
https://dx.doi.org/10.4314/dujopas.v10i3c.27
ISSN (Print): 2476-8316

ISSN (Online): 2635-3490
Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 10 No. 3c September 2024

Author for Correspondence

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 284

A Comparative Analysis of Performance Optimization
Techniques for Benchmarking Php Frameworks:

Laravel and Codeigniter.

1 Muhammed Kabir Ahmed,2 Abubakar Hauwa Bello,
3Suleiman Salihu Jauro,4Muhammad Dawaki

1,2,3,4Department of Computer Science,

Gombe State University

Email: mkahmed@gsu.edu.ng

Abstract
As web applications grow in complexity, the performance of PHP frameworks is critical for delivering
efficient, scalable solutions. This research compares performance optimization techniques in two widely
used PHP frameworks, Laravel and CodeIgniter. By benchmarking these frameworks, the study
evaluates their effectiveness in terms of response time, throughput, and data processing. CodeIgniter
demonstrates lower response times and throughput, making it suitable for lightweight applications. In
contrast, Laravel, though slower, offers advanced features and optimization tools ideal for complex,
scalable applications. This analysis provides valuable insights for selecting the appropriate framework
based on project requirements.

Keywords: Framework, Laravel, CodeIgniter, Throughput, Response time.

INTRODUCTION
In today’s digital age, web applications are central to almost every industry, from e-commerce
to social networking. The performance of these applications directly impacts user satisfaction,
business success, and competitive advantage. PHP remains one of the most widely used
programming languages for web development, and frameworks like Laravel and CodeIgniter
are popular choices for developers due to their simplicity, scalability, and robust ecosystems.
However, the performance of these frameworks under various conditions is critical to
ensuring that web applications meet the demands of users.

Laravel, created by Taylor Otwell in 2011, is one of the most popular PHP frameworks
(Otwell, 2019). It follows the Model-View-Controller (MVC) architectural pattern and
provides an elegant syntax that simplifies common tasks like routing, authentication, and
caching. Laravel Key Features include Eloquent ORM, Blade Templating Engine, Artisan
Console, Comprehensive Documentation, and a Rich Ecosystem (Laravel Documentation,
2023).

CodeIgniter, developed by EllisLab and now maintained by the CodeIgniter Foundation
(CodeIgniter Foundation, 2020), is a lightweight PHP framework known for its speed and
simplicity. It is ideal for developers seeking a minimalistic toolkit for creating dynamic web
applications. CodeIgniter key features include a small footprint, simplicity, performance, clear
documentation, and flexibility (CodeIgniter Documentation, 2023).

mailto:mkahmed@gsu.edu.ng

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 285

In a similar work by Węgrzecki and Dzieńkowsk (2022), they conducted a performance
analysis of Laravel and Yii using test applications with identical functionalities and compared
the request handling time of each application. Dedicated debugbars were used to check the
performance. They conclude that Laravel outperforms Yii in terms of performance for
building web applications.

Similarly, Natalya and Boltunova (2017) discussed the importance of frameworks in web
development and compared popular PHP frameworks like Symfony2 and Phalcon PHP. They
performed a deeper analysis and conducted a performance test using the ab.exe tool to
determine the performance and effectiveness of the frameworks. They conclude that Phalcon
provides outstanding performance compared to Symfony 2, making it a potentially better
choice for web development. Furthermore, Pawelec and Kopniak (2022) present a
comparative analysis of Laravel and Symfony, highlighting their capabilities and providing
guidance for web application programmers in choosing a programming framework.

While there have been several studies comparing PHP frameworks, many of them focus on
features, ease of use, or community support. However, fewer studies provide a detailed
analysis of how different optimization techniques affect the performance of these frameworks.
This creates a gap in understanding which techniques are most effective for specific scenarios.
For developers and businesses, choosing the right optimization techniques can significantly
reduce server costs, improve user experience, and ensure the scalability of web applications.
As web applications grow more complex, there is a growing trend towards optimizing every
aspect of the development process to handle increased traffic and data load efficiently. This
research is timely as it addresses the need for a deeper understanding of how different PHP
frameworks respond to modern optimization techniques.

Why optimization of PHP Frameworks
Performance optimization in PHP frameworks is crucial for several reasons that directly
impact the efficiency, scalability, and user experience of web applications. As users
increasingly expect fast-loading web applications, performance optimization becomes
essential. Slow response times can lead to user frustration and abandonment of the site.
Optimized frameworks ensure quicker page loads, which enhances user satisfaction and
retention (Alshannaq, 2020).

Optimized PHP frameworks can handle increased loads more effectively. As web applications
grow in user base and complexity, maintaining performance under stress is critical.
Frameworks that incorporate performance optimization techniques can scale better,
accommodating more users without a proportional increase in resource consumption (Bastian
& Friedrich, 2021).

Performance optimization techniques help in utilizing server resources more efficiently. By
reducing memory usage and CPU load, optimized frameworks can lower hosting costs and
improve the overall performance of web applications. This efficiency is particularly important
for applications with high traffic volumes (Davis & Patterson, 2019). In a crowded market, the
performance of a web application can be a differentiator. Frameworks that are optimized for
speed and efficiency can provide a competitive edge, attracting more users and potentially
leading to higher conversion rates (Jones, 2022). Using optimized frameworks can simplify
the development process. They often come with built-in tools and best practices that
streamline coding and debugging, making it easier for developers to maintain and enhance
applications over time (Miller, 2021).

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 286

Performance optimization in PHP frameworks is not just about speed; it encompasses user
experience, scalability, resource management, competitive positioning, and development
efficiency. As web applications continue to evolve, the importance of these optimizations will
only increase, making it a critical focus for developers and businesses alike (Alshannaq, 2020;
Bastian and Friedrich, 2021; Davis and Patterson, 2019; Jones, 2022; Miller, 2021).

Methodology
Criteria for Selecting Frameworks for the Review
The selection of PHP frameworks for this review was guided by criteria established in
industry best practices and previous research. Key criteria included popularity,
documentation quality, performance features, and scalability (Potencier, 2020). Laravel and
CodeIgniter were chosen based on their widespread use and comprehensive support
resources.

Performance metrics such as average response time, throughput, and error rates and
Scalability were selected based on their common use in performance evaluation literature
(Davis & Patterson, 2019). These metrics provide insights into application speed, capacity,
stability, and efficiency.
To measure the performance of the selected PHP frameworks, various tools and techniques
were employed.

i. Apache JMeter (Apache JMeter, n.d.) was used for load testing and performance
benchmarking

ii. Xdebug (Xdebug, n.d.) was utilized for profiling to identify performance bottlenecks.
iii. New Relic (New Relic, n.d.) was used for real-time performance monitoring and

alerting.
iv. Stress testing and load testing techniques were applied as described in the literature

(Davis & Patterson, 2019) to evaluate the frameworks’ performance under various
conditions.

Stress Testing: Involves subjecting the web application to extreme workloads to test its
performance limits and observe how it behaves under stress.
Load Testing: Simulates a typical user load on the application to assess its performance under
normal operating conditions.

By employing these tools and techniques, a comprehensive analysis of the performance of
Laravel and CodeIgniter was conducted, providing valuable insights into their optimization
capabilities and overall efficiency.

Performance Optimization Techniques
Performance optimization is critical for enhancing the efficiency and speed of web
applications developed using PHP frameworks. This section outlines general performance
optimization techniques applicable to PHP frameworks and then delves into specific
techniques for Laravel and CodeIgniter.

Specific Optimization Techniques for Laravel

Caching mechanisms, database optimization and code optimization for optimizing
Laravel project as discuses in (Laravel Documentation, n.d.)

i. Caching Mechanisms:
Route Caching: Laravel’s route caching can be enabled using the php artisan route:
cache command.

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 287

 View Caching: Use php artisan view: cache to compile Blade templates into PHP code.
ii. Database Optimization:

Query Optimization: Utilize eager loading with Laravel’s Eloquent ORM to reduce
query execution times.
Database Indexing: Ensure proper indexing of database tables for optimized
performance.

iii. Code Optimization:

Minimizing Code: Refactor and streamline code to reduce complexity and
redundancy (Laravel Documentation, n.d.).
Avoiding Redundant Code: Use Laravel’s service providers and dependency
injection effectively (Laravel Documentation, n.d.).

Specific Optimization Techniques for CodeIgniter
Efficient use of caching, database optimization techniques and code optimization practices as
optimization techniques for CodeIgniter project as discussed in (CodeIgniter Documentation,
n.d.)

i. Efficient Use of Caching:
Page Caching: Implement page caching as described in the CodeIgniter
documentation
Query Caching: Use query caching to store query results and reduce database load

ii. Database Optimization Techniques:
Query Optimization: Write efficient queries and use CodeIgniter’s Active Record class
Database Connection Management: Configure persistent connections for optimal
performance.

iii. Code Optimization Practices:
Efficient Code Practices: Follow best practices and use built-in libraries and helpers.
Profiling and Benchmarking: Utilize CodeIgniter’s profiling tools to monitor
performance.

Comparative Analysis
This section presents a comparative analysis of Laravel and CodeIgniter based on key
performance metrics: average response time, throughput, and error rates. Additionally, it
discusses the effectiveness of various optimization techniques in both frameworks supported
by empirical data.

Average Response Time measures the time taken by the server to respond to a client’s request.
Here, we provide average response time values for Laravel and CodeIgniter under similar
conditions for 3 different tests.
Table 1.0 shows the response time for single user single iterations (Test 1.1), 10 users 10
iterations (Test 10:10), and also 2 users 1000 iterations (Test 2:1000) for the Laravel framework.

Table 1.0: Response Time for Laravel Test 1.1, Test 10:10 and Test 2:1000

 Test 1:1 Test 10:10 Test 2:1000

Sample 8 800 16000

Average response time 47 ms 450 ms 86 ms

Min response time 32 ms 338 ms

27 ms

Max response time 71 ms 698 ms

2873 ms

Median response time 43 ms 442 ms

43 ms

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 288

Laravel’s response time is influenced by various factors, including routing, view rendering,
and database interactions. For instance, route caching and view caching help reduce average
response time significantly. However, Laravel's response time may be impacted by the
overhead of its extensive feature set and its emphasis on a developer-friendly environment
(Laravel Documentation, n.d.).

CodeIgniter’s minimal design often results in lower average response times compared to more
feature-rich frameworks. The average response time for a CodeIgniter application
demonstrates its efficiency in handling requests. The response time for single user single
iterations (Test 1.1), 10 users 10 iterations (Test 10:10), and also 2 users 1000 iterations (Test
2:1000) is shown in Table 1.1 for CodeIgniter.

Table 1.1: Response Time for CodeIgniter Test 1.1, Test 10:10 and Test 2:1000.

 Test 1:1 Test 10:10 Test 2:1000

Sample 8 800 16000

Average response time 17 ms 120 ms

14 ms

Min response time 14 ms 27 ms

7 ms

Max response time 24 ms 168 ms

118 ms

Medium response time 17 ms 125 ms

14 ms

Figure 1.0: Response Time Comparison between Laravel and CodeIgniter

The average response time for Laravel offers higher response times, while CodeIgniter
typically shows lower response times due to its simpler architecture. However, Laravel’s
response time can be competitive with proper optimization techniques. The choice between
the two may depend on the specific needs of the application and the trade-offs between
features and performance.

Analysis of Throughput
Throughput refers to the number of requests a framework can handle per unit time. Higher
throughput indicates better handling of concurrent requests. Table 1.2 shows the throughput
of Laravel and CodeIgniter for TEST 1:1, TEST 10:10, and TEST 2:1000.

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 289

Table 1.2 Throughput for Laravel and CodeIgniter
 Test 1:1 Test 10:10 Test 2:1000

Sample 8 800 16000

Laravel 21.2201rps 21.70374rps

8.22309rps

CodeIgniter 56.3380rps

76.54038rps

10.37753rps

Laravel’s throughput is affected by caching mechanisms and database performance. During
testing, Laravel handled lower throughput, showcasing its capability to manage concurrent
requests effectively.

CodeIgniter’s lightweight nature generally results in higher throughput. In our tests,
CodeIgniter managed to have higher throughput, indicating its strong performance in high-
traffic scenarios.

CodeIgniter typically demonstrates higher throughput due to its optimized architecture and
minimalistic design. However, Laravel’s advanced features and tools, when properly
configured, can achieve competitive throughput, especially for applications requiring
complex functionalities.

Error Rate Comparison
Error rate is the frequency of errors encountered during application operation. Lower error
rates indicate a more stable and reliable framework. Both frameworks have a 0.000% error
rate, indicating high reliability.

Effectiveness of Various Optimization Techniques
Both Laravel and CodeIgniter offer a range of optimization techniques. Here, we assess the
effectiveness of these techniques based on the findings. Figures (1.1,1.2,1.3,1.4,1.5,1.6,1.7)
show the result of 1 and 10 iteration(s) for both Laravel and CodeIgniter requests with
optimization techniques (caching, database optimization, and code optimization) and without
optimization.

Figure 1.1 Optimize CodeIgniter Request for Single Iteration

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 290

Figure 1.2 Baseline Laravel Request for Single Iteration

Figure 1.3 Optimized Laravel Request for Single Iteration

Figure 1.4 Baseline CodeIgniter Request for 10 Iteration

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 291

Figure 1.5 Optimized CodeIgniter Request for 10 Iteration.

Figure 1.6 Baseline Laravel Request for 10 Iterations.

Figure 1.7 Optimize Laravel Request for 10 Iterations.

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 292

For Laravel, The implementation of route and view caching, query optimization and eager
loading, code refactoring, and minimization efforts in Laravel significantly reduced response
times. Data indicates a change from 119 ms to 94 ms given the difference of 25 ms reduction
in average response time for single iteration and from 122 ms to 80 ms difference of 42 ms in
10 iterations. And also, CodeIgniter’s efficient caching techniques, database indexing, and
query caching and efficient code practices also contributed to enhanced performance, with a
reduction in response time. Data indicates a change from 29 ms to 17 ms given the difference
of 12 ms reduction in average response time for single iteration and from 25 ms to 18 ms
difference of 7 ms in 10 iterations.

Both frameworks benefit from their respective optimization techniques. Laravel’s advanced
features and tools provide significant performance improvements when properly utilized.
CodeIgniter’s simpler, more straightforward optimization techniques also prove effective,
particularly in high-performance scenarios.

Analysis
The comparative analysis of performance optimization techniques in Laravel and CodeIgniter
reveals significant improvements in response times for both frameworks, showcasing the
effectiveness of various strategies employed. However, CodeIgniter framework is more
efficient compared to Laravel framework in terms of efficiency.
For Laravel, the implementation of the below optimization techniques demonstrated a
marked improvement in performance:

i. Utilizing Laravel’s built-in caching mechanisms, such as route caching and view
caching, significantly reduced the response times by minimizing the overhead
associated with route resolution and view rendering.

ii. Optimizing database queries and implementing eager loading to reduce the number
of queries executed resulted in notable performance gains.

iii. Code Refactoring and Minimization: Refactoring code to eliminate redundancy and
streamline processes

CodeIgniter also exhibited substantial performance enhancements through the application of
various optimization techniques:

i. Efficient Caching Techniques: CodeIgniter’s caching mechanisms effectively reduced
response times by storing frequently accessed data and minimizing the need for
repeated computations.

ii. Database Indexing and Query Caching: Implementing database indexing and query
caching improved query execution times and overall database performance.

iii. Efficient Code Practices: Adopting best practices for writing clean, efficient code
minimized processing overhead and optimized resource utilization.

Data Analysis
These results underscore the impact of Laravel’s comprehensive optimization features, which
collectively contribute to improved application performance and user experience. And also,
findings from tables 1.0, 1.1, and 1.2 show that CodeIgniter has a slow response time and
higher throughput compared to Laravel. CodeIgniter’s inherent efficiency and its ability to
achieve high performance with minimal overhead make it a suitable choice for applications
where speed and simplicity are needed.

For Laravel Single Iteration, when optimization was considered, the average response time
decreased from 119ms to 94ms, reflecting a reduction of 25 ms. while for 10 iterations, the
average response time decreased from 122 ms to 80 ms, indicating a significant reduction of

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 293

42 ms.For CodeIgniter Single Iteration, when optimization was considered, the average
response time decreased from 29 ms to 17 ms, reflecting a reduction of 12 ms. Also, for 10
iterations, the average response time decreased from 25 ms to 18 ms, indicating a reduction of

7 ms. As shown in figure 1.8
Figure 1.8 Detailed comparison of performance optimization of Laravel and CodeIgniter.

Comparative Insight
The data indicates that both Laravel and CodeIgniter benefit significantly from performance
optimization techniques, though the degree of improvement and the specific areas of impact
vary between the two frameworks:
The more feature-rich framework, Laravel, showed substantial gains particularly in scenarios
with multiple iterations, demonstrating its ability to handle complex, resource-intensive
applications efficiently. The reductions of 25ms and 42ms in average response times for single
and multiple iterations respectively, highlight the effectiveness of Laravel’s caching, query
optimization, and code refactoring techniques.

Known for its simplicity and minimalistic design, CodeIgniter exhibited lower initial response
times and continued to show improvements with optimizations. The reductions of 12ms and
7ms for single and multiple iterations respectively, indicate the high efficiency achieved
through caching, database optimization, and code efficiency practices.

Key Findings
In this paper, a comprehensive review and comparative analysis of two popular PHP
frameworks was conducted, Laravel and CodeIgniter, focusing on their performance
optimization techniques. The key findings from the study are summarized below:

Performance Optimization Techniques
Laravel: The implementation of route and view caching, query optimization, eager loading,
and code refactoring significantly reduced response times. These techniques collectively
contributed to substantial performance improvements, making Laravel well-suited for
complex, feature-rich applications.
CodeIgniter: Efficient caching techniques, database indexing, query caching, and streamlined
code practices also led to notable reductions in response times. CodeIgniter’s minimalist
architecture and simplicity enabled high performance, particularly in lightweight
applications.

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 294

Comparative Analysis of Performance Metrics
Average response time, throughput and error rate is considered as the performance metrics
Average Response Time:
Laravel showed a reduction from 119ms to 94ms for single iterations and from 122ms to 80ms
for ten iterations. CodeIgniter showed a reduction from 29ms to 17ms for single iterations and
from 25ms to 18ms for ten iterations. While Laravel benefited more significantly from
optimization in multi-iteration scenarios, CodeIgniter maintained lower initial response
times.

Both frameworks demonstrated improved throughput with optimization techniques, with
CodeIgniter typically achieving higher throughput due to its simpler design.
Both frameworks maintained low error rates, with Laravel’s advanced error handling features
providing robust support for complex applications, and CodeIgniter’s straightforward setup
minimizing potential errors.

Effectiveness of Optimization Techniques
Laravel: Advanced features and tools like Eloquent ORM, Blade templating engine, and
Artisan Console, when optimized effectively, can achieve high performance and scalability.
CodeIgniter: Its efficient use of resources and minimalistic design allow for quick response
times and high throughput, making it an excellent choice for high-performance needs with
fewer complexities.

RECOMMENDATIONS
Project Complexity and Requirements: Choose Laravel for projects requiring extensive
features, complex data handling, and robust error handling. Its rich ecosystem and
comprehensive documentation support complex application development.
Performance and Simplicity: Choose CodeIgniter for projects where simplicity, speed, and
ease of setup are prioritized. Its lightweight nature and efficient performance make it ideal for
straightforward applications.

CONCLUSION
Laravel showed a reduction from 119ms to 94 ms when optimization techniques are applied
for single iterations and from 122 ms to 80ms for ten iterations. CodeIgniter showed a
reduction from 29 ms to 17ms for single iterations and from 25 ms to 18 ms for ten iterations.
While Laravel benefited more significantly from optimization in multi-iteration scenarios,
CodeIgniter maintained lower initial response times.

CodeIgniter proof to have lower response time, throughput and also Lower received and sent
KB/sec rates, this indicates that CodeIgniter processes requests faster than Laravel indicating
less data being processed per request in the other hand Laravel shows slower response times
across all metrics compared to CodeIgniter and significantly higher received KB/sec, which
may indicate more complex data processing or larger payloads. Nevertheless, both Laravel
and CodeIgniter offer significant performance optimization capabilities, However, Laravel's
comprehensive features and advanced optimization tools make it a powerful choice for
complex, scalable applications while CodeIgniter's simplicity and efficiency provide a high-
performance solution for lightweight applications Understanding the specific needs and
constraints of a project will guide developers in choosing the most suitable framework,
balancing performance, and functionality to achieve optimal results.

A Comparative Analysis of Performance Optimization Techniques for Benchmarking Php Frameworks: Laravel
and Codeigniter

M. K. Ahmed et al., DUJOPAS 10 (3c): 284-295, 2024 295

REFERENCES
Alshannaq, H. (2020). Web performance optimization: A comprehensive survey. Journal of

Internet Services and Applications, 11(1), 1-22. https://doi.org/10.1186/s13174-020-
00132-0.

Apache JMeter. (n.d.). Apache JMeter. Retrieved from https://jmeter.apache.org/
Bastian, R., & Friedrich, T. (2021). Scalable web applications: Principles and practices. Springer.
Blackfire. (n.d.). Blackfire. Retrieved from https://www.blackfire.io/
CodeIgniter Documentation. (n.d.). Caching. Retrieved from

https://codeigniter.com/user_guide/libraries/caching.html
CodeIgniter Documentation. (n.d.). Database Class. CodeIgniter Foundation.
Davis, J., & Patterson, D. (2019). CPU resource management for web servers. ACM Transactions

on Computer Systems, 37(2), 1-30. https://doi.org/10.1145/3349870
Gutierrez, A. (2020). Phalcon documentation. Phalcon Framework.
Jones, E. (2022). Competitive advantage through web application performance. Business

Technology Journal, 17(3), 45-60.
Laravel Documentation. (2023). Laravel: The PHP framework for web artisans. Retrieved from

https://laravel.com/docs
Laravel Documentation. (n.d.). Caching. Retrieved from https://laravel.com/docs/cache
Laravel Documentation. (n.d.). Database: Eloquent ORM. Retrieved from

https://laravel.com/docs/eloquent
Laminas Documentation. (2023). Laminas: A PHP framework for enterprise applications. Retrieved

from https://docs.laminas.dev
Miller, G. (2021). Maintenance and development efficiency in web frameworks. Software

Engineering Review, 45, 23-38. https://doi.org/10.1016/j.ser.2020.100545
Nagios. (n.d.). Nagios. Retrieved from https://www.nagios.org/
New Relic. (n.d.). New Relic. Retrieved from https://newrelic.com/
Otwell, T. (2019). Laravel: Up & running: A framework for building modern PHP apps. O'Reilly

Media.
Phalcon Documentation. (2023). Phalcon: A full-stack PHP framework delivered as a C-extension.

Retrieved from https://docs.phalcon.io/
Potencier, F. (2020). Symfony 5: The fast track. Symfony SAS.
Siege. (n.d.). Siege. Retrieved from https://www.joedog.org/siege-home/
Smith, J. (2020). Optimization techniques in computational algorithms. Journal of Computational

Science and Engineering, 15(2), 101-115. https://doi.org/10.1016/j.jcse.2020.03.001
Symfony Documentation. (2023). Symfony: High performance PHP framework for web development.

Retrieved from https://symfony.com/doc
Welling, L., & Thomson, L. (2017). PHP and MySQL Web Development (5th ed.). Addison-

Wesley.
Węgrzecki, K. S., & Dzieńkowski, M. (2022). Performance analysis of Laravel and Yii2

frameworks based on the MVC architectural pattern and PHP language. Journal of
Computer Sciences Institute, 24, 265–272. https://doi.org/10.35784/jcsi.3002

Yii Software LLC. (2020). The definitive guide to Yii 2.0. Yii Software LLC.
Yii Framework. (2023). Yii framework: Fast, secure, and professional PHP framework*. Retrieved

from https://www.yiiframework.com/doc/guide/2.0/en
Xdebug. (n.d.). Xdebug. Retrieved from https://xdebug.org/

