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Abstract 
The restricted three-body problem (R3BP) defines the dynamics of an infinitesimal mass moving in the 
gravitational neighborhood of two primaries, which move in circular orbits around their center of mass 
on account of their mutual attraction and the infinitesimal mass not influencing the motion of the 
primaries. In this paper, we examine equilibrium points and their locations in the photogravitational 
circular Robe’s restricted three-body problem (R3BP) with variable masses. The motion of the primaries 
and variation in masses of the primaries are governed by the Gylden-Mestschersky problem (GMP) and 
the unified Mestschersky law (UML), respectively, while the second primary is assumed to be a 
radiation emitter. The non-autonomous equations of the governing dynamical system are deduced and 
transformed using the Mestschersky transformation (MT), the UML and the particular solutions of the 
GMP, to a system of the autonomized equations with constant coefficients under the condition that 
there is no fluid inside the first primary. Next, the equilibrium points (EPs) of the autonomized system 
are explored using perturbation method and it is seen that axial EP which is defined by the mass 
parameter and the radiation pressure of the second primary exists. Further, a pair of non-collinear EPs 
which depends on the mass parameter, radiation pressure of the second primary and a constant of the 
mass variations of the primaries, is found. The EPs of the non-autonomous system are obtained using 
the MT and differ from those of the autonomized system by time t . The EPs may be used in different 
problems of stellar dynamics, and also in other astrophysical applications. 
 
Keywords: Robe’s R3BP; Equilibrium Points; Variable mass; Radiation pressure 
 
INTRODUCTION 
The restricted three-body problem (R3BP) defines the motion of an infinitesimal mass moving 
in the gravitational environment of two finite masses, called primaries, which move in circular 
orbits around their center of mass on account of their mutual attraction and the infinitesimal 
mass not influencing the motion of the primaries. The study of the R3BP is of great theoretical, 
practical, historical and educational relevance, and in its many modified forms, has had 
important implications in several scientific fields, including among others; celestial 
mechanics, galactic dynamics, chaos theory and molecular physics.  
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A different model of the R3BP was worked by Robe (1977). This problem was later called the 
Robe’s Restricted Three Body Problem (RR3BP). In this formulation, the first primary of mass

1m , is a rigid spherical shell, filled with homogenous, incompressible fluid of density 1 , with 

the second mass 2m as a small point outside the shell and moving around the first primary 

mass in a Keplerian orbit. The third body of infinitesimal mass 3m  is taken as a small sphere 

of density 3 , moving inside the shell and is subject to the attraction of 2m and the buoyancy 

force due to the fluid and that the radius of 3m is assumed to be infinitesimal . Several 

researchers such as Shrivastava and Garain (1991), Plastino and Plastino (1995), Giordano et 
al. (1997), Hallan and Rana (2001a, b), Hallan and Mangang (2007), Singh and Sandah (2012), 
Singh and Laraba (2012), Kaur and Aggarwal (2012), Singh and Omale (2014), Ansari et. al 
(2019), Abouelmagd et al. (2020), Kaur et. al (2020), Kaur et. al (2021), Kaur and Kumar (2021), 
Ansari (2021), Ansari and Sahdev (2022), Kaur et. al (2022) and, Leke and Ahile (2022) have 
studied the Robe’s R3BP under different modifications. 
   
Next, the formulation of the classical R3BP assumes that the masses of the participating bodies 
are constant. However, the occurrence of isotropic radiation or absorption in stars led 
scientists to formulate the R3BP when one or all the bodies are subject to mass variations. The 
study of the R3BP in the case where the primaries vary their masses under the unified 
Mestschersky Law (UML) and their motion described by the Gylden-Mestschersky problem 
(Gylden 1884; Mestschersky 1902), has been carried out by several authors under different 
characterizations. Among such authors are Gelf’gat (1973), Bekov (1988), Luk’yanov (1989), 
Singh and Leke (2010, 2012, 2013a, b, c,), Taura and Leke (2022), Leke and Singh (2023), Leke 
and Mmaju (2023), Leke and Shima (2023), Leke and Amuda (2024), Leke and Orum (2024) 
and Amuda and Leke (2024).  
 
Singh and Leke (2013b) discussed the Robe’s R3BP with variable masses which occurs in 
accordance with the UML. They found an EP at the center, which is stable and a pair of EPs 
on the −  plane which are unstable. Motivated by this, our aim in this paper is to obtain 

the EPs and locations of the photogravitational circular Robe’s (R3BP with variable masses) 
when the bigger primary is empty. Aside the three forces acting on the infinitesimal mass, we 
consider a fourth force which is due to the radiation pressure force of the smaller primary. 
The radiation pressure force has been shown to have strong destabilizing influence on 
dynamics of small particles in space. Hence, it is important to consider such an important 
perturbing force on locations of the EPs in the Robe’s R3BP with variable masses. 
 
METHODOLOGY 
 
Dynamical Equations  
In this model formulation, we assume that the second primary is a radiating body. Therefore, 
the 

 forces acting on are 

i. The force of attraction of the radiating second primary, which is given by 
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      iii. The buoyancy force which is given by  

 

iv. Radiation pressure 2q of the second primary 

where G   is the gravitational constant,  is the radius of the fluid, ( )3,1=ii is the density of 

the fluid and the test particle, respectively, while 13r and 23r  is the radius vector of the line 

joining the centers of the first and second primary to the test particle, respectively and 2q is 

the radiation pressure factor of the second primary.                                            
Now, the equation of motion of the third body in the inertial system, taking into account the 
combined forces acting on it: 
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where
→

3OM  is the distance from the origin of center of mass to the infinitesimal mass      

The equation of motion (1) in a synodic coordinates system rotating with angular 

velocity  and origin at the center of mass, O, of the primaries; is 
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where : is a unit vector. 
Following Singh and Leke (2013b), the equations of motion of the third body under the set-up 
of the Robe’s CR3BP with variable masses in a Cartesian coordinate system, when the second 
primary is a radiation source, takes the form 
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where     : ,  

,   and is the angular velocity of 

revolution of the primaries. 
Now, system (2) is a non-autonomous system of equations and we have to transform it to the 
autonomized forms. However, it is impossible to carry out a complete transformation using 
the MT, the UML, the particular solutions and integral of the GMP when the density 
parameter is not zero. In view of this, we restrict ourselves to the case when the densities of 

the first and third body are equal ( )31  = .  Hence, the system of equations (2) reduces to  
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Equations (3) in the autonomized system with constant coefficients is given as 
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where is the mass parameter and is such that , while is the random sum of the 
masses of the primaries in the autonomized system. 
Equations (4) admits the Jacobian integral  

( ) ( ) C=++− 222,,2                                            (7) 

2.2. Locations of Equilibrium Points 

    The positions of the EPs are found by solving the equations  . That is, we 

need to solve the system of equations                                     
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We search for the EPs on the − plane of motion.  

Clearly, from the last equation in (8), if 1= , we’ll have  
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 which is not possible, since 0,0 2  q , so we must have when .  

Now, if in equations (8), we suppose that , we have  
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From the first equation of (9), we get 
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Using the second equation of (9) in (10), we get 
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But , since , hence, a contradiction and so we must have . 

Hence, there is no solution on the plane and so we search for the solutions on the 

plane only.  
2.2.1 Axial Equilibrium Point  
The axial EP is the solution of equations (8) when 0==  . Meaning this point lie only on 

the −  plane of motion. Therefore, equations (8) is reduced to the equation 
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interval ( )−− 1 , . Hence equation (12), has only one root in this interval.  

To get the axial EP, we shall use perturbation method, by first ignoring the radiation pressure 

of the second primary. Thus, we suppose that 12 =q  then equation (11) becomes 
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Following Singh and Leke (2013b), we get 
 −=1                   (14) 

Hence, the only solution of equation (13) is equation (14) and so we can assume the solution 
of (11) to be  
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Substituting (15) into equation (11), gives 
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This gives an EP on the line joining the centers of the primaries away from the center of the 
first primary but located inside it and is defined by the mass parameter and radiation factor 
of the second primary. When there is no radiation from the second primary, the point fully 
coincides with that in Robe (1977), Hallan and Rana (2001a), and, Singh and Leke (2013b)

 2.2.2 Non-collinear Equilibrium Points 
The existence of the non-collinear EPs was not pointed out in the Robe (1977) problem. The 
non-collinear EPs of the autonomized system are the solutions of system (8), when , 

. That is, they are obtained by solving the equations  
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From the second equation of (17), we have 
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Substituting equation (19) in the first equation of (17), at once gives 

( )( )11 −−−=                     (20) 

This gives the abscissa of the non-collinear EPs.  
Next, we substitute equation (19) in equation (18), to get 
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Using equation (20), yields 
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And so we have the coordinates of the non-collinear EPs is represented by the equations 
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Equations (21) give the position of a pair of EPs  which exist for  and lies in the 

plane. We call these points, non-collinear EPs and they depend on the mass ratio, mass 

variation parameter and radiation pressure of the second primary. 
For the non-autonomous system, the EP near the center of the shell and the non-collinear 
points are sought using the MT. These points differ from those of the autonomized system 

with constant coefficient only by the function . We express them as
 

( )( ) ( ) ( )tRtx 11 = , , 
                                            

(22) 

where ( )1x is the axial EP which varies with time while ( )2x and ( )3,2z are the non-collinear EPs 

of the non-autonomous systems varying with time. ( )1 , and ( )2 , ( )3,2 are the axial and non-

collinear EPs, of the autonomized system, respectively. 
3Numerical Exploration 
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In this section, we present the numerical results of the obtained EPs and we shall consider the 
third body to be an artificial satellite under the gravitational influence of two primaries. We 
carry out all numerical exploration with the help of the software Mathematica (Wolfram 2015). 

Throughout, we select the radiation pressure of the second primary to be 99996.02 =q . 

3.1 Numerical computation of the axial equilibrium point 
The axial EP has been obtained in equation (16) and depends on the mass parameter and the 
radiation pressure of the second primary. We now compute numerically locations of the axial 

EP in Table 1 when  10   and 99996.02 =q .   

 

Table 1: Axial EPs for 10  and 99996.02 =q . 

Mass Ratio ( )
 
 ( )12 =q  2−  ( )99996.02 =q  Deviation due to 

effect of radiation 
 

0.000000001 -0.000000001 -0.000000002 -9.9996*10^-10                    4*10^-14  
0.00001 -0.00001 -0.000020000 -0.00000999          0.00000001  
0.001 -0.001 -0.002000000 -0.00099996          0.00000004   
0.012 -0.012 -0.024000000 -0.01199950          0.0000005  
0.1 -0.1 -0.200000000 -0.09999670          0.0000033  
0.2 -0.2 -0.400000000 -0.19999400          0.0000060  
0.3 -0.3 -0.599985000 -0.29999300          0.0000070  
0.4 -0.4 -0.799982000 -0.39999100          0.0000090  
0.5 -0.5 -1.000000000 -0.49999000          0.0000100  
0.6 -0.6 -1.200000000 -0.59998900          0.0000110  
0.7 -0.7 -1.400000000 -0.69998800          0.0000120  
0.8 -0.8 -1.600000000 -0.79998800          0.0000120  
0.9 -0.9 -1.800000000 -0.89998700          0.0000130  
0.9999 -0.9999 -1.999800000 -0.99988700          0.0000300  

 
The location of the axial EP has been explored numerically for all mass ratio under effect of 
the radiation pressure of the second primary. It is seen from Table 1, that every point lie inside 

the first primary for all mass ratio since 02 −  throughout. When the second primary 

is not a radiating body, the EP reduces to that at the centre of the first primary. The effect of 
the radiation pressure of the second primary on the deviations of the axial point at the centre 
is shown on the last column on Table 1. It is seen that the points deviate to the right of the 
centre towards the origin. The points have been plotted in Figure 1 using the numerical values 
in Table 1. The axial point designated with a red spot is when the mass parameter is 

00001.0= and the corresponding value is 0.00000999−= , while the points designated 

with a blue spot is when  0-0.0119995= and correspond to the case when 012.0= . Also, 

the point designated with a green spot is the location of the axial point at 0.29999300−=

which correspond to the case when 3.0= . The points designated with black and yellow 
spots are respectively when 0.69998800−= and 0.99988700−= , respectively. These 

correspond to the case when 7.0= and 9999.0= , respectively. All these points lie on the 
line inside the first primary. The points differ from those of Robe (1977), Shrivastava and 
Garain (1991), Hallan and Rana (2001a), Singh and Leke (2013b, c) 
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Fig 1: Axial EPs for 00001.0= (Red), 012.0= (Blue), 3.0= (Green), 7.0= (Black)   

             and 9999.0= (Yellow).  

 
Numerical computations of the non-collinear equilibrium points 

Equations (21) give the positions of a pair of EPs  which exist for  and lies in the 

plane. We call these points, non-collinear EPs and they depend on the mass ratio and a 

constant of a particular integral of the GMP and radiation pressure of the second primary. The 
locations of the non-collinear EPs have been computed numerically in Table 2to Table 9using 
equation (21). We have indicated under the remark column whether the points exist or do not 
exists. The remark that they exist means the points are located inside the first primary, while 
they do not exist when the points are located outside the first primary.  
 

Table 2: Non-collinear EPs for 000000001.0= , 99996.02 =q and  1  

  
 

  Remarks  

1.000000001 -0.000000001 -0.0000133607 Exists  
1.00001 -0.00001 -0.498933 Exists  
1.01 -0.01 -0.510039  Exists  
1.1 -0.1 -0.604998  Exists  
2 -1 -2  Exists  
5 -4 -12.5  Does not Exists  
10 -9 -50  Does not Exists  
20  -19 -200  Does not Exists  
50 -49 -1250  Does not Exists  
100 -99 -500  Does not Exists  
1000 -999 -500000  Does not Exists  

→  −→  −→   Does not Exists  

 
 
 
 
 
 
 
 

Table 3: Non-collinear EPs for 00001.0= , 99996.02 =q and  1  

  
 

  Remarks  

1.000000001 -9.9999*10^-10 231.573  Does not Exists  
1.00001 -0.0000099 -0.0000100001  Exists  
1.01 -0.0099999 -0.505007  Exists  

( ),0,  1 

 −
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1.1 -0.099999 -0.60384  Exists  
2 -0.99999 -1.99959  Exists  
5 -3.99996 -12.4995  Does not Exists  
10 -8.99991 -49.9988  Does not Exists  
20  -18.9998 -199.996  Does not Exists  
50 -48.9995 -1249.97  Does not Exists  
100 -98.999 -4999.9  Does not Exists  
1000 -998.99 -499990.  Does not Exists  

→  −→  −→   Does not Exists  
 

Table 4: Non-collinear EPs for 012.0= , 99996.02 =q and  1  

  
 

        Remarks  

1.000000001 -9.88*10^-10 26206.2 Does not Exists  
1.00001 -9.88*10^-6 55.973 Does not Exists  
1.01 -0.00988 0.0704821 Exists  
1.1 -0.0988 -0.460946 Exists  
2 -0.988 -1.91069 Exists  
5 -3.952 -12.1714 Does not Exists  
10 -8.892 -48.7791 Does not Exists  
20  -18.772 -195.202 Does not Exists  
50 -48.412 -1220.15 Does not Exists  
100 -97.812 -4880.69 Does not Exists  
1000 -987.012 -488072. Does not Exists  

→  −→  −→  Does not Exists  
 

Table 5: Non-collinear EPs for 5.0= , 99996.02 =q and  1  

  
 

           Remarks  

1.000000001 -5.*10^-10 314972. Does not Exists  
1.00001 0.000005 678.466 Does not Exists  
1.01 -0.005 6.70351 Does not Exists  
1.1 -0.05 1.40663 Exists  
2 -0.5 -0.0000133334 Exists  
5 -2 -2.75951 Lies on the circle   
10 -4.5 -12.1621 Does not Exists  
20  -9.5 -49.6741 Does not Exists  
50 -24.5  -312.181 Does not Exists  
100 -49.5 -1249.68 Does not Exists  
1000 -499.5 -125000. Does not Exists  

→  −→  −→  Does not Exists  
 

Table 6: Non-collinear EPs for 7.0= , 99996.02 =q and  1  

  
 

           Remarks  

1.000000001 -3.*10^-10 394176 Does not Exists  
1.00001 -3.*10^-6 849.188 Does not Exists  
1.01 -0.003 8.50289 Does not Exists  
1.1 -0.03 1.89518 Exists  
2 -0.3  0.44571 Exists  
5 -1.2 -0.66759 Exists  
10 -2.7 -4.07714 Does not Exists  
20 -5.7 -17.5921 Does not Exists  
50 -14.7  -112.100 Does not Exists  
100 -29.7 -449.603 Does not Exists  
1000 -299.7 -44999.6 Does not Exists  

→  −→  −→  Does not Exists  

Table 7: Non-collinear EPs for 8.0= , 99996.02 =q and  1  

  
 

          Remarks  

1.000000001 -2.*10^-10  430875.  Does not Exists  
1.00001  0.000002  928.279  Does not Exists  
1.01 -0.002  9.32431  Does not Exists  
1.1 -0.02  2.10695  Exists  
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2 -0.2  0.60397  Exists  
5 -0.8 -0.00001  Exists  
10 -1.8 -1.53777  Exists  
20 -3.8 -7.55414  Does not Exists  
50 -9.8  -49.5633  Does not Exists  
100 -19.8 -199.566  Does not Exists  
1000 -199.8 -19999.6.  Does not Exists  

→  −→  −→   Does not Exists  

 

Table 8: Non-collinear EPs for 9.0= , 99996.02 =q and  1  

  
 

      Remarks  

1.000000001 -1.*10^-10 466072.0 Does not Exists  
1.00001  0.000001 1004.120  Does not Exists  
1.01 -0.001 10.10300  Does not Exists  
1.1 -0.01  2.299190  Exists  
2 -0.1 -0.719844  Exists  
5 -0.4  0.415829  Exists  
10 -0.9 -0.000013  Exists  
20 -1.9 -1.517710  Lies on the circle  
50 -4.9  -12.02760  Does not Exists  
100 -9.9 -49.53080  Does not Exists  
1000 -99.9 -4999.530  Does not Exists  

→  −→  −→   Does not Exists  

 

Table 9: Non-collinear EPs for 9999.0= , 99996.02 =q and  1  

  
 

             Remarks  

1.000000001 -5.*10^-13 499953.0   Does not Exists  
1.00001  0.000000001 1077.120   Does not Exists  
1.01 -0.000001 10.84290   Does not Exists  
1.1 -0.00001 2.472810   Exists  
2 -0.0001 0.793626   Exists  
5 -0.0004 0.580144   Exists  
10 -0.0009 0.536332   Exists  
20 -0.0019 0.517343   Exists  
50 -0..0049  0.506720   Exists  
100 -0.0099 0.503264   Exists  
1000 -0.0999 0.495287   Exists  

→   −→  −→    Does not  Exists  

 
The points differ from those in Singh and Leke (2013b) due to the radiation pressure of the 
second primary. These EPs do not have an analogy in the Robe (1977) problem when the 
spherical shell is empty. They are also different from those of the R3BP of Bekov (1988), 

Luk’yanov (1989, 1990), Singh and Leke (2010) and Leke and Singh (2023).When , we 
have which lies outside the shell and since , it is seen that infinite remote EPs 

do not exist for any value of . 
 
The non-collinear EPs have been drawn in Fig 5 to Fig 7 using the numerical data in Tables 2 

to 9. In particular, Fig 2 is the location of the non-collinear points when 000000001.0= and 

000000001.1= (Red), 01.1= (Blue) and 1.1= (Green), while Fig 3 is  non-collinear EPs 

for 012.0= when 01.1=  (Red), 1.1=  (Blue) and 2= (Green). Also, Figures 4a-c are 

the non-collinear EPs for 7.0= , 8.0= and 9999.0= , respectively, when 1.1=  (Red), 

2=  (Blue) and 5= (Green)., while the variations in the positions of the non-collinear 

points corresponding to when 7.0= (red) and 8.0= (Blue plot) have been drawn in Fig 
4d. 

1 =
0 =  = 

L 0 1 
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Fig 2Non-collinear EPs for 000000001.0= when 000000001.1= (Red), 01.1= (Blue) and 1.1=
(Green) 
 

 
Fig 3: Non-collinear EPs for 012.0= when 01.1=  (Red), 1.1=  (Blue) and 2= (Green) 

(a) (b) 
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(c) (d) 

Fig 4: Non-collinear EPs for 1.1=  (Red), 2=  (Blue) and 5= (Green) when (a) 7.0= (b) 8.0= (c) 

9999.0= (d) a and b 

 
CONCLUSION 
The equilibrium points and locations in the photogravitational circular Robe’s R3BP with 
variable masses, has been investigated. The primaries are assumed to move under the Gylden-
Mestschersky problem while their masses vary with time in accordance with the UML and 
the second primary was a radiation emitter. The non-autonomous equations of the governing 
dynamical system were deduced and transformed to a system of the autonomized equations 
with constant coefficients under the condition that the first primary had no fluid.  Next, the 
EPs of the autonomized system were explored and was observed that axial EP which depends 
on the mass parameter and the radiation pressure of the second primary exists. Further, a pair 
of non-collinear EPs which were defined by the mass parameter, radiation pressure of the 
second primary and the parameter kappa, were found. The EPs of the non-autonomous 
systems were obtained using the MT and differ from those of the autonomized system by the 

function ( )tR .  

 
The obtained EPs may be used in different problems of stellar dynamics, and also in other 
astrophysical applications. 
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