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Abstract 
This paper investigates the approximate solution of linear first-kind Fredholm integral equation 
(LFFIE). The LFFIE is an ill-posed problem (ILPP) and often requires solving linear system of equations 
with high condition number, which makes it difficult or impossible to solve. A novel approach is 
introduced, employing a mix of Benstein polynomials (BEPLs) and improved block-pulse functions 
(IBLPFs) within the domain )1,0[ as hybrid functions. Various properties of these functions are used 

to convert the LFFIE in to algebraic equations. Analysis of the method's convergence together with 
numerical examples are provided to demonstrate how  relevant the method is. The numerical results 
proves that the hybrid function of IBLPFs together with BEPLs solve the LFFIE even with large 
condition number of the matrix. 
 
Keywords:  Linear First kind Fredholm integral equation (LFFIE), Hybrid functions, Direct 
method, Condition number, Convergence analysis, 

 
INTRODUCTION 
The LFFIEs characterized by the presence of an unknown function under the integral sign: 
 

,10)()(),(
1

0
= qqedppzpqw                                                                                     (1) 

which complicates the solution process due to their inherent ill-posedness. These equations 

often appear in applications such as signal processing, potential theory, and image restoration, 
where data recovery is complicated by sensitivity to input perturbations (Baker et al., 1964). 
In particular, the LFFIE exhibit sensitivity where minor changes in input data can result in 

significant variations in the solution, making direct analytical solutions difficult and 
necessitating robust numerical approaches Hansen (1994). 
 

Tikhonov regularisation, one of the most widely used approaches, introduces a stabilizing 
term to control sensitivity to input perturbations; however, it may compromise accuracy, 
especially for highly oscillatory kernels (Tikhonov & Arsenin, 1977). Polynomial 

approximations, such as those involving Legendre or Chebyshev polynomials Maleknejad & 
Sohrabi, (2007)., Chebyshev wavelets Adibi & Assari (2010) are commonly used in the 
numerical solution of integral equations due to their ease of computation and ability to handle 

various functional forms. However, these approaches alone often struggle with the balance 
between stability and accuracy, particularly in ill-posed equations with complex kernel 
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structures. Methods based on block pulse functions simplify the computation further by 
breaking down the equation into piecewise constants, though they may lack smoothness, 
which can limit their applicability in higher-accuracy settings Anderssen & Latham, (1995). 

These limitations highlight the need for more adaptive and flexible polynomial methods. 
 
To address the challenges posed by traditional polynomial approaches, hybrid methods 

combining different polynomial bases have gained traction in recent years. These hybrid 
methods seek to capitalise on the individual strengths of various polynomial functions to 
enhance stability and accuracy. For example, combining block pulse functions with legendre 

Maleknejad, & Saeedipoor  (2017), and combining block pulse with polynomials wavelets has 
proven effective in achieving computational simplicity while preserving detailed solution 

characteristics Temirbekov & Temirbekova, ( 2022). However, there is still room for 
innovation, particularly with techniques that combine BEPLs with IBLPFs to enhance 
smoothness without sacrificing computational simplicity. Such a hybrid approach promises 

to provide a robust framework for solving  LFFIE with improved performance and reduced 
error. 
 

Despite the progress in hybrid numerical methods, existing techniques still face challenges 
related to computational efficiency and accuracy when addressing the complexities of LFFIE 
(Anderssen & Latham, 1995; Maleknejad & Sohrabi, 2007). This study aims to bridge this gap 

by proposing a novel hybrid method that integrates BEPLs with IBLPFs effectively combining 
computational efficiency with a high degree of smoothness. This approach represents a 
unique advancement in terms of efficiency and makes it suitable for large-scale applications. 

The proposed method thus contributes to the field by offering a practical and effective 
solution to a longstanding challenge in numerical analysis. 
 

We give some specific definitions and attributes of BEPLs and IBLPFs. 
 
Lemma 1 

The thv degree BEPLs are defined over the interval [ , ]a b  as 

,
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The BEPLs serve as basis on ],[2 baL . For each thv  degree there are 1+v  polynomials. 

Therefore, any thv degree polynomial can be expressed using the linear combination of 

, ( ), 0,1, ,l vB q l v=  Maleknejad et. al (2012 ). 

 
Lemma 2 

An )1( +U  set of improved block-pulse function (IBLPF's) )(qIbu  1,2, 1u U= +  is defined 

over the interval )1,0[  with a little modification to the block pulse function, 
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where 1+U  is a positive integer and  
1

1
+

=
U

h  . 

 
The characteristic of these functions adhere to the following: disjointness, orthogonality, and 
completeness Jiang (1992). 

 Proof   
 
The property of  disjointness can be easily derived from the definition of  IBLPFs as follows: 
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Similarly, the IBLPFs are orthogonal with each other in the interval )1,0[q  :  
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This characteristic can be directly inferred from the disjointness of IBLPFs. 
 

The third property indicates that the IBLPFs set is complete when U  approaches infinity. For 

each ))1,0([2Lz  Parseval's identity holds: 

22
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 Definition (Hybrid of IBLPFs and BEPLs). Hybrid of IBLPFs and BEPLs have two arguments u  

and l   where 1,2,1 += Uu   and Vl ,.1,0= are the order of IBLPFs and BEPLs respectively. 

Hybrid of IBLPFs and BEPLs defined over the interval  )1,0  below Ramadan et.al (2020): 

 



A Hybrid Method of Improved Block Pulse with Bernstein Polynomials for Numerical Solution of Linear Ill -Posed 
First Kind Fredholm Integral Equation 

 

H. S. Musa, S. L. Bichi, DUJOPAS 10 (4b): 20-34, 2024                                                                                      23 

 

( )

( ) )2

, 2

,

0, 1, 0,1,.

,

0

q h
l V h

u l

B q u l V

Ih q

otherwise

  = =


= 



                                                         (6) 

 
 

( )
( ) ( ) )

,

0

,1,0,,.3,21,)2(
222

3
,

,







 ==+−+−−+

=

otherwise

VlUuhuhuquB

qIh

hh
h

q

Vl

lu



(7)          

 

 

( )
( )  )

.

0

,.1,0,11,11
2

22

,

,







 =+=−+−

=

otherwise

VlUuqB

qIh

h
hh

q

Vl

lu



                                     (8) 

 

Definition (Condition number of a matrix( CN)).Let D be an invertible m.m matrix. The CN of D  

is defined as follows CN ( ) .1−= DDD  If D is uninvertible, set CN )(D = +  .  

 
Function Approximation 

A function   )1,0)( 2Lqz   may be expanded in terms of hybrid functions as follows  
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where; 
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Similarly, the function ( ) )1,0[)1,0([, 2 Lpqw  may be estimated as: 
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where W is an ( ) ( ) ))1(1)1(1 ++++ VUVU  matrix called the kernel matrix and entries of the 

matrix is given by 
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Integration of the Cross Product 
The cross product integration of two hybrid function vectors )(qIH is 

defined by 
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 is an ( ) ( )11 ++ VV  matrix, and ( 1,2, 1)uJ u U= + is an ( ) ( )11 ++ VV  matrix. 

( 1,2, 1)uJ u U= +  is described as: 
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Material and Methods 
We provide a numerical direct method to address equation (1) in this part using hybrid 

function comprising of IBLPFs and BEPLs. To achieve this, we approximate the functions in 
equation (1)  using the hybrid series expansion of functions  Ramadan et.al (2020)  taking the 
form: 

),()( qIHZqz T                                                                                                                               (18) 

),()(),( pIHWqIHpqw T                                                                                                        (19) 

and 

( ) ),(qIHEqe T                                                                                                                                (20) 

where W  is an )1)(1()1)(1( ++++ VUVU  dimensional matrix and E is a known  

1)1)(1( ++ VU  vector. In equation (18), Z is an unknown 1)1)(1( ++ VU vector. By 

substituting equation (18)-(20) in to equation (1), we get 
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using equation (13), equation (22)  can be replaced by 

.)()( EqIHWRZqIH TT =                                                                                                                (23) 

Therefore, we arrive at the resulting system of linear equations: 
EZWR =)(                                                                                                                                        (24) 
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 Solving the system of linear equations in (24) we find the unknown vector E  where R   

represents the dual operational matrix of IH  which is a matrix with dimension  
)1)(1()1)(1( ++++ VUVU  derived from the preceding section. 

 

3.0 Results and Discussion  
Error analysis  
In this section we analyse the convergence of the suggested numerical approach. We will 

demonstrate that given suitable conditions, the approximate solution derived from our 
method converges to the precise solution of equation (1). We present the following lemma 
and theorem in order to perform the convergence analysis. 

 Lemma 3  . Let  )1,0[1+ VCz  is an 1+V times continuously differentiable function such that 
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Proof  The Taylor expansion for the function ( )qzu for 1=u  is given as: 
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 for which it is known that 
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Similarly, the Taylor expansion for the function  ( )qzu  for  Uu ,3,2=  is given as: 
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for which it is known that 
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for which it is known that 
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Since ( )qIHZ uu is the best approximation to uz~ from uO then 
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Now let   ) ( ) 
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By taking the square root of equation (34) gives the bound 
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Theorem  In equation (1) suppose that ( )pqw , is continuous on the square  )2
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( ) ( ) ( )qIHZqIhzqz T

ulul

V

l

U

u

= 
=

+

= 0

1

1

                                                                                                (36) 

is given by hybrid IBLPFs and BEPLs method, Now if A is non-singular then 
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                              (37) 

 
Proof  The estimation in (37) is derived as follows:  

Let  

( ) ( )( ) ( ) ( ),
0

1

1

11 qIhzqzqz ulul

V

l

U

u

VU 
=

+

=

++ =                                                                                           (38) 

where ulz are unknown coefficients determined by solving the linear system in equation (24) 

. Also suppose 

( )( ) ( ) ( )qIhyqy ulul

V

l

U

u

VU 
=

+

=

++ =
0

1

1

11                                                                                                      (39) 

our goal is to find a bound for  ( ) ( )( ) ( ) ,
2

11 qzqz VU ++− so 

( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ,
2

1111
2

11
2

11 qzqyqyqzqzqz VUVUVUVU ++++++++ −+−−                           (40) 

from lemma (1) we have 
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                                        (41) 

We now find a bound for  ( )( ) ( ) ( )( ) ( ) ,
2

1111 qzqy VUVU ++++ −
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where ( ) ( ) VlUuqIhqIh ul  ,1,01,2,1sup =+==  
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2

1

0

dqqIhwhere  =   

this implies, 

( )( )( ) ( )( ) ( ) ,
22

1111 ZYqzqy VUVU −− ++++                                                                         (44)       

if we substitute  ( )( )11 ++ VUz  as an approximate solution in equation (1) then 

( )( ) )()(),( 11

1

0
qedppzpqw VU =++  

but if we use ( )( )11 ++ VUy as an approximate solution in equation (1)  we obtain 

( )( ) ,)(~)(),( 11

1

0
qedppypqw VU =++  

by using the numerical method of hybrid IBLPFs and BEPLs in equation(24) we have
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where 

              ,............ 110220110

T
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              ,............ 110220110

T

VUUVV yyyyyyY ++=    

              10 1 20 2 10 1... ... ... ... ,
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V V U U VE e e e e e e+ +=  

              10 1 20 2 10 1... ... ... ... ,
T

V V U U VE e e e e e e+ +=  

Also, we observe ( )EEAZY −=− − ~1   

We have the following bound of  
2

ZY −  as  

( ) ,
~
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1

2
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then it is enough to find a bound for ( )
2

~
EE − but before then we need a bound for

( ) ( )( ) ,~
2

qeqe −   Now from equation (1),  
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therefore; 
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taking square roots of both sides of equation (47)  we have; 
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Now we find a bound for 
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then we have 
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substitute equation (48) in equation (51) we obtain, 
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Consequently, by substituting equation (52) in the inequality (44) we can conclude 
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So by substituting equation (53) in equation (44) we obtain 
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Finally substitute equation (54) and equation (41) in equation (40) we obtain 
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Numerical examples 

In this part, we offer some examples demonstrating the approximation of solutions to LFFIEs 
using the numerical technique outlined according to the preceding section. These numerical 
tests are conducted utilising Maple 18 software. 

 
Example  1. Consider the LFFIE 

          ( ) ( )
( )

2

1

0

cossin
sin

q

qqq
dppzqp

−
=  

with exact solution  ( ) .qqz =  The absolute errors of improved block pulse method for 

 1,0q    

is shown in Table 1. 
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Table 1 The numerical outcomes derived from the suggested approach for Example 1. 
qi Exact      HIBB Method 

     With U=2,V=2  

   

0.1 0.1 0.0798652262 

0.2 0.2 0.0767057343 
0.3 0.3 0.0131597932 

0.4 0.4 0.0086792069 
0.5 
0.6 

0.5  
    0.6  

0.0041986208 
0.0002819653 

0.7 0.7 0.0047625515 
0.8 0.8 0.0020062129 
0.9  0.9 0.0005623737 

   

Example 2  

 

Consider the first kind Fredholm integral equation 

          ( )( ) ( ) ( ) ( )1coscos111sin

1

0

+−+=++− qqdppzpqe p

 

 

with exact solution ( ) .qeqz −= The absolute errors of improved block pulse method for  

 1,0q   is shown in Table 2. 

 

Table 2 The numerical outcomes derived from the suggested approach for Example 2. 
 
 

 

 

  A hybrid of BEPLs and IBLPFs was used as basis in  )1,02L  space by using the excellent 

characteristic of the hybrid functions to discretise the ill-posed LFFIE in to a system of linear 
equation in (24). We now solved the resulting system using Maple 18 software programme. 
We used the method to solve the second kind Fredholm integral equation as presented by 

Ramadan et.al (2020) and it was proven that the approach appears to be effective for solving 
integral equations as comparisons with other methods give lesser error. However, due to the 

ill-poseness of the LFFIE, a large condition number is reflected in the matrix equation eAz =  

of the descretised linear system of equation in (24) there by making the solution to be unstable 
which is illustrated using some numerical examples above. The CN of the matrix plays a vital 
role for obtaining a stable approximate solution as it determines how unstable the linear 

system eAz =   is when the data e  gets altered. A CN almost infinity makes the matrix to be 
uninvertible there by making it impossible to solve to get an approximate solution. Therefore, 
in practice a small CN close to one is wanted. But despite the matrix's high CN, we were still 

able to get a numerical approximation for the LFFIE, proving the suggested method's 
effectiveness which is illustrated using the above numerical examples. We also analyse the 

qi Exact      HIBB method 
     Wih U=2,V=2 

   

0.1 0.904837418039 0.5389568730358 

0.2 0.818730753079 0.8974269336529 
0.3 0.740818220687 0.9941483491454 
0.4 0.670320046036 0.9645529123312 

0.5 
0.6 

0.606530659716 
0.548811636090 

0.9282486871939 
0.8858740993523 

0.7 0.496585303794 0.8380068201946 
0.8 0.449328964112 0.7102212282173 
0.9  0.406569659745 0.3593715802343 

   



A Hybrid Method of Improved Block Pulse with Bernstein Polynomials for Numerical Solution of Linear Ill -Posed 
First Kind Fredholm Integral Equation 

 

H. S. Musa, S. L. Bichi, DUJOPAS 10 (4b): 20-34, 2024                                                                                      33 

 

convergence of the numerical approach and it was proven to us that the approximate solution 
obtained by our scheme converges to the exact solution of equation (1). 
 

 
CONCLUSION 
The above-mentioned theoretical and numerical results show that reducing the CN of the 
matrix can improve accuracy and stability of the approximate solution, therefore 
incorporating regularisation with the presented method can improve efficiency of the method 

which is under investigation by the authors. However other methods like preconditioning 

methods can also be used if the CN of the matrix A  is large. The objective is to substitute the 
linear system with a similar system, such as one that is obtained by multiplying by a 

preconditioning matrix D , whose matrix has a less CN to get a similar system DeDAz = , 

where CN )(DA  is lesser than CN( A ). Usually a straightforward preconditioning matrix can 

be found Babolian et.al (2005). 
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