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Abstract 
This paper locates the Lagrangian points found on the out-of-orbital plane of motion which are called 
out-of-plane libration points(OLPs). The study is carried out using the model of the circular restricted 
three-body problem (CR3BP) when the main bodies are assumed as oblate-radiating spheroids and 

radiating bodies. Two pairs of OEPs and have been obtained using semi-analytical and 

numerical means, respectively. A comparison was made between the two methods and it is seen that the 
locations of the OEPs deviate slightly when applied to five binary systems (Lalande 21258, BD+195116, 
Ross 614, 70 Ophiuchi and 61 Cygni).  
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INTRODUCTION 
The restricted three-body problem (R3BP) describes the dynamics of a test particle having 
infinitesimal mass and moving under the gravitational effects of two primaries, where these 

primaries move in circular orbits around their center of mass on account of their mutual 
attraction and the test particle not impelling their motion. This formulation has had important 
implications in several scientific fields, including celestial mechanics, galactic dynamics, 

molecular physics, and chaos theory. Also, the motion of artificial satellites forms some of the 
areas where the R3BP is applied. The classical R3BP as discussed by Szebehely (1967) has five 
equilibrium points (EPs).  Three of these points lie on the line joining the primaries while the 

other two form a triangle, with the primaries. 
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In particular, the plane perpendicular to the plane of motion of the primaries has been shown 
to result in out-of-plane equilibrium points (OEPs) when the photo gravitational effects of one 

or both primary bodies are taken into consideration or when one or both primaries are 
sufficiently oblate in shape. The solutions of the classical R3BP do not comprise the out-of-
plane EPs. These points are very important in celestial mechanics within the frame of the R3BP 

and they serve as crucial loci located outside the orbital plane of the host bodies. Several 
researchers under different characterizations of the perturbing forces, have engaged in 
studying motion around these OEPs.  

 
Todoran (1993) claimed that the OEPs as implied by Radzevskii (1950) and computed by many 
researchers, do not exist. However, Ragos and Zagouras (1993) made a counterclaim in their 

paper where they verified that these points do exist. Such considerations concerning the OEPs 
can be seen in Roman (2001), who reviewed the role of the radiation pressure in the 
photogravitational R3BP and analyzed the existence of the OEPs. By utilizing a numerical 

simulation for the binary RW-Monocerotis system, they obtained a pair of OEPs 

 and . Douskos and Markellos (2006) reported the 

existence of OEPs when they considered the case of one or both primaries radiating and the 

case of the oblateness of one primary and radiation of the other. They obtained numerical 
evidence indicating that the OEPs are unstable. On the other hand, Wu et. Al., (2018) 
commented that the presentation by Douskos and Markellos (2006) deviated from the 

intuitive physical point of view where the gravitational force is the only force acting in the z-
direction.  

 
Other researchers who have made contributions to the study of OEPs include Das et al. (2009), 
Singh and Umar (2012), Huda et al. (2015) Abouelmagd and Mostafa (2015), Suraj et al (2018), 

Idrisi and Ullah (2021, 2022, 2024) and, Leke and Singh (2023). 
 
In this paper, we search for the existence of the OEPs and locate their positions under the 

framework of the CR3BP when the primaries are both radiating and oblate as well as giving 
practical applications by using the binary Lalande 21258, BD+19 5116, Ross 614, 70 Ophiuchi 
and 61 Cygni systems. The work improves the understanding of gravitational field stability 

by linking theoretical results to real astronomical events through the analysis of these concrete 
examples. This work is an important addition to the academic and applied fields of celestial 
mechanics, with important ramifications for astrodynamics, as understanding OEPs can guide 

spacecraft navigation and mission design. 
  
Equations of Motion  

Let , and be the masses of the bigger primary, smaller primary, and the infinitesimal 

body, respectively. Here, the primary bodies are moving in circular orbits about their common 

barycentre, while the infinitesimal body is moving and exerting no influence in the plane of 
motion of the primaries. 

The mass parameter is given by .  Let the unit of distance be taken as the distance 

between the primaries, such that the gravitational constant . The unit of mass has been 

chosen so that . We take the dimensionless masses of the primary bodies as 

 and . We let be the synodic coordinate system with the position of the 

infinitesimal body as and the primary and secondary bodies as  and 

 respectively (Fig. 1) 
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Fig. 1 Model Description of the Problem. 

  
Thus, the equations of motion of the infinitesimal body in the dimensionless synodic 

coordinate system with radiation pressure parameters and  and oblateness 

parameters and  (Singh & Ishwar (1999)) are    `  

                                                                                                                         (1) 

where 

      (2) 

         

                                                                                                                                               (3)                                                                                                                                                                                      

 

                                                                                                                                               (4)                                                                                                                                                                             

             (5)                                   

and the distances between the infinitesimal body and primary and secondary bodies are given 
as 

             and  , respectively. 
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             ,  

and the Jacobian integral of motion is represented as 

 

In Table 1, we present the physical parameters of the binary systems. The parameters and 

are the masses of the more massive and less massive stars  in each binary system as 

compared to the mass of the Sun. The symbol as shown earlier is the mass parameter. The 

luminosity of the binary systems denoted by and respectively are obtained from the 

relation (Mia and Kushvah, (2016)) 

                                     , 

where and are the luminosity and mass of the Sun.  

Radiation pressure has had a key effect on the formation of stars and the shaping of clouds of 

dust and gases on a wide range of scales. The mass reduction factor is represented as 

 ( and are the radiation pressure and the gravitational attraction 

forces being exerted by the binary systems on objects around them) or or 

based on the Stefan Boltzmann's law (Xuetang and Lizhong, (1993)) as 

                                                        , 

where , , and are the mass, luminosity, and radiation pressure efficiency factor of a star. 
Also,  and are the radius and density of the dust grain particles moving in the binary 

systems while  is a constant with  and as the speed of light and Gravitational 

constant.  

The values of the luminosity and mass reduction factor have been obtained by 

computing in the  system of unit, using , ,

,  and . Also, we have assumed the 

values for the radius and density of the dust grain particles as  and 

((Xuetang and Lizhong (1993)). Arbitrary values are been used for the 

oblateness coefficients  and  as shown in Table 1 
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Table 1.  Physical Parameters of the Five Binary Systems 

Parameters      

 0000 0.330000 0.170000 000 0.70000 

 00000 000 0.100000 0.64000 0.63000 

 00 0.326500 0.370400 0.38550 0.47390 

 0 0.002650 0.000492 0.47000 0.08870 

  0 0.000029 0.08950 0.04140 

 0.9726920 0.9834750 0.994045 0.05181 0.73925 

 0.9992920 0.9952410 0.999407 0.71223 0.86477 

 0.1000000 0.1200000 0.140000 0.16000 0.18000 

 0.1100000 0.1300000 0.150000 0.17000 0.19000 

 
Computations of the Out-of-plane Equilibrium Points 

The positions of the OEPs can be obtained when ,

and when and . As such, by applying these conditions in   equations (3) and (5) 

respectively, we obtain 

(6)                                                                                                                                                          

and 

,                      (7) 

where 

and  

Equation (6) can also be written as  
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                                   .                            (9) 

To obtain an analytical approximation for the coordinates  in the form of power 

series to third-order terms in (Douskos and Markellos (2006)), we set  and 

in Eqns. (8) and (9) and get 

                          (10) 

and 

                                 (11) 

Also, we set  and in Eqns. (8) and (9) and get 

       (12) 

and         (13) 

In Fig. 2, we illustrate the positions of the four OEPs as well as the fixed location of the 
primaries of the Lalande 21258 binary system (

and ).                                    

 

                                     
Fig. 2 Positions (small dots) and numbering of the equilibrium points ( ) through 

the intersection of (blue) and (Purple) of the binary Lalande 21258 system. 
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physical parameters in Table 1 to determine the locations of the OEPs for the five binary 
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systems under consideration and then make comparisons between the coordinates obtained 
by using analytical methods (Huda et al. 2015) and the coordinates obtained by using 

numerical methods (Douskos and Markellos, 2006) as shown in Table 2.  
 

Table 2. The out-of-plane coordinates (almost above and below of the larger 

primary) of the five binary systems showing the results for both the semi-analytical and 
numerical methods 

Binary Systems 
(Semi-Analytical) (Numerical) 

   

   

   

   

   

 

Table 3. The out-of-plane coordinates (almost above and below of the smaller 

primary) of the five binary systems showing the results for both the semi-analytical and 
numerical methods   

Binary Systems 
(Semi–Analytical) (Numerical) 

   

   

   

   

   

 
DISCUSSION   
By modeling the primaries as oblate and radiating bodies in the CRTBP, we investigated the 
existence and locations of OEPs. The theory has been applied to five binary systems; 21258, 

BD+19 5116, Ross 614, 70 Ophiuchi, and 61 Cygni.  
Using physical parameters for these binary systems we obtained the realistic values for the 
radiation components and then assumed the values for the oblateness parameters. Two pairs 

of OEPs and for each of the binary systems were obtained by 

solving the equations (3) and (5) using analytical and numerical methods. These points are 

plotted for real system values in Fig 2, where the equilibria above and below are referred 

to as  and while those around are referred to as and . It should be pointed out 

that is symmetrical with with respect to the axis where and  are the same. 

Moreover, is not symmetrical with w.r.t the axis and  and  are not the same. 

Further, a comparison was made between the results of the two methods and it can be seen 
that both methods produced slightly different values.  
 
CONCLUSION 
The CRTBP modeling employed in this research successfully illustrated the dynamics of 
oblate and radiating bodies, providing insights into their influence on the out-of-plane 

equilibrium points (OEPs) in binary systems. Our investigation yielded valuable insights into 
the spatial configurations of the equilibrium points within the selected binary systems. The 
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 21258Lalande 0.17237097, 0.53332504 0.15627609, 0.53896914

19 5116BD + 0.32589449, 0.54961343 0.28414059, 0.57076183

 614Ross 0.37028298, 0.56069126 0.31038058, 0.60170202

70 Ophiuchi 0.27741571, 0.42142905 0.27741541, 0.42142964

61 Cygni 0.38988094, 0.44985560 0.35848845, 0.61167169
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19 5116BD + 0.67350000, 0.62449980−  0.59223015, 0.51974285− 

 614Ross 0.62960000, 0.67082039−  0.53788566, 0.55540617− 

70 Ophiuchi 0.61450000, 0.71414284−  0.39996234, 0.51405513− 

61 Cygni 0.39034559, 0.75498344−  0.39034545, 0.61716921− 
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differences observed between the analytical and numerical results underscore the importance 
of choosing the correct methodology for astrophysical modeling, suggesting that 

enhancements in the refinement process may result in more precise predictions. 
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