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Abstract 
This study examines the impact of diagnostic inaccuracies on the transmission dynamics of infectious 
diseases using an extended SEIR model. By incorporating compartments for false-positive and false-
negative cases, the model simulates the effects of faulty testing, no testing, and varying testing rates on 
disease progression. Simulations reveal that while no testing results in rapid disease spread, 
introducing a 10% testing rate significantly reduces infections but generates substantial diagnostic 
errors—1.8 million false positives and 600,000 false negatives within 40 days. These findings 
underscore the critical role of accurate testing in mitigating false negatives, reducing undetected 
transmission, and optimizing public health interventions. The model bridges the gap between 
theoretical epidemiology and practical disease management, offering actionable insights for enhancing 
testing strategies to improve epidemic control. 
 
INTRODUCTION 
Infectious diseases remain a persistent global health challenge due to their dynamic nature 
and the complexity of managing outbreaks. Accurate laboratory testing is an essential tool for 

identifying infected individuals, guiding treatment protocols, and implementing effective 
public health interventions (Trevethan, 2017). Diagnostic metrics such as sensitivity i.e. the 
ability to correctly identify true positive cases and specificity i.e. the ability to correctly 

identify true negative cases are critical in evaluating the effectiveness of laboratory tests 
(Mouliou & Gourgoulianis, 2021). Despite their importance, inaccuracies in testing, such as 
false positives and false negatives, can significantly distort disease dynamics and complicate 

containment strategies. In the context of bio-mathematics, specificity refers to the ability of a 
test to correctly identify those individuals who do not have a particular disease or condition 
(Trevethan, 2017). It is the proportion of true negatives among all individuals who do not have 

the disease. Mathematically, specificity is defined as: 
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False negatives or/and false positives can cause unwarranted reactions, which can hinder 
attempts to control disease (Sahinoglu and Sahinoglu, 2022).  
 

The use of mathematical models to study infectious disease dynamics has been well-
documented in literature. Traditional compartmental models, such as the SEIR (Susceptible, 
Exposed, Infected, and Recovered) framework, provide a foundational approach to 

understanding disease progression and the effects of interventions (Li, 2018). However, these 
models often assume ideal diagnostic conditions, ignoring the potential impact of diagnostic 
inaccuracies on disease spread. Recent advancements, such as the integration of sensitivity 

and specificity into epidemic models, addressed this limitation. Sahinoglu and Sahinoglu 
(2022) emphasize the cascading consequences of diagnostic errors during the COVID-19 
pandemic, including the unchecked transmission caused by false negatives and the resource 

strain associated with false positives. 
 
Despite these contributions, a critical gap persists in existing models: few studies explicitly 

quantify the dynamic impact of diagnostic inaccuracies over time. This gap limits our 
understanding of how diagnostic errors influence the effectiveness of public health 
interventions. To address this, the current study builds on the foundational SEIR framework 

by introducing additional compartments for false-positive and false-negative individuals. 
This novel extension allows for a detailed examination of how diagnostic inaccuracies affect 
disease dynamics and offers actionable insights for optimizing testing strategies. 

The objective of this study lies in its ability to dynamically integrate diagnostic metrics into 
the SEIR framework, providing a comprehensive analysis of testing inaccuracies across 
different scenarios. By simulating the effects of faulty testing, no testing, and varying testing 

rates, this study bridges the gap between theoretical modeling and practical disease 
management, offering a robust tool for improving public health strategies. 

 
MODEL FORMULATION AND METHODS 
This study builds upon the classical SEIR model, incorporating additional scenario to account 

for individuals with false-positive and false-negative test results. This extension allows for a 
detailed examination of how diagnostic inaccuracies influence disease dynamics. The 
approach aligns with the framework established by Li (2018) and extends it by integrating 

diagnostic metrics as dynamic variables. Therefore we assume SEIR with addition of two 
compartments to account for individuals who were incorrectly diagnosed by the test. Those 
who are false positives (P) as well as false negatives (N) compartments. The modified model 

allows us to explore via simulation how erroneous test results affect the overall dynamics of 
the disease spread, guiding public health interventions and resource allocation. 
 

Hence, we hereby propose a six compartmental model as follows: ( )S t , susceptible 

individuals which comprises of persons who are at risk of infection but not yet infected. Then 
( )E t , exposed individuals, referring to those who have been infected but are not yet 

infectious. The exposed compartment accounts for the incubation period of the disease. Next 

compartment is  ( )I t , the infectious individuals who are infected and can transmit the disease 

to susceptible individuals. Then ( )R t , the recovered individuals who have recovered from 

the disease and are assumed to be immune.  
 
Moving further, we introduced ( )P t , false positive to refer to those individuals who do not 

have the disease but have been incorrectly diagnosed as positive. The rate at which false 
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positives are generated can be calculated using ( )1  specificity− . For example, if   is the rate 

of testing, the rate of generating false positives can be given by: 

( ) ( )       1  
dP

Non Infected Individuals specificity
dt

=  −  −  (2) 

And lastly, we added ( )N t , false negative to account for those individuals who have the 

disease but have been incorrectly diagnosed as negative. The rate of false negative is 
computed almost the same way false positives are generated. For instance, if   is the rate at 

which exposed individuals become infectious, the rate of generating false negatives can be 
given by: 

( ) ( )      1  
dN

Exposed Individuals sensitivity
dt

=   −  (3) 

All the state variables change continually with respect to time t . The state variables of the 

models are presented in table 1. 
 
Table 1: State Variables of the Model 

State Variable  Description  

( )S t  Susceptible Individuals  

( )E t  Exposed Individuals 

( )I t  Infected Individuals 

( )R t  Recovered Individuals 

( )P t  Individuals diagnosed false positives 

( )N t  Individuals diagnosed false negatives 

( )T t  Total Individuals  

 

Beside the introduction of two new state variables, we assume a constant recruitment rate 
into the susceptible compartment. The disease is being transmitted by a parameter   as a 

result of effective interaction between the inflected and susceptible individuals by means of 

frequency-dependent transmission term 
SI

T


. The movement from exposed compartment to 

infected compartment is represented by parameter   as the rate at which exposed individuals 
become infectious (inverse of the incubation period). We assume a constant recovery rate   

(inverse of the infectious period). The disease induced death rate is d  while the deaths due 
to natural causes is given by  . 

The parameters of the models are presented in table 2. 
 
Table 2: The Parameters of the Model 

Parameter  Description  

  Recruitment rate 

  transmission rate 

  rate at which exposed individuals become infectious 
  recovery rate (inverse of the infectious period) 

  Natural death rate 

d  Death rate due to the disease  

  rate of testing  

Specificity  The probability that the test correctly identifies a non-infected individual (true 

negative rate). 

Sensitivity  The probability that the test correctly identifies an infected individual (true positive 
rate). 

t  Time in days 
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The model is governed by a system of ordinary differential equations that describe the rate of 
change of each compartment over time as follows: 
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SIMULATION RESULTS AND DISCUSSION 
This model incorporates parameterization from prior works, including sensitivity and 
specificity as defined by Trevethan (2017) and Borysiak et al. (2016). The extension of the SEIR 

model is consistent with recent studies that highlight the importance of integrating diagnostic 
metrics into epidemic modeling (Schwarzer, 2008). Hence, the numerical simulations were 
performed using MATLAB R2023a, following the methods of Schwarzer (2008) and Li (2018). 

Initial conditions and parameter values were derived from typical epidemiological scenarios, 
ensuring consistency with real-world disease dynamics. Sensitivity and specificity values 
were varied across simulations to assess their impact on disease dynamics, reflecting the 

findings of McPherson and Pincus (2021). 
 
Experiment 1 
In this experiment, we consider 10,000,000 initial population where 97% are susceptible, 2% 
are exposed, 1% are infectious and there are no recovered individuals yet. If we suppose that 

the specificity is 95%, it means 5% of non-infected individuals will be incorrectly identified as 
having the disease (false positives). Also, if the sensitivity is 90%, it means 10% of infected 
individuals will be incorrectly identified as not having the disease (false negatives).  Using 

parameter values 0.002 = , 0.001 = , 0.3 = , 
1

5.2
 =  (incubation period of 5.2 days), 

and 
1

2.3
 = (infectious period of 2.3 days). If the rate of testing is 0.1 = , the dynamics of 

the disease spread over time can be simulate as follows:  
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Figure 1. The dynamics of the disease spread with test 

 
Experiment 2 
In this experiment, we aim to investigate how the absence of a testing rate affects the dynamics 

of the disease. With the exception of the testing rate being zero, we used the same scenario 
from experiment 1 and kept all values of the state variables and parameters unchanged. The 

simulation result of dynamics of false positives ( )P t  and false negatives ( )N t  compartments 

can be seen as follows: 

 
Figure 2. Absence of Testing on the dynamics of a disease 

 
Experiment 3 
In this experiment, we aim to investigate how the testing rate affects the dynamics of the 

disease. Specifically, we are examining the dynamics of false positives ( )P t  and false 
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negatives ( )N t  over time when the testing rate is set at 10% 0.1 = . We used the same 

scenario from Experiment 1 and maintained same values of the state variables and 
parameters. Here is the result of the simulation: 

 
Figure 3. Effect of Testing on the dynamics of a disease 

 
DISCUSSION OF THE SIMULATION RESULTS 
Experiment 1: Faulty testing, the result indicates that with 10% testing rate, the model showed 

significant increases in false positives (1.8 million) and false negatives (600,000) within 40 
days. The rapid depletion of the susceptible population highlights the compounded effect of 
undetected carriers due to false negatives. This aligns with the findings of Sahinoglu and 

Sahinoglu (2022), who emphasized the role of diagnostic errors in perpetuating transmission 
chains. The dynamics observed here underscore the critical need for high-sensitivity tests to 

minimize false negatives and interrupt transmission. 
 
Experiment 2: In the absence of testing, false positives and negatives remained at zero. 

However, the unchecked spread of the disease led to the complete depletion of the susceptible 
population within 40 days. This finding corroborates Borysiak et al. (2016), who demonstrated 
that the absence of diagnostic interventions exacerbates epidemic severity. While this scenario 

is unrealistic in practical terms, it highlights the indispensability of testing in managing 
infectious diseases. 
 

Experiment 3: Impact of Testing Rate, by introducing a 10% testing rate significantly altered 
disease dynamics. Although testing reduced the infected population, the presence of 
diagnostic inaccuracies resulted in a substantial burden of false positives and negatives. This 

underscores the findings of McPherson and Pincus (2021), who discussed the trade-offs 
between sensitivity and specificity in diagnostic testing. Prioritizing high sensitivity may 
mitigate false negatives, reducing undetected cases, but may also increase false positives, as 

shown in this study.  
 
As a final point, the findings underscore the critical importance of accurate diagnostics in 

epidemic control. Unlike traditional SEIR models, which assume ideal diagnostic conditions, 
this study reveals the dynamic impact of diagnostic errors, providing actionable insights for 
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public health strategies. By quantifying the effects of diagnostic inaccuracies over time, this 
work offers a more realistic framework for understanding the interplay between testing 
accuracy and disease dynamics. The model’s novelty lies in its ability to integrate diagnostic 

metrics dynamically, bridging the gap between theoretical modeling and practical disease 
management (Mouliou & Gourgoulianis, 2021). 
 
CONCLUSION 
This study demonstrates the significant impact of diagnostic inaccuracies on infectious disease 
dynamics. By extending the classical SEIR model to include false-positive and false-negative 

compartments, the findings reveal critical insights into the role of diagnostic accuracy in 
epidemic control. Through comparisons with other models and integration of literature-
backed analyses, this work highlights the necessity of optimizing both sensitivity and 

specificity to minimize diagnostic errors. As such, findings from these experiments emphasize 
that accurate and widespread testing is crucial in managing infectious diseases. Therefore, 

future research should incorporate adaptive testing strategies and real-time data integration 
to further enhance model applicability. 
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