk of monkeypox, as this can offer cross-protection against the virus. 

 
The resurgence of monkeypox and its global spread has necessitated the use of mathematical 
models to understand its transmission dynamics and predict outbreak scenarios. Recent 

literature has explored different approaches and models to assess interventions, estimate 
transmission rates, and predict the spread of the disease under various conditions. Below is a 
review of five recent studies that focus on mathematical modelling of monkeypox: Endo et al. 

(2022) conducted a study that developed a stochastic compartmental model to estimate the 
reproduction number of monkeypox in non-endemic countries, focusing on the outbreak 
observed in 2022. The model separated populations into susceptible, exposed, infectious, and 

recovered compartments (SEIR) and analyzed contact rates and the role of human mobility in 
spreading the virus. They found that the basic reproduction number was higher in regions 
with dense populations and more frequent international travel. Their model also emphasized 

the role of early intervention, particularly quarantine and isolation, in reducing transmission 
(Endo et al., 2022). Grant et al. (2023)  applied a mathematical model to evaluate the impact of 
vaccination strategies on monkeypox transmission. Using data from the 2022 outbreak in the 

UK, their model integrated vaccination coverage rates and timing of administration into a 
compartmental model. They demonstrated that even with limited vaccine availability, 
targeted vaccination of high-risk groups could significantly reduce transmission. The model 

also highlighted the importance of timely vaccine deployment and rapid case detection to 
curb outbreaks (Grant et al., 2023). Yinka-Ogunleye et al. (2022)  developed a deterministic 
model to simulate monkeypox transmission in West Africa, considering zoonotic 

transmission from animal reservoirs and human-to-human transmission. Their model 
showed that while zoonotic transmission remains a significant source of infection, human-to-
human transmission plays a growing role in the spread, particularly in urban areas. The 

model recommended enhancing surveillance and public health measures, especially in 
regions with high contact between humans and wildlife (Yinka-Ogunleye et al., 2022). Al-
Najjar et al. (2023)  focused on the effects of social behavior changes, such as reduced contact 

rates and increased hygiene practices, on monkeypox transmission. They created a dynamic 
model incorporating behavioral feedback mechanisms where public perception of risk 
influenced contact rates. Their findings suggested that social distancing and behavior changes 
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during outbreaks significantly decreased the effective reproduction number (Al-Najjar et al., 
2023). The model underscored the need for public health campaigns that encourage behavior 
modification during outbreaks. Hebert-Dufresne et al. (2022) introduced a network-based 

model to simulate monkeypox spread within social and sexual networks. Unlike traditional 
compartmental models, their approach accounted for the heterogeneity in contact patterns, 
particularly in sexual transmission contexts, such as the disproportionate impact of 

monkeypox on men who have sex with men (MSM). The model provided insights into the 
super-spreader potential within tightly knit communities and emphasized the importance of 
targeting specific subpopulations for intervention strategies like vaccination and education 

(Hebert-Dufresne et al., 2022).The present study considered a comprehensive mathematical 
model to understand the transmission dynamics of monkeypox by incorporating multiple 

compartments for both the human and rodent populations, which play a crucial role in the 
spread of the virus. The model integrates human and rodent hosts to capture both zoonotic 
transmission (from rodents to humans) and human-to-human transmission. 

 
Materials  and Methods 
We develop a deterministic compartmental model on the transmission dynamics of 

monkeypox consisting of human and rodent population. The human population comprises of 

six epidemiological groups, Susceptible humans (t)hS  , exposed humans (t)hE , infected 

humans (t)hI  , quarantined humans (t),hQ ,  treated humans (t)hT  and recovered humans 

(t)hR . The rodent population  is subdivided into three compartments  namely: Susceptible 

rodents (t)rS  , exposed humans (t)rE , infected rodents (t).rI The recruitment rate of human 

population is given as h   and
rh  is the effective contact rate with the probability of human 

being  infected with monkeypox virus due to contact with infected rodent.
hh denotes 

effective contact rate and the probability human been infected with monkeypox virus due to 

contact with infectious human and 
h  is the progression rate from exposed human to highly 

infected human whereas the treatment rate of infected humans is 
h and the  recovery rate of 

treated humans is  h .  h is the quarantined rate of exposed humans whereas h  is the rate at 

which quarantined humans become susceptible   and the recovery rate of quarantined  

humans is h . Natural death occurs in the humans and rodents population  at the rates 
h   

and 
r  respectively. The infected humans and rodents population decrease by the disease 

induced death rates h   and  r respectively. r  is rodents recruitment rate and rr  is the 

effective contact rate with the probability of rodent being  infected per contact rate with 

already infected rodent. r  is the progression rate from exposed rodent population to highly 

infectious rodent population and h  is immunity loss rate. The transition from one 

epidemiological compartment to another is illustrated in figure 1 below. 
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Figure 1. Schematic diagram for the model. 

 
Table 1. Description of variables and parameters  
 

Variables  Description 

(t)hS  Susceptible human  

(t)hE  Exposed human  

(t)hQ  Isolated/quarantined human  

(t)hI  Infected human  

(t)hT  Treated human 

(t)hR  Recovered human  

(t)rS  Susceptible rodent  

(t)rE  Exposed rodent  

(t)rI  Infected rodents  

h  Human recruitment rate  

rh  Rodent contact rate to humans 

hh  Human to human  contact rate  

rr  Rodent to rodent to contact rate  

h  Progression rate from exposed human to infected human  

h  Human treatment rate  

h  Quarantined rate  of exposed humans  

h  
Quarantine rate  of susceptible  humans 
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Model Equations 
The model is governed by the following set of differential equations.  

( I I )Sh rh r hh h h
h h h h h h h

h

dS
R Q S

dt N

 
  

+
=  + + − −  

( I I )S
( ) Eh rh r hh h h

h h h h

h

dE

dt N

 
  

+
= − + +  

( )h
h h h h h h

dI
E I

dt
   = − + +  

( )Qh
h h h h h h

dQ
E

dt
   = − + +                                        (1) 

( )Th
h h h h h h

dT
I

dt
   = − + +  

( )Rh
h h h h h h h

dR
Q T

dt
   = + − +  

Sr rr r r
r r r

r

dS I S

dt N


=  − −  

( ) Er rr r r
r r r

r

dE I S

dt N


 = − +  

E ( ) Ir
r r r r r

dI

dt
  = − +  

 
Model Analysis 
For the human population,  

Qh h h h h h hN S E I T R= + + + + +  

The differential equation yields  
hdN

h h h h hdt
I N =  − −                              (2) 

For the rodent  population, 

r r r rN S E I= + +
 

The differential equation also gives  

( )rdN

r r r rdt
N=  − +                       (3) 

Lemma 1 

h  Recovery rate of quarantined individual  

h  Recovery rate of treated  humans 

h  Rate at which quarantined human become susceptible  

h  Immunity loss rate for human population  

h  Disease induced death rate for humans 

r  Disease induce death rate for rodents  

h  Natural death rate for human  

r  Natural death rate for rodents  

r  Progression rate from exposed rodent to infected rodent  
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( ), , ,Q , , , , ,h h h h h h r r rLet S E I T R S E I be the solution of the model  (1) with initial conditions in 

a epidemiological   feasible region 
h rD D D=  with: 

6, , ,Q , , : h
h h h h h h h h

h

D S E I T R R N


+


=                        (4) 

and  

3, , : r
r r r r r

r

D S E I R N


+


=                                       (5) 

Then D is non-negative  invariant  
From the result of Somma et al (2019), we obtain  

0 ( )( ) ( )
( ) (0) 1h ht th

h h

h

N t N e e
 



− −
  + −                      (6) 

and  

0 ( ) ( )( )( ) (0) 1r r r rt th
r r

h

N t N e e
 



− + − +
  + −                       (7) 

Therefore, the set D is positively invariant for all t  

 
Asymptotic Stability of the Disease Free Equilibrium of the Monkeypox Model 
The disease-free equilibrium (DFE)  refers to a state where the disease is completely absent 
from the population, meaning no individual is  infected. This represents a situation where the 

disease has either been eradicated or is not capable of spreading (Watmough, 2002).. If small 
changes in the system do not trigger a return of the disease, the DFE is considered stable, 
indicating that eradication is possible. The DFE point, as shown below, is pivotal in guiding 

public health strategies. 

  * * * * * * * * *

0 , , ,Q , , , , , ,0,0,0,0,0, , 0, 0h r
h h h h h h r r r

h r

S E I T R S E I
 

  
= =  

 
 

 
Basic Reproduction Number 

The basic reproduction number, often referred to as  (
0R ), is  the average number of new 

infections caused by a single infected person in a population where no one has immunity. This 
is an important  measure in epidemiology for evaluating how easily a disease can spread. 

When 0R  is greater than 1, it shows that each infected person is likely to pass the disease to 

more than one individual, increasing the chance of an outbreak (Diekmann&Heesterbeek, 

2000). If 0R  is less than 1, the disease is expected to fade away over time. Understanding 0R  

is essential for creating effective public health strategies, as it helps predict the likelihood of 
an epidemic and informs decisions on interventions like vaccination programs and social 

distancing measures (Watmough, 2002). In this study, we calculate 0R  using the next 

generation operator method on the dynamic system (1), as detailed below. 

Hence, it follows that 

 ( )1

0R FV −= where  is the dominant eigenvalue of 1FV −  
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
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0 0 0

7

hh h hh rh r rh
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rr r rr

P P P

J
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 
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 
 
 
 
  

 

The eigenvalues of FV-1are  

 

( )

0

6 7

0

2 1

0 0 0,

r rr r

h hh h

h r

R
P P

R
P P

R R R

 

 

=

=

=

 

 
Jacobian Matrix (LAS) 
 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0

2 1 2 6 7 7

6 7

0 0 0

7

hh h hh rh r rh

P P P P P P

rr r rr

P P P

J

     

  

 
 
 
 
 
 
 =
 
 
 
 
 
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The reduced Jacobian matrix becomes 
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1

2

1

6

7

0

0 0

0 0
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r

P

P
J

P

P

 







− 
 

−
 =
 −
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The characteristic polynomial becomes 

( ) ( )

( )

4 3 2
7 6 2 1 2 1 6 1 7 1 6 2 7 2 7 6

1 2 6 1 2 7 1 6 7 1 2 6 7 2 6 7

 2 1 1
1 6 70 0

P P P P P P P P P P P P P P P P
hh h r rr

P P P P P P P P P P P P P P P P
r rr r rr hh h hh h

r hP P R P P R

      

        

+ + + + + + + + + + − −

+ + + − + − − −

   + − + −   
   

Applying the Routh Hurwitz criterion, we observe that the DFE is locally asymptotically 
stable. 

1 ( )h h hP   = + + 2 ( )h h hP   = + + 3 ( )h h hP   = + + 4 ( )h h hP   = + + 5 ( )h hP  = +  

6 ( )r rP  = + 7 ( )r rP  = +  

 
Global Asymptotic Stability of the Disease Free Equilibrium Point of the  Monkeypox 
Model. 
Global asymptotic stability of the disease-free equilibrium (DFE) in the monkeypox model 
means that, over time, the entire system will naturally move towards a state where the disease 
is eradicated, regardless of the initial number of infected individuals. This occurs if the basic 

reproduction number 
0R is less than 1, indicating that, on average, an infected person 

transmits the virus to fewer than one other person. In such cases, even if a small number of 
infections occur, they will gradually die out as the infection cannot sustain itself in the 
population (Odeh et al, 2024). Proving global asymptotic stability ensures that, under current 

conditions or interventions, any outbreak will eventually diminish, leading the system back 
to the DFE. This concept is crucial for determining whether long-term control measures, such 

as quarantine, treatment, and vaccination, can permanently eliminate monkeypox from the 
population. If the DFE is globally asymptotically stable, we can be confident that the disease 
will not re-emerge. 

 
To investigate the global stability of the disease free equilibrium, we use the technique 
implemented by Castillo-Chavez and song (2004). 

To do this, we write the equation in the uninfected class as  

 ( ),
dX

F X Z
dt

=  

And we re-write the equation in the infected class as  

   ( , )
dZ

G X Z
dt

=  

Where ( ) 3, ,h h rX S R S R +=  denotes the uninfected population and  

 ( ) 6, , ,, ,h h rh h rTZ E Q I E I R +=  denotes the infected population 

 *

0 ( ,0)X = represent the disease free equilibrium of the system, and it is globally 

asymptotically stable if it satisfies the following conditions: 

 ( )* *

1 :   ,0 , 
dX

H F X X
dt

= is globally asymptotically stable 
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 ( ) ( )*

2 :  ,0 ,ˆ
Z

dZ
H D G X Z G X Z

dt
= −  

 ( )ˆ , 0G X Z  for all ( ),X Z D and where ( )*,0ZD G X  is an M- matrix (i.e the 

diagonal elements are non-negative and it is also the Jacobian of ( )ˆ , 0G X Z   evaluated at 

*( ,0).X  

If the system satisfies the above condition, then the theorem below holds. 
Theorem 2 

The equilibrium point *

0 ( ,0).X =  is globally asymptotically stable if 

0 1 21,R conditions H and H are satisfied  
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  this implies that ( )ˆ , 0G X Z  .  

Therefore the disease free equilibrium of the Monkeypox only model is globally 

asymptotically stable. 
 
Endemic Equilibrium Point of the Monkeypox Model 
The endemic equilibrium point in the monkeypox model represents a steady state where the 
disease persists in the population at a constant level, rather than being completely eradicated. 

At this point, the number of new infections balances with the number of recoveries or deaths, 
meaning the disease remains consistently present without growing into an outbreak or dying 

out (Watmough, 2002). This occurs when the basic reproduction number 
0R  is greater than or 

equal to 1, indicating that each infected individual, on average, transmits the virus to at least 

one other person. In the endemic equilibrium, monkeypox continues circulating in the 
population, with some level of ongoing transmission despite interventions like quarantine or 
treatment. Understanding the endemic equilibrium helps public health authorities assess the 

long-term presence of the disease and develop strategies to reduce its prevalence or keep it at 
manageable levels, preventing large-scale outbreaks. 
 
Theorem 3 

The endemic equilibrium point of the Monkeypox model in (1) is stable if 0 01, 1h rR R  and unstable 

if 0 01, 1h rR R  . 

 
Proof 
To obtain the endemic equilibrium we set the RHS of the differential equations in (1) to zero 
and solve for the state variables. 
Thus, at the endemic equilibrium point,  
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Thus the endemic equilibrium point of the monkeypox model is said to be stable. 
 
Sensitivity Analysis of the Monkeypox Model 
Sensitivity analysis is carried out to determine the parameters that enhances the spread as 
well as control of an infection in a population. 

The sensitivity index of the reproduction number of the Monkeypox model with respect to 
any parameter say p is given by: 
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Figure 2. Bar chat of Monkeypox sensitivity Indices 

 
Interpretation of the Monkeypox Sensitivity Analysis 

From the sensitivity analysis above, it is observed that the parameters like , , , ,rh rr hh h r      
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population, hence any effort taken to prevent contact with any of these parameters will reduce 

spread of the disease. Conversely, the parameters , , ,h h r h     with negative sensitivity 

indices reduce the prevalence of Monkeypox within the human population. For instance, the 

negative sensitivity of treatment rate of infected humans (
h ) implies any effort taken to 

promote effective treatment would reduce transmission of monkeypox within the population.  
 
Table 2. Parameter Values Used  in the Model  

Parameters  Value  Sources 

h  0.029 Assumed 

r  0.9 Assumed 

rh  0.00025 Odeh et al,  2024 

hh  0.00006 Olumuyiwa et al, 2021 

rr  0.027 Olumuyiwa et al, 2021 

h  0.07 Acheneje et al, 2024 

h  0.002 Olumuyiwa et al, 2021 

h  0.2 Olumuyiwa et al, 2021 

r  0.00200 Assumed 

h  0.02 Olumuyiwa et al, 2021 

h  0.0001 Agbata et al, 2019 

h  0.00001 Agbata, et al 2024 

h  0.02 Olumuyiwa et al, 2021 

r  0.5 Agbata et al, 2023 

h  0.020435 Bolaji  et al, 2024 

r  0.007 Assumed 

 

 
a. Effect of varying hh on susceptibleHumans    b. Effect of varying hh  on Exposed humans 
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Figure 3 

 
a. Effect of varying 

hh on Quarantined Humansb. Effect of varying 
hh  on Infected humans 

      

Figure 4 
 

 
a. Effect of varying hh on Treated Humansb. Effect of varying hh  on Recovered humans 

      

Figure 5 
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a. Effect of varying rr on SusceptibleRodentsb. Effect of varying rr  on Exposedhumans 

      
Figure 6 

 

 
 

Figure 7: Effect of varying rr on infected  Rodents   

 
Discussion 
Figures 3a and 3b illustrate the dynamics of susceptible and exposed humans, respectively. In 

figure 3a, the number of susceptible humans decreases as the contact rate between susceptible 
and infectious humans declines. This suggests that reducing contact between these two 
groups plays a crucial role in disease control. Figure 3b shows that the number of exposed 

humans initially increases but eventually begins to decline, indicating that as control 
measures are implemented and exposure is reduced, the spread of the disease is curbed over 
time. In figure 4a, we observe the effects of quarantining infected humans. The number of 

quarantined individuals increases initially, demonstrating effective isolation measures. 
However, as the number of infected humans decreases (as shown in Figure 4b), the need for 
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quarantine also diminishes. This is due to a reduction in the contact rate between susceptible 
and infectious individuals, which lowers transmission rates. 
 

 These results imply that reducing contact with infected humans significantly reduces the 
spread of Monkeypox within the population. Figure 5a highlights the number of treated 
individuals, which rises rapidly at first but later declines toward zero. This trend corresponds 

with the decrease in the number of infected humans seen in figure 4b, suggesting that as the 
infection subsides, fewer treatments are needed. Additionally, the high treatment rate 
depicted in figure 5a  leads to a high recovery rate for infected individuals, as shown in figure 

5b. Moving on to rodents, figures 6a and 6b  present the dynamics of susceptible and exposed 
rodents, respectively. In figure 6a, the number of susceptible rodents declines to zero as 

contact between susceptible and infected rodents decreases. Meanwhile, figure 6b  shows that 
the number of exposed rodents initially rises but eventually declines, indicating effective 
disease control as contact between these groups is minimized. Lastly, figure 7  displays the 

number of infected rodents. Initially, this number increases rapidly but later drops as the 
contact rate between susceptible and infected rodents decreases.  The numerical simulation 
results confirm that reducing the contact rate between susceptible and infectious humans 

helps control the spread of Monkeypox within the population. Similarly, reducing contact 
between susceptible and infected rodents decreases the prevalence of the disease among 
rodents, further contributing to overall disease control. 
 
Conclusion 
Our study provides a clear understanding of how monkeypox spreads within and between 
human and rodent populations. The results show that reducing contact between infected and 
susceptible individuals—both human and rodent—is key to controlling the virus. Quarantine 

and effective treatment, particularly for infected humans, play an essential role in reducing 
transmission. The sensitivity analysis reveals that certain factors, like human-to-human 
contact and zoonotic transmission from rodents, drive the spread of the disease, making them 

critical targets for intervention. Meanwhile, promoting treatments that improve recovery can 
significantly reduce the number of infections.  Overall, the findings highlight the need for a 
multi-faceted public health approach, one that not only reduces human contact with infected 

rodents but also strengthens medical interventions to stop the spread of monkeypox. This 
model offers a valuable framework for policymakers and health officials to manage resources 
and implement effective control measures during monkeypox outbreaks, particularly in 

regions where the disease is endemic. 
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