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Abstract 
The importance of phase type distribution in modeling activities cannot be under emphasized when both 
a distribution's initial and second moments are accessible or when the sequence of data points for 
computing moments is the information available. In continuous time process for an absorbing finite 
state Markov chain, the phase-type distribution can be thought of as the distribution of the time until 
absorption and it  is widely used in queueing theories and other fields of applied probabilities with the 
used of generalized Erlang, Coxian, Hypo-exponential, and Hyper-exponential distributions. In this 
study, performance measures of phase type distribution using Erlang - 𝑟 distribution, and mix Erlang 
–(𝑟 − 1)  with     Erlang - 𝑟 distributions have been looked into, in order to provide meaningful study 

into the probability function, mean, 𝑘𝑡ℎ moment, variance, Laplace Stieltjes transform and squared 
coefficient of variation of phase type distribution. We began from the tractability and memory less 
properties of exponential distribution, and since these properties are not enough, we examined the 
journey through a series of exponential phases to arrive at performance measures. Illustrative examples 
are demonstrated for various cases to arrive at various values for probability functions, Laplace Stieltjes 

transform, squared coefficient of variation, 𝑘𝑡ℎ moment, mean and variance for the phase type 
distribution. The result  of its variation and mean value, as well as the likelihood that the waiting period 
will exceed 12 time units are obtained on the waiting time until the fourth arrival with Poisson arrival 
process. And we demonstrate that, using the Erlang-r distribution, the squared coefficient of variation 
might have a variety of values. Also, by increasing the number of phases (r) and setting the parameter 

at each phase to be 𝑟𝜇. The variance goes to zero and the expectation stays at 
1

𝜇
 in the limit as 𝑟 → ∞ 

 
Keywords: Coxian distribution, Erlang distribution, Hyper-exponential distribution, Hypo-

exponential distribution, Phase type distribution. 
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INTRODUCTION 
The exponential distribution is very important due to both its tractability and memory-less 
characteristics in performance modeling, but to overcome the model procedures these two 

properties may not be enough, and this makes the exponential distribution not sufficient. To 
model general distributions while sustaining the tractability property of the exponential, we 
make use of phase type distribution. Also, phase - type distributions is very useful when the 

distribution with known mean and variance is to be formed, and the name phase-type 
distributions came to be due to the fact that, processes can be seen as the movement via a 
series of exponential steps. Phase type distribution has it major applications in queueing 

theories and applied probabilities with the use of generalized Erlang, Coxian, Hypo-
exponential, and Hyper-exponential distributions. William (2009) 
 

The useful technique in phase type distribution when the added network is represented by 
flow-equivalent servers instead of subsystems is found in Marie (1980). The principles, laws 
of phase type and most cited introductory article is Neuts (1981) and some important 

theoretical concepts on phase-type is established (Cumani, 1982;  O’Cinneide, 1989). A reliable 
recursive method for calculating the probability vector of the steady state is suggested 
(Ramaswami et al., 1980; Ramaswami, 1988). The Hessenberg matrix computation of the 

exponential in the evaluation of the Padé approximation for phase type (Aalen and Sidje, 
1993). The simulation of phase type distribution in a unique way is found in William (2009) 
and, some new results on Markov chain connected to a distribution of phase types in Christian 

and Stephane, (2010)  
 

Furthermore, the second order recurrence relation with constant coefficient, limiting 
behaviour and recursion process to arrive at performance measures is considered  Agboola 
(2011). The introductory of phase type in survival analysis is analysed on how a phenomenon 

such as a disease, moves through different phases. Also, the calculation of hazard rates and 
densities of phase-type distributions using Markov chain to affirmed that hazard rates are 
asymptotically constant due to quasi-stationarity Aalen (2014).  A phase-type distribution 

approximation function so as to Steer clear of inverse matrix calculations is introduced Belen 
et al.( 2020) 
 

The direct equation approaches for the stationary distribution of Markov chains to yield a far 
more accurate response in less time once a predetermined number of clearly defined stages 
have been achieved Agboola (2021), and the likelihood of transitioning to one or more of the 

closed communicative classes from transitory states and the probability of the absorption 
matrix is established Agboola and Ayoade (2021). 
  

The block iterative approach only needs one iteration to produce the solution for the 
stationary distribution of Markov chains Agboola and Ayinde (2022), and  a partial 
characterization of the set of busy period durations which are presented by an r-phases Coxian 

distribution Osogami and Harchol (2002).  The phase-type model is extended to accommodate 
competing risks using a few data points and the Coxian competing risks model Bo Henry 
(2022). The multi-state processes models are illustrated when the dimension of the state space 

is greater than one to obtain the proportional hazards specification. Martin (2023) 
 
In addition, the general approach for the two-layer censored data, using the canonical form of 

a cyclic phase-type distributions (APHDs) and the expectation algorithm to compute the 
estimate by maximum likelihood Yudong and Zhi-Scheng (2023). A phase-type distribution 
that is not homogenous for the cumulative hazard rate, reliability function, and hazard rate 

https://link.springer.com/article/10.1007/s10985-022-09547-7#ref-CR25
https://link.springer.com/article/10.1007/s10985-022-09547-7#ref-CR11
https://link.springer.com/article/10.1007/s10985-022-09547-7#ref-CR26
https://link.springer.com/article/10.1007/s10985-022-09547-7#ref-CR2
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using the maximum likelihood, and the characteristic function  Acal et al. (2024). The phase-
type distributions in coalescent models showing the states in the ancestral process are 

represented by stages in the phase-type distribution and concluded that a mathematical 
foundation for coalescent theory is made possible by phase-type distributions Hobolth et al. 
(2024). 
 
However, this paper's primary goal is to examine how phase-type technique might be altered 

to incorporate performance measure of phase type distribution using Erlang – r exponential 
distributions, and the mix  Erlang- (r − 1)  with Erlang- r distributions in order to evaluate 

the mean, kth moment, variance, Laplace Stieltjes transform and phase type distributions' 
squared coefficient of variation. 
 
Nomenclatures 
E(Y), expected value of random variable Y; μ, service time parameter; σy

2, variance; fY(y), 

density function for a random variable Y;  FY(y), distribution function for a random variable 
Y; Ly(s), Laplace transform of random variable Y;  pk , likelihood that only the first k service 

phases will be executed before the process ends;  E[Yk],  kth moment of a random variable Y; 

∝i , the likelihood of going from state i to state (i + 1); cy
2, squared coefficient of variation for 

random variable Y; Ri,     i = 1, 2, 3,… , k, initial probabilities;  rij ,     i, j = 1, 2, 3,… , k, routine 

probability. 
 
METHODOLOGY 
The study area emphasized the analysis of one- exponential service stage distribution, two –
exponential service phases processes or Erlang -2 distribution, Erlang-r distribution n, mix 

Erlangs distributions and general phase distribution, with the evaluation of Erlang-r 
distributions, mix Erlangs distributons and general phase distribution to arrive at 

performance parameters, mean, variance, 𝑘𝑡ℎ moment, Laplace transform and squared 
coefficient of variation for general stage type distribution . 
 
Two Exponential Service Phase or Erlang-2 Distribution 
We started by looking at a random variable Y that represents a customer's service time at a 
service center in order to analyze the exponential distribution, which has a single exponential 
phase. This is the amount of time that the client spends getting service; it excludes any waiting 

time that may have occurred. We assume that this service time is exponentially distributed 
with parameter 𝜇 > 0. This is shown graphically in Figure 1, where a circle containing the 
exponential distribution's parameter represents the single exponential phase. In order to 

service customers, they enter the phase from the left, stay there for a period of time that is 
exponentially distributed with parameter μ, and then leave to the right. Assuming we have 

the random variable Y, which has an exponential distribution with mean 𝐸(𝑌) =
1

𝜇
    and 

variance    𝜎𝑦
2 =

1

𝜇2
 , to represent the time it takes for clients to arrive at a service center. 

 
 
 
 

 
 
 
Figure 1: An Exponential Service Phase 

 

𝜇 
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The figure 1 indicates that, One exponential phase might be used to represent the service 
rendered to a user, while the figure 2 indicates that, the service time can be expressed by a 

second exponential phase.  
 
 
 
  1 2  
    

              Figure 2: Two Exponential Service Phases 

 

With random variable Y the customer receives service which is exponentially distributed with 
parameter 𝜇 as the customer enters the servicing process. At the completion of service’s stage, 
the customer enters the second stage when the service time is exponentially distributed with 

parameter 𝜇. At the second stage completion, another customer enter the phase when the 
service time is exponentially distributed with parameter 𝜇. Since both service stages are the 
same exponentially distributed with parameter 𝜇, and they are independent. Then, two 

independent servers are not containing in phases at the same time, but consist of one service 
provider operating in one or more stages at some point. In order to examine this instance, we 
will imagine that each phase's probability density function is given by 

 
𝑓𝑌(𝑦) = 𝜇 𝑒

−𝜇𝑦 ,   (1) 
such that  

Mean, 𝐸(𝑌) =
1

𝜇
    and  Variance,    𝜎𝑦

2 =
1

𝜇2
 . 

 
The time selected at random from fY(y) is first spent by the customer. After the time 

completion, another amount of time chosen independently from  fY(y) is again spent. After 
the completion of this second time chosen, the new customer starts to receive service 
immediately the one in service departs. The customer's overall time distribution in the service 

is now looked into, and this is taking to be the sum of two identically distributed random 
variables, X which is independent exponential random variables.  
Taking the randomly dependent exponentially distributed variable with parameter μ to be Y. 

Then 
X =  Y +  Y.     (2) 

 

Therefore, using the convolution theorem relating to two random variables that are 
independent,  
The convolution theorem states that 

𝑓𝑋(𝑥) = ∫ 𝑓𝑌(𝑦)
∞

−∞
𝑓𝑌(𝑥 − 𝑦)𝑑𝑦 

𝑓𝑋(𝑥) = ∫ 𝜇 𝑒−𝜇𝑦
𝑥

0

𝜇 𝑒−𝜇(𝑥−𝑦) 𝑑𝑦 

  

𝑓𝑋(𝑥) = 𝜇
2𝑒−𝜇𝑦 ∫  𝑑𝑦

𝑥

0 = {
𝜇2𝑥𝑒−𝜇𝑦,        𝑥 ≥ 0
0,                     𝑥 < 0

   (3) 

 
The equation (3) represents the frequency density function for an Erlang-2, E2 distribution, 
while the equation (4) below represents its cumulative distribution 

𝐹𝑋(𝑥) = 1 − 𝑒
−𝜇𝑥 − 𝜇𝑥𝑒−𝜇𝑥 = 1 − 𝑒−𝜇𝑥{1 + 𝜇𝑥},   𝑥 ≥ 0.  (4) 

𝜇 𝜇 



The Performance Measures Analysis of Erlang Distribution in Solving Phase Type Distribution 

 

S. O. Agboola et al, DUJOPAS 10 (4c): 81-92, 2024                                                                                     85 

 

The density function can equally be computed using Laplace transforms, by multiplying the 
Laplace transform of the various phases by the Laplace transform of the frequency density 

function for the entire service time.  
 
Therefore, the Laplace transform to determine the overall duration of service distribution is 

𝐿𝑋(𝑠) = ∫  𝑒−𝑠𝑥
∞

0
𝑓𝑋(𝑥)𝑑𝑥 

and each stage of the exponential phases' Laplace transform is 

𝐿𝑦(𝑠) = ∫  𝑒−𝑠𝑦
∞

0
𝑓𝑌(𝑦)𝑑𝑦 = (

𝜇

𝑠 + 𝜇
) 

Then 

𝐿𝑋(𝑠) = 𝐸[ 𝑒
−𝑠{𝑦1+𝑦2}] = 𝐸[𝑒−𝑠𝑦1]×= 𝐸[𝑒−𝑠𝑦2 ] = (

𝜇

𝑠+𝜇
)
2

  (5) 

To find the function of x whose transform is (
μ

s+μ
)
2
, the Laplace inversion theorem is being 

used. 

Since the Laplace transform of    
1

(s+a)r+1
 , i..e.   LX (

1

(s+a)r+1
) =

xr

r !
 e−ax. 

By representing a = μ and r = 1, we arrived at inversion of LX(s) to obtain 
𝑓𝑋(𝑥) = 𝜇

2𝑥𝑒−𝜇𝑦,        𝑥 ≥ 0 
Likewise, we may obtain the mean value and higher moments from the Laplace transform as 

𝐸[𝑋𝑘] =  (−1)𝑘
𝑑𝑘

𝑑𝑠𝑘
 𝐿𝑋(𝑠)|

𝑠=0

,    𝑓𝑜𝑟 𝑘 = 1, 2, ⋯ 

𝐸[𝑋] =
𝑑

𝑑𝑠
 𝐿𝑋(𝑠)|

𝑠=0
= −𝜇2

𝑑

𝑑𝑠
(
1

𝑠+𝜇
)
2
= 𝜇2

𝑑

𝑑𝑠
(𝑠 + 𝜇)−2|

𝑠=0
=
2

𝜇
.  (6) 

 

𝜎𝑋
2 = (

1

𝜇
)
2
+ (

1

𝜇
)
2
=

2

𝜇2
 .       (7) 

 
The Erlang-r Distribution 
As shown in Figure 3, an Erlang - 𝑟, 𝐸𝑟 distribution is a series of 𝑟 distinct but similar 

exponential stages with parameter 𝜇. A customer visiting a service facility with a single 
Erlang- 𝑟 server, each exponentially dispersed with parameter 𝜇, must wait 𝑟 consecutive 
periods of time, and no other client is permitted to enter the service facility before the service 

is accomplished. 
 

 

 

                                                              …                     

                    1 2                             r-1                      r 

    

Figure 3: r – tandem exponential service stages 

 
Because the density function can be used to determine how long a consumer spent in the first 
stage, we can then examine the situation as follow: 
Given 

𝑓𝑦(𝑦) = 𝜇 𝑒
−𝜇𝑦 ,      𝑥 ≥ 0.     (7) 

 
 

𝜇 𝜇 𝜇 𝜇 
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Considering each stage's mean value and variance as 

𝐸(𝑦) =
1

𝜇
    and    𝜎𝑦

2 =
1

𝜇2
,      (8) 

Therefore, 
The average and variation of a customer's overall service experience are 

𝐸(𝑋) = 𝑟 (
1

𝜇
) =

𝑟

𝜇
    and   𝜎𝑦

2 = 𝑟 (
1

𝜇
)
2
= (

𝑟

𝜇2
),             (9) 

 
Suppose that the service time's Laplace transform is 

𝐿𝑋(𝑠) = (
𝜇

𝑠+𝜇
)
𝑟

.      (10) 

 
Since the Laplace transform of  

(
1

(𝑠+𝑎)𝑟+1
)⇔

𝑥𝑟

𝑟!
 𝑒−𝑎𝑥, 

After applying the Laplace inversion theorem and inserting a = u, we obtained the frequency 
density function for the Erlang−𝑟, Er distribution of random variable X as 

𝑓𝑋(𝑥) =
𝜇(𝜇𝑥)𝑟−1𝑒−𝜇𝑥

(𝑟−1)!
,   𝑥 ≥ 0     (11) 

 
However, the associated cumulative distribution function is provided by 

𝐹𝑋(𝑥) = 1 − 𝑒
−𝜇𝑥∑

(𝜇𝑥)𝑖  

𝑖  !
, 𝑥 ≥ 0,    𝑟 = 1, 2, …  𝑟−1

𝐼=0   (12) 

 
Assume that the number of arrivals throughout the service time period [0, t] is represented by 
the random variable N(t), which is a Poisson with parameter μt. 

Therefore, 
 The probability of arrival of (r − 1) number of customer is denoted by 

𝑝𝑟𝑜𝑏{𝑁(𝑡) ≤ 𝑟 − 1} = ∑
(𝜇𝑡)𝑘 

𝑘 !
 𝑒−𝜇𝑡 ,    𝑟−1

𝑘=0    (13) 

 
Let Zr be the amount of time that will pass until the first r customers arrive. 
We may first look at  prob {Zr > t}in order to determine prob {Zr ≤ t}. 

Since the arrival of the rth client will be more than t if (r − 1) consumers arrive by time t 
Prob {Zr > t} = Prob {N(t) ≤ r − 1} 

Prob {Zr ≤ t} = 1 − Prob {Zr > t} = 1 − ∑
(𝜇𝑡)𝑘 

𝑘 !
 𝑒−𝜇𝑡,   𝑡 ≥ 0  𝑟−1

𝑘=0  (14) 

 
MIXING AN ERLANG- (𝒓 − 𝟏) DISTRIBUTION WITH ERLANG- 𝒓 DISTRIBUTION 
The distribution obtained by combining the Erlang-r and Erlang- (r-1) distributions is known 
as Er−1,r .  , and its squared coefficient of variation falls between 1/(r − 1) and 1/r. 
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                                                                                ° ° °                     

                           ∝    

                   (1−∝)  
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               1                     2                              r-1`                r                

 

 
 Figure 4: Mixed Erlang Representation 

 
The mixed Erlang distribution is shown in Figure 4, where (1-∝) indicates the likelihood that 
the bottom series of 𝑟 exponential phases will be chosen, and ∝ indicates the likelihood that 

the top series of 𝑟 − 1 exponential phases will be taken. Its probability function is provided by  

𝑓𝑌(𝑦) =∝ 𝜇 𝑒
−𝜇𝑦 (𝜇𝑦)

𝑟−2

(𝑟−2)!
+ (1−∝)𝜇 𝑒−𝜇𝑦

(𝜇𝑦)𝑟−1

(𝑟−1)!
  ,    𝑦 ≥ 0.  (15) 

 
The mixed Erlang distribution's squared coefficient of variation is 1/(r − 1) when ∝=1. 

 When ∝= 0, it is equal to 
1

𝑟
. 

Intermediate values of CY
2  are produced for intermediate values of ∝. 

The formulas provide the values of ∝ and μ to be utilized if the mean value E[y] and the 

squared coefficient of variation CY
2  fall within the range [

1

r
,
1

r−1
]. 

∝=
1

1+𝐶𝑌
2 [𝑟𝐶𝑌

2 − √𝑟(1 + 𝐶𝑌
2) − 𝑟2𝐶𝑌

2],            (16) 

 
 And 

 𝜇 =
𝑟−∝

𝐸[𝑦]
.      (17) 

 
RESULTS  

In order to determine the expectation, kth moment, variance, and squared coefficient of 
variation of Z, along with its probability density function, the performance metrics for phase 
type distribution are presented in this section using the Erlang-r distribution. 
 
Illustrative Example 1 
Let 𝑍4  be the waiting time until the fourth arrival, and let 𝑁(𝑡) be a Poisson arrival process 

with rate 𝜇 =  0.5. we are to determine 𝑍4 's frequency density function and cumulative 
distribution function. Additionally, its variation and mean value, as well as the likelihood that 
the waiting period will exceed 12 time units. 
Solution 
In Equation (12), we substituted 0.5 for 𝜇 and 4 for 𝑟 to obtain the cumulative distribution as 

𝐹𝑍4(𝑡) = 𝑃𝑟𝑜𝑏{𝑍4 ≤ 𝑡} = 1 − 𝑃𝑟𝑜𝑏{4 > 𝑡} = 1 − 𝑒
−
𝑡

2∑
(
𝑡

2
)
𝑘
 

𝑘 !
 ,    3

𝑘=0 𝑡 ≥ 0. 

By directly entering the value into frequency density function of Equation (11) we obtain 

𝜇 𝜇 

𝜇 

𝜇 

𝜇 𝜇 𝜇 
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𝑓𝑍4(𝑡) =

1
2
(
𝑡
2
)
3

𝑒
−(
𝑡
2)

(3)!
=
1

96
𝑡3 𝑒

−(
𝑡
2),    𝑡 ≥ 0. 

Furthermore, the mean value and variance can be computed as 

𝐸[𝑍4] =
4

1
2⁄
= 8 

𝜎[𝑍4] = √
4

0.25
= 4 

 Where the variance 
𝜎2[𝑍4] = 16. 

𝑃𝑟𝑜𝑏{𝑍4 > 12} = 1 − 𝑃𝑟𝑜𝑏{𝑍4 ≤ 12} = 𝑒
−6∑

(6)𝑘 

𝑘 !
= 𝑒−6{1+ 6 + 18 + 36} = 0.1512 ,    

3

𝑘=0

 

 
We can demonstrate that equation (12) is the distribution function with a matching density 

function provided by equation (11) by differentiating 𝐹𝑌(𝑦) with respect to y. We have 

𝑓𝑌(𝑦) =
𝑑

𝑑𝑦
 𝐹𝑌(𝑦) =

𝜇 𝑒−𝜇𝑦 ∑ (𝜇𝑦)𝑘𝑟−1
𝑘=0

(𝑘)!
− 𝑒−𝜇𝑦

∑ 𝑘𝜇(𝜇𝑦)𝑘−1𝑟−1
𝑘=0

𝑘 !
 

 

= 𝜇 𝑒−𝜇𝑦 +
𝜇 𝑒−𝜇𝑦 ∑ (𝜇𝑦)𝑘𝑟−1

𝑘=1

(𝑘)!
− 𝑒−𝜇𝑦

∑ 𝑘𝜇(𝜇𝑦)𝑘−1𝑟−1
𝑘=1

𝑘 !
 

= 𝜇 𝑒−𝜇𝑦 − 𝜇 𝑒−𝜇𝑦
∑ {𝑘(𝜇𝑦)𝑘−1− (𝜇𝑦)𝑘}𝑟−1
𝑘=1

𝑘 !
 

= 𝜇 𝑒−𝜇𝑦 {1 −
∑ {𝑘(𝜇𝑦)𝑘−1 − (𝜇𝑦)𝑘}𝑟−1
𝑘=1

𝑘 !
} 

= 𝜇 𝑒−𝜇𝑦 {1− ∑ {
(𝜇𝑦)𝑘−1

(𝑘 − 1)!
−
(𝜇𝑦)𝑘

(𝑘)!
}

𝑟−1

𝑘=1

} 

= 𝜇 𝑒−𝜇𝑦 {1 − (1−
(𝜇𝑦)𝑟−1

(𝑟 − 1)!
)} = 𝜇 𝑒−𝜇𝑦

(𝜇𝑦)𝑟−1

(𝑟 − 1)!
 

To demonstrate that this density curve's area under the curve equals one 

𝐼𝑟 = ∫ 𝜇 𝑒
−𝜇𝑦

(𝜇𝑦)𝑟−1

(𝑟 − 1)!

∞

0

𝑑𝑦 = ∫  
(𝜇)𝑟(𝑦)𝑟−1

(𝑟 − 1)!

∞

0

𝑒−𝜇𝑦𝑑𝑦,      𝑟 = 1, 2,… 

 
Thus, by employing the integration by part technique, it is possible to demonstrate that 𝐼𝑟 is 

the area under the exponential density curve. For example, by using ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, 
where 

𝑢 =
(𝜇)𝑟−1(𝑦)𝑟−1

(𝑟−1)!
 and  𝑑𝑣 = 𝜇𝑒−𝜇𝑦𝑑𝑦 

Therefore, 

∫  
(𝜇)𝑟(𝑦)𝑟−1

(𝑟 − 1)!

∞

0

𝑒−𝜇𝑦𝑑𝑦 =
−(𝜇)𝑟−1(𝑦)𝑟−1

(𝑟 − 1)!
𝑒−𝜇𝑦|

𝑦=0

∞

+ ∫  
(𝜇)𝑟−1(𝑦)𝑟−2

(𝑟 − 2)!

∞

0

𝑒−𝜇𝑦𝑑𝑦 

= 0 + 𝐼𝑟−1 
This shows that 

𝐼𝑟 = 1,     ∀ 𝑟 ≥ 1. 

For the Erlang-r distribution, the square coefficient of variation is provided as 

𝐶𝑌
2 =

𝑟
𝜇2⁄

(𝑟 𝜇⁄ )
2 =

1

𝑟
< 1,   ∀ 𝑟 ≥ 2. 
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The Erlang distribution's coefficient of variation is lower than the exponential distribution's, 
indicating that Erlang random variables are more regular than exponential ones.  

 
Illustrative Example 2 
Imagine a random variable 𝑌 that is represented by three successive exponential phases, each 
with the parameters 𝜇1 = 2,   𝜇2 = 3 and 𝜇3 = 4. Finding 𝑌's mean value, variance, squared 
coefficient of variation, and probability density function are all of importance. Since the three 

exponential phases are independent of one another, the variance is thus equal to the sum of 
the variances of each phase, and the expectation of Y is simply equal to the sum of the 
expectations of each phase. Therefore 

𝐸(𝑦) =∑
1

𝜇𝑖

3

𝑖=1

=
1

2
+
1

3
+
1

4
=
13

12
 

𝜎2(𝑦) = ∑
1

𝜇𝐼
2

𝑟

𝑖=1

=
1

4
+
1

9
+
1

16
=
61

144
 

𝐶𝑦
2 =

∑
1
𝜇𝐼
2

𝑟
𝑖=1

(∑
1
𝜇𝑖

𝑟
𝑖=1 )

2 =
61

144
×
144

169
=
61

169
= 0.361 ≤ 1 

When 𝑖 = 1,  

∝1= ∏
𝜇𝑗

𝜇𝑗 − 𝜇1
=

𝜇2

𝜇2 − 𝜇1
×

𝜇3

𝜇3 − 𝜇1
=

𝑟

𝑗=1,   𝑗≠𝑖

3

1
×
4

2
= 6 

When 𝑖 = 2, 

∝2= ∏
𝜇𝑗

𝜇𝑗 − 𝜇2
=

𝑟

𝑗=1,   𝑗≠𝑖

𝜇1

𝜇1 − 𝜇2
×

𝜇3

𝜇3 − 𝜇2
=
2

−1
×
4

1
= −8 

When 𝑖 = 3,  

∝3= ∏
𝜇𝑗

𝜇𝑗 − 𝜇3
=

𝑟

𝑗=1,   𝑗≠𝑖

𝜇2

𝜇3 − 𝜇3
×

𝜇1

𝜇1 − 𝜇3
=
2

−2
×
3

−1
= 3 

It follows then that 

𝑓𝑌(𝑦) = ∑ ∝𝑖

𝑟

𝑖=1

𝜇𝑖  𝑒
−𝜇𝑖𝑦 = 12𝑒−2𝑦 + 12𝑒−2𝑦 + 12𝑒−2𝑦 − 24𝑒−3𝑦 + 12𝑒−4𝑦, 𝑦 ≥ 0. 

 
If coefficients of variation larger than 1 are needed, neither the hypo-exponential distribution 

nor a combination of Erlang distributions can be applied, and instead of using phases in series 
as we have up to this point, we switch to phases in parallel. 
 
Illustrative Example 3 
Imagine a Coxian distribution with the initial probabilities vector  𝑅 =  (1,0,0,0) that is 

represented by four successive phases with rates 𝜇1 = 1, 𝜇2 = 2, 𝜇3 = 4, 𝜇4 = 8  and 𝜇4 = 8. At 
the completion of phase 𝑖 =  1,2,3, the process moves to phase 𝑖 + 1 with probability 0.5 or 
enters the sink phase with probability 0.5.  

The performanc measures are obtained as follows: 
 
Solution: 
Given the initial probabilities vector  𝑅 =  (1,0,0,0) 

𝑹𝑰 = (𝟏 𝟎 𝟎 𝟎 𝟎) = (𝑹 𝟎) 
While the routine probabilities, 𝑟𝑖𝑗, are the elements of the matrix 
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𝑀 =

(

 
 

0 ∝1 0
0 0 ∝2

⋯ 0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
∝𝑘−1
0 )

 
 

 

 

Where  𝛼𝑖, is  the probability that after receiving service at phase 𝑖, the process, move to a 
phase (𝑖 + 1) to continue service. 
 

The terminal probabilities are 𝜑 = ((1 − 𝛼1), (1 − 𝛼2), (1 − 𝛼3),… , (1 − 𝛼𝑘−1), 1) 

Therefore, 

𝑀 =

(

 
 

−𝜇1 0.5𝜇1 0 0 0.5𝜇1
0 −𝜇2 0.5𝜇2 0 0.5𝜇2.
0
0
0

0
0
0

−𝜇3
0
0

0.5𝜇3
−𝜇4
0

0.5𝜇3
𝜇4
0 )

 
 
=

(

 
 

−1 0.5 0 0 0.5
0 −2 1 0 1
0
0
0

0
0
0

−4
0
0

2
−8
0

2
8
0)

 
 
= (𝑆 𝑆0

0 0
) 

 

Given that 

𝑆−1 = (

−1 −0.25 −0.0625 −0.015625
0 −0.5 −0.125 −0.03125
0
0

0
0

−0.25
0

−0.0625
−0.125

) 

Where   −𝑅𝑆−1 = 1 0.25 0.0625 0.1563. 
Therefore, the mean time to absorption in the Markov chain is given as 

−𝑅𝑆−1𝑒 = 1.3281 
In addition, the mean time spent in  

Phase 1:     
1

𝜇1
= 1 = 𝑦1  

Phase 2:     
0.5

𝜇2
= 0.25 = 𝑦2 

Phase 3:     
0.5×0.5

𝜇3
= 0.0625 = 𝑦3  

Phase 4:     
(0.5)3

𝜇4
= 0.015625 = 𝑦4 

 
DISCUSSION 
Example 1 show that by using the Erlang-r distribution, the squared coefficient of variation 
might have a variety of values, including 

1

2
,

1

3
,   
1

4
, ⋯ 

This implies a mean of approximating a constant distribution; we produce a distribution with 
decreasing variance by increasing the number of phases (r) and setting the parameter at each 

phase to be 𝑟𝜇. The variance goes to zero and the expectation stays at 
1

𝜇
 in the limit as 𝑟 → ∞. 

Example three determined the mean time to absorption and mean spent in 4 phases of the 
illustrated example  
 
CONCLUSION 
In this study, performance measures of phase type distribution using Erlang − 𝑟 distribution 
and mix Erlang distributions have been looked into, in order to provide meaningful study 

into the probability function, mean, kth moment, variance, Laplace Stieltjes transform and 
squared coefficient of variation of phase type distribution. We begin from the tractability and 

memory less properties of exponential distribution, and since these properties are not enough, 
we examined the journey through a series of exponential phases by the use of matrix and 
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vector operations to arrive at performance measures. Illustrative examples are demonstrated 
for various cases to arrive at various values for probability functions, Laplace Stieltjes 

transform, squared coefficient of variation, kth moment, mean and variance for the phase type 
distribution 
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