https://dx.doi.org/10.43 14/dujopas.v 1 0i4b.3
ISSN (Print): 2476-8316
ISSN (Online): 2635-3490
Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 10 No. 4b December 2024

A Hybrid Method of Improved Block Pulse with
Bernstein Polynomials for Numerical Solution of Linear
lll-Posed First Kind Fredholm Integral Equation

Hajara Shu'aibu Musa1* and Sirajo Lawan Bichi'
1Department of Mathematics

Bayero University

Kano.

Email: slawanbh@gmail.com

Abstract

This paper investigates the approximate solution of linear first-kind Fredholm integral equation
(LFFIE). The LFFIE is an ill-posed problem (ILPP) and often requires solving linear system of equations
with high condition number, which makes it difficult or impossible to solve. A novel approach is
introduced, employing a mix of Benstein polynomials (BEPLs) and improved block-pulse functions
(IBLPFs) within the domain [0,1) as hybrid functions. Various properties of these functions are used
to convert the LFFIE in to algebraic equations. Analysis of the method's convergence together with
numerical examples are provided to demonstrate how relevant the method is. The numerical results
proves that the hybrid function of IBLPFs together with BEPLs solve the LFFIE even with large
condition number of the matrix.

Keywords: Linear First kind Fredholm integral equation (LFFIE), Hybrid functions, Direct
method, Condition number, Convergence analysis,

INTRODUCTION
The LFFIEs characterized by the presence of an unknown function under the integral sign:

1

[[w(a, p)z(p)dp=e(q) 0<q<l, 1)
which complicates the solution process due to their inherent ill-posedness. These equations
often appear in applications such as signal processing, potential theory, and image restoration,
where data recovery is complicated by sensitivity to input perturbations (Baker et al., 1964).
In particular, the LFFIE exhibit sensitivity where minor changes in input data can result in
significant variations in the solution, making direct analytical solutions difficult and
necessitating robust numerical approaches Hansen (1994).

Tikhonov regularisation, one of the most widely used approaches, introduces a stabilizing
term to control sensitivity to input perturbations; however, it may compromise accuracy,
especially for highly oscillatory kernels (Tikhonov & Arsenin, 1977). Polynomial
approximations, such as those involving Legendre or Chebyshev polynomials Maleknejad &
Sohrabi, (2007)., Chebyshev wavelets Adibi & Assari (2010) are commonly used in the
numerical solution of integral equations due to their ease of computation and ability to handle
various functional forms. However, these approaches alone often struggle with the balance
between stability and accuracy, particularly in ill-posed equations with complex kernel
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structures. Methods based on block pulse functions simplify the computation further by
breaking down the equation into piecewise constants, though they may lack smoothness,
which can limit their applicability in higher-accuracy settings Anderssen & Latham, (1995).
These limitations highlight the need for more adaptive and flexible polynomial methods.

To address the challenges posed by traditional polynomial approaches, hybrid methods
combining different polynomial bases have gained traction in recent years. These hybrid
methods seek to capitalise on the individual strengths of various polynomial functions to
enhance stability and accuracy. For example, combining block pulse functions with legendre
Maleknejad, & Saeedipoor (2017), and combining block pulse with polynomials wavelets has
proven effective in achieving computational simplicity while preserving detailed solution
characteristics Temirbekov & Temirbekova, ( 2022). However, there is still room for
innovation, particularly with techniques that combine BEPLs with IBLPFs to enhance
smoothness without sacrificing computational simplicity. Such a hybrid approach promises
to provide a robust framework for solving LFFIE with improved performance and reduced
€error.

Despite the progress in hybrid numerical methods, existing techniques still face challenges
related to computational efficiency and accuracy when addressing the complexities of LFFIE
(Anderssen & Latham, 1995; Maleknejad & Sohrabi, 2007). This study aims to bridge this gap
by proposing a novel hybrid method that integrates BEPLs with IBLPFs effectively combining
computational efficiency with a high degree of smoothness. This approach represents a
unique advancement in terms of efficiency and makes it suitable for large-scale applications.
The proposed method thus contributes to the field by offering a practical and effective
solution to a longstanding challenge in numerical analysis.

We give some specific definitions and attributes of BEPLs and IBLPFs.

Lemma 1
The v" degree BEPLs are defined over the interval [a,b] as
Vi(@-a)'(b-a)"
B = as<q<b, 1=012, v,
10 (0) [I j (b_a) q )
where

m ) I!(vvil)!

The BEPLs serve as basis onL’[a,b]. For each V" degree there are V+1 polynomials.

Therefore, any V" degree polynomial can be expressed using the linear combination of
B ,(a),1=0,1,---,v Maleknejad et. al (2012 ).

Lemma 2
An (U +1) set of improved block-pulse function (IBLPF's) 1b,(q) u=12,---U +1 is defined
over the interval [0,1) with a little modification to the block pulse function,

1 qel0.%)
Ib, (q) = , 3)

0 otherwise
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1 ge[u-2h+4,(u-Dh+%) u=23--U

Ib, (a) = , )
0 otherwise

1 qeld-3.10)

Ib,.; (q) = ! ©)
0 otherwise

where U+l is a positive integer and h=g5

The characteristic of these functions adhere to the following: disjointness, orthogonality, and
completeness Jiang (1992).
Proof

The property of disjointness can be easily derived from the definition of IBLPFs as follows:

Ib,(@ u=v

Ib, (9)Ib, (q) =
0 otherwise

Similarly, the IBLPFs are orthogonal with each other in the interval q € [0,1) :
1 u=velU+1

[[1b,(@1b,()dg=1h u=ve23:-U
0  otherwise

where u,v=12,---,U +1.

This characteristic can be directly inferred from the disjointness of IBLPFs.

The third property indicates that the IBLPFs set is complete when U approaches infinity. For
each z € L*([0,1)) Parseval's identity holds:

1 o0
[ 2% (@)dg =2zl @1
where;

1a
2, =+ [, 2(a)1b, (a)dg

Definition (Hybrid of IBLPFs and BEPLs). Hybrid of IBLPFs and BEPLs have two arguments U
and | where u=1,2,---U +1 and 1 =0,1,.---V are the order of IBLPFs and BEPLs respectively.
Hybrid of IBLPFs and BEPLs defined over the interval [0,1) below Ramadan et.al (2020):
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By (%) ae[04) u=11=01.--V

Ihu,I (q) = ! (6)
0 otherwise

B, (@+3-u) gefu-2h+2, (u-1)h+L) u=23.-U1=01-V

Ih,, (a)= . (7)
0 otherwise

B (2-2+1) qefl-2,1) u=U+11=01.V

Ih, , (a)= : ®)
0 otherwise

Definition (Condition number of a matrix( CN)).Let D be an invertible m.m matrix. The CN of D
is defined as follows CN(D) = ||D||HD’1H If D is uninvertible, set CN (D) =+ .

Function Approximation

A function z(q) € L* [O,l) may be expanded in terms of hybrid functions as follows
U+l Vv

Z(q)zzzzu,llhu,l(q):ZTlH(q)’ (9)
u=1 1=0
where;
IH = [Ihlolhll IhlV Ihu+1,0|hu+1,1-'" Ihu+1,v-1"' IhU+1,V JT’
and
T
yA :[210211"'21v o Lys10usg o Zusava T Luay J

Then we have

+_ (z(a),H(a))
> =A@, H @) 10)

and

Z" =R™(z(q), IH(a))-

Similarly, the  function W(q, p) e *([0,)x[0,1) may be estimated as:
w(g, p) = IH™ (@) xW x IH(p), (1)

where Wisan (U +1)(V +1)x (U +1)(V +1)) matrix called the kernel matrix and entries of the
matrix is given by
(Ih. (@), (w(a. p)Ih,(p)))

= '5=12,.--U +1)(V +1),
"rs =i (@), h, (@), (1, (p). . (p)) O+ (12)

W =R™(IH(q),(w(g, p), IH(p)))R™".
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Integration of the Cross Product
The cross product integration of two hybrid function vectors IH(q) is

defined by

1
R = | H(a)IH (a)dg, (13)
where;
Jj 0 0
n_| 0 2 0 ”
0 0 .. J,

0 is an (V+1)x(V +1) matrix, and J,(U=12,---U+1) is an (V +1)x(V +1) matrix.
J,(Uu=12,---U +1) is described as:

2529524
J; = [B(B( Dda, (15)
h
-nhes 3 q 3 1
- 2B(=+=-u)B(=+=-u)'dq, 16
C e Gtz VB (16)
u=23,---U
Lastly,
o 2q 2 2q 2
‘]U+1 = J;.—ZB T—H—Fl)x B(T—H'Fl)dq, (17)
Material and Methods

We provide a numerical direct method to address equation (1) in this part using hybrid
function comprising of IBLPFs and BEPLs. To achieve this, we approximate the functions in
equation (1) using the hybrid series expansion of functions Ramadan et.al (2020) taking the
form:

2(q) = Z"IH(a), (18)
w(g, p) = IHT(q) xW x IH(p), (19)
and

e(q)~ E"IH(q), 20)

where W is an (U +1)(V +1)x (U +1)(V +1) dimensional matrix and Eis a known
U +1)(V +1)x1 vector. In equation (18), Zis an unknown (U +1)(V +1)x1vector. By
substituting equation (18)-(20) in to equation 1), we get

1
[, THT @WIH (p)IHT (p)Zdp = HT (Q)E, 1)
or
1

IHT (W [ IH(p)IHT (p)Zdp=IHT (a)E 22)
using equation (13), equation (22) can be replaced by

IH" (QWRZ = IHT (q)E. (23)
Therefore, ~we  arrive at the resulting system of linear equations:
WR)Z =E (24)
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Solving the system of linear equations in (24) we find the unknown vector E where R

represents the dual operational matrix of IH which is a matrix with dimension
U +)(V +) x U +1)(V +1) derived from the preceding section.

3.0 Results and Discussion

Error analysis

In this section we analyse the convergence of the suggested numerical approach. We will
demonstrate that given suitable conditions, the approximate solution derived from our
method converges to the precise solution of equation (1). We present the following lemma
and theorem in order to perform the convergence analysis.

Lemma3 et zeCY™[0,1) isan V +1 times continuously differentiable function such that
U+l

2~ 7, and let O, =span{lh,(q)h,(a)-hy,. (@)} u=12--U+1 If Z]IH,(q) is the

best approximaton to z, from O, where Z,=[z,0,2,, " Zy.] and

Hu(q): [lhuO(Q), |hu1(q)--- |huV+1(CI)T then y(lJ+l)(\,+l)z(q)=YT IH(q) approximates
z(q) with the following error bound

< o L : +
H Yuawa Z(q)ﬂz = ((V +1)|)(U +1)V+l \/(2\/ +3)(22v+2 1). 05)

where § = max‘f"+1 )(

Proof The Taylor expansion for the function z, (q) for u=1 is given as:

2,(0)- 2,00+ 2,00 -0)+ 2D (-0 +--.+ 2 (0)(a-0)

V

V!
ZV+1 v 1 h (26)
0)" 0,— |,
+ B (0)a-0) qe[ 2)
for which it is known that
. qV+l h B
2, (a)-Z, (@) <[2"*( )1(\/ ay Oc {O,EJ, u=1. @)

Similarly, the Taylor expansion for the function Z, (q) for u=2,3,---U is given as:

@)= ((-2ne J o202+ B 0= ((w-2ne 7))o
o +i/—v((u 2)h+ gj(q —((u _2)h+gDV

28
+ 2,” [(u—2)h+EJ(q—(u—2)h+EJM+--- “
V+1 2 2
qe[(u_z)mﬂ,(u_l)mﬁj,
2 2

for which it is known that
- Vil —(u=2)h+2))"*

2,(@)-Z, (a) <[2"*( )I(q ( (le)! ) , (29)
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0e [(u—z)h+g,(u—1)h+gj u=2,3,--U.
Lastly

R e G
*{ii}(}ﬂ)(q@zﬁ =

for which it is known that

|Zu (q)_ Zu (q)| < ‘ZVH(QXM

\V2 )

where 8 {1—5,1} u=U+1

(30)

Since Z,IH, (q) is the best approximation to Z, from O, then

2,(q)-2H, ()], = [z ()-Z @)}

h
~1)h+—
(s

2,(a)-Z, (@) da+ [ |z,(a)-Z,(a) dg

h
—2)h+—
(v-2)h+"

+1mmramrm

ct—p |

(32)

Now let 6 = max 96[0’1)‘2\/”(091 this implies,

%m»zmmmﬁs&ll-

h (33)

=(wiuycxtb(fif”}

this implies

@-2"HG@) <Y

(e @)-2]H, @),

- 52h2M+3 ( 1 +1j (34)
SV el )

By taking the square root of equation (34) gives the bound
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o 1 1
2(q)-Z"IH < +11]
@2, < o J & +3)(22v+2 j ()
Theorem In equation (1) suppose that w(q, p) is continuous on the square [O,l)2 and z(q)

belong to C'* [0,1) with V > 1. Furthermore assume the approximate solution

2q)~ > > 2,1h, (@)= 2" IH(q) 56)

u=1 1=0

is given by hybrid IBLPFs and BEPLs method, Now if A is non-singular then

Z(q)_l:zjgz“' o (q)L : ((v +1)!)zu +1)' \/ (2v1+ 3)(223+2 +1j

5+ |Ac, U +1)V +1) (37)
V(2v+1)(2v-1)
(V+1)
Proof The estimation in (37) is derived as follows:
Let
U v

Z(q) ~ Z(U+1)(V+1)(q) = Zz Zy IhuI (q)’ (38)

u=1 1=0

where z, are unknown coefficients determined by solving the linear system in equation (24)
. Also suppose

U+l Vv

Yus)v+) (q) = Z Z Yulhy (q) (39)

u=1 1=0

our goal is to find a bound for HZ(Q) ~ L)1) (q )ﬂz » SO

HZ(C])— L)) (qmz < HZ(Q)_ Yy (qX‘Z + Hy(u+1)(V+1) (Q)— Zus)v+) (qX‘Z’ (40)
from lemma (1) we have

o 1 1
HZ(Q)— Z(u+1)(V+1)(CI)H2 < ((V +1)! U +1)V+1 \/(ZV +3)(22V+2 +1j an

(
where & = max|z'*(q)] qe<[0.1)

We now find a bound for Hy(u )V (q)— Z(yaa) (V) (q)” ,

2

2 2
HY(U +1)(v+1)(q)_ Z(U +1)(v+1)(qm2 = _Hy(u +1)(v+1)(q)_ Z(U +l)(V+1)(qX dq
0
2
(yul —Z )Ihul (q* dq

< i(l > (Y = 24) Ihy(q)gqu (42)
)

u=42,---U+1 1=01---V

where ‘lhy (QX = SUp| lh, (g

H. S. Musa, S. L. Bichi, DUJOPAS 10 (4b): 20-34, 2024 27



A Hybrid Method of Improved Block Pulse with Bernstein Polynomials for Numerical Solution of Linear Ill-Posed
First Kind Fredholm Integral Equation

il(yu. ~2,\|ih, () dg

1
HY(U +1)(v+1)(q) (U+1)(V+1) )”z _[
0

- ”Y _Z"2a’ (43)
1
where o :.thy(q)‘qu,
0

this implies,
Hy(U+1)(V+1)(q)_Z(U+1 V+1) X‘ ”Y Z” ‘/_ (44)

if we substitute 7).y asan approximate solution in equation (1) then

1
[ W(@, P)2y.y.0 (P)AP=E(0)

but if we use Yy, v,y asanapproximate solution in equation (1) we obtain

1 ~

[, w(@, P)Yu.. (P)AP=E()
by using the numerical method of hybrid IBLPFs and BEPLs in equation(24) we have
Z=WR)"E=A"E,

~ ~ 4
Y =(WR)"E = A™E, #)
where
W :[Wlo---le Wooor Yoy e WysaoeWyay ]T’
Y =[Y1o---Y1v YooY o Yuio-Yuiy ]T’
T
E= [elo---elv €0+ -~ €0 eu+1v] )
E= [élo---éw €0y o o eu+1v] '
Also, we observe Y —Z = A_1 (E - E)
We have the following bound of |Y —Z| , as
v -2|, <] JE-€], 46)

then it is enough to find a bound for H(E— E}Lbut before then we need a bound for

”(5 (CI) - e(q )mz ) Now from equation (1),

e(q )=jIW(q P)2(P)dp— [ W(d, P)Y(y -y (P)AD+ [ (G, D)V o) (P O,

&(a) IW(q p)( p)- U+1)(v+1)(p))dp,

therefore;

l(e(@)-e(@)] f

2

dqa

jw(q p)( p)-y Yy (p))dp
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“f [
:i[ [w(a, p)l‘ Yo sien (p))‘de dg,

If we assume C, = sup|w(q, p)| g,pe [0,1) we have

H(é'(q)— e(q»ﬂ; < Cg(j“(Z(p)— y(U+1)(V+1)(p)} dp]

0

< ((&(p)- Vo). f

) Cg{((v +1)!)fu +1) \/(2V1+ 3)(223” +1sz

taking square roots of both sides of equation (47) we have;

R e PR a5

Now we find a bound for HE — EHZ since

2
( y(U+1)(v+1)(p))de dqg

(47)

(2V+1)[ jl
_ . je u=12,---U+1 I,s=0,1---V. (49)

(L)
" )

e =

then we have
U+l v

[E-€f; = XX IE@-e(a)

€(q)lh,(q)dg u=22--U+1 1,s=0,1---V, (50)

O e

(2v +1)(| jl
<U+)V+1)  sup | ——<>[1h,(@)E(a)-e(q)dg

1<u<U +1;0<l, s<v Zh(V](VJ 0
| s
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<U+)V+1)  sup @ +1)[2V] 1

1<u<U+1;0<l, sV Zh(VJ[Vj 0
| s

(v Jrl)(I jl
- U+D)(V+1) sup ° J'|IhuI (9)[e(a)-e(a)dq

1<u<U+1;0<1, sV Zh( J( j
| S

2
(2v +1
I+
<(U+1(V+1) sup s H'h (@), IE@)-e(@), |
Lu<U+l 0<l,sgv
2
UV D) sup | e(a)-ela)], | 61
1<u<U +1;0<l, s<V Zh[\:j[g
[(wu)(ij}
substitute equation (48) in equation (51) we obtain,
2
0Cy
|E- EH (U +1)(V +1)Jgus.us+lil;gsl,ssv (::%fﬂ((v+1)!)(u+1)V+1 , (52)
i ()

Consequently, by substituting equation (52) in the inequality (44) we can conclude

V(2v+1)(2v-1)

6 (U+1)(v+1) v
(V+1))(U+1)™| V2

1 ( 1 +1j
(v +3)( 277 (53)

where ¢, = o¢,.
So by substituting equation (53) in equation (44) we obtain

I —&l, <[]
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V(2v+1)(2v-1)

c,(U+1)(V +1 V)
Hy(UJfl)(Vﬂ)(q)_Z(U+1)(V+1)(Q) <|A 4 ) ) vl

=l l”((V+1)!)(U+1)V+l V2

1 ( 1 +1J
(v +3)( 272 (54)

where ¢, =¢,va .
Fmally substltute equation (54) and equation (41) in equation (40) we obtain

H u+1 (V+1) 1‘2 = HZ(C])— y(u+1)(v+1)(Q)”2 +Hy(u+1)(v+1)(Q)_ Z(U+1)(v+1)(qX‘2

"W +1>!>(<5u g J (zv1+ 3)(223+2 *1) "

H _1H C2 U +l V +l) (ZV(T/lz(lZ)V&)
(v +1))( U +1)" V42

\/ (2v1+ 3)[223+2 1)
1

(VU ) J (2v1+ 3)(223*2 ”)

5+[A™c,(U +1)(V +1)

V(2v+1)(2v-1)
vy
v2

Numerical examples
In this part, we offer some examples demonstrating the approximation of solutions to LFFIEs

using the numerical technique outlined according to the preceding section. These numerical
tests are conducted utilising Maple 18 software.

Example 1. Consider the LFFIE
sin(gq)-qcosq
q 2

1
[sin(ap)z(p)dp =
0

with exact solution Z (q): 0. The absolute errors of improved block pulse method for

qe[0.1]

is shown in Table 1.
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Table 1 The numerical outcomes derived from the suggested approach for Example 1.

qi Exact HIBB Method

With U=2,V=2
0.1 0.1 0.0798652262
0.2 0.2 0.0767057343
0.3 0.3 0.0131597932
0.4 0.4 0.0086792069
0.5 0.5 0.0041986208
0.6 0.6 0.0002819653
0.7 0.7 0.0047625515
0.8 0.8 0.0020062129
0.9 0.9 0.0005623737

Example 2

Consider the first kind Fredholm integral equation
1
[eP(sin(a— p+1)+1)z(p)dp =1+ cos(q)—cos(q +1)
0

with exact solution Z (q)= e 1. The absolute errors of improved block pulse method for
q €[0,1] is shown in Table 2.

Table 2 The numerical outcomes derived from the suggested approach for Example 2.

qi Exact HIBB method
Wih U=2,V=2
0.1 0.904837418039 0.5389568730358
0.2 0.818730753079 0.8974269336529
0.3 0.740818220687 0.9941483491454
0.4 0.670320046036 0.9645529123312
0.5 0.606530659716 0.9282486871939
0.6 0.548811636090 0.8858740993523
0.7 0.496585303794 0.8380068201946
0.8 0.449328964112 0.7102212282173
0.9 0.406569659745 0.3593715802343

A hybrid of BEPLs and IBLPFs was used as basis in L [0,1) space by using the excellent

characteristic of the hybrid functions to discretise the ill-posed LFFIE in to a system of linear
equation in (24). We now solved the resulting system using Maple 18 software programme.
We used the method to solve the second kind Fredholm integral equation as presented by
Ramadan et.al (2020) and it was proven that the approach appears to be effective for solving
integral equations as comparisons with other methods give lesser error. However, due to the
ill-poseness of the LFFIE, a large condition number is reflected in the matrix equation Az = €
of the descretised linear system of equation in (24) there by making the solution to be unstable
which is illustrated using some numerical examples above. The CN of the matrix plays a vital
role for obtaining a stable approximate solution as it determines how unstable the linear
system AZ =€ is when the datae gets altered. A CN almost infinity makes the matrix to be
uninvertible there by making it impossible to solve to get an approximate solution. Therefore,
in practice a small CN close to one is wanted. But despite the matrix's high CN, we were still
able to get a numerical approximation for the LFFIE, proving the suggested method's
effectiveness which is illustrated using the above numerical examples. We also analyse the
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convergence of the numerical approach and it was proven to us that the approximate solution
obtained by our scheme converges to the exact solution of equation (1).

CONCLUSION

The above-mentioned theoretical and numerical results show that reducing the CN of the
matrix can improve accuracy and stability of the approximate solution, therefore
incorporating regularisation with the presented method can improve efficiency of the method
which is under investigation by the authors. However other methods like preconditioning
methods can also be used if the CN of the matrix A is large. The objective is to substitute the
linear system with a similar system, such as one that is obtained by multiplying by a
preconditioning matrix D, whose matrix has a less CN to get a similar system DAz = De,
where CN (DA) is lesser than CN( A). Usually a straightforward preconditioning matrix can
be found Babolian et.al (2005).
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