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Abstract 
 

Measles remains a significant public health concern globally, despite the availability of effective 
vaccines. In this study, we develop a mathematical model of measles disease that integrates the impact 
of double dose vaccination and utilize the Laplace Adomian Decomposition Method (LADM) as a 
numerical approach to obtain solutions for the fractional order differential equations governing the 
model. The model accounts for the dynamics of susceptible, infected, and vaccinated individuals, 
considering the transmission dynamics of measles in a population with varying vaccination coverage. 
LADM, combining the Laplace transform and Adomian decomposition, provides a systematic method 
to solve the nonlinear fractional differential equations derived from the model, offering insights into the 
effectiveness of double dose vaccination strategies in controlling measles outbreaks. 
 
Keywords: Measles, Mathematical modelling, Infectious Disease, Approximate Solution, 
Double Vaccinations. 
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INTRODUCTION  
Measles, caused by the measles virus (MeV), is an extremely contagious respiratory infection 
that primarily affects children and unvaccinated individuals. Symptoms include fever, cough, 
runny nose, and a distinctive rash that starts on the face and spreads. Despite the availability 
of an effective vaccine, measles remains a significant global health concern, causing 
considerable illness and mortality, particularly in areas with low vaccination rates (NCDC, 
2023). The measles virus belongs to the Paramyxoviridae family, specifically the Morbillivirus 
genus. It spreads through respiratory droplets or direct contact with infected nasal or throat 
secretions (WHO, 2021). After an incubation period of 7 to 14 days, infected individuals can 
transmit the virus, contributing to outbreaks, especially in communities with low vaccination 
coverage (WHO, 2021).Before widespread vaccination, measles was common worldwide. The 
introduction of the measles vaccine, typically administered as part of the Measles-Mumps-
Rubella (MMR) series, has led to a significant decrease in global measles (NCDC, 2023). 
However, outbreaks still occur due to vaccine hesitancy and incomplete vaccination coverage, 
highlighting the need for sustained immunization efforts to achieve herd immunity (WHO, 
2021).Measles can lead to severe complications, particularly in young children and those with 
compromised immune systems, such as pneumonia, encephalitis, and ear infections (NCDC, 
2023). Pregnant women infected with measles are also at risk of complications, including 
miscarriage and premature birth (WHO, 2021). The high contagiousness and potential for 
severe outcomes underscore the importance of vaccination and public health measures to 
prevent and control measles outbreaks globally. 
 
The Laplace Adomian Decomposition Method (LADM) is a powerful numerical technique 
used to solve differential equations, including fractional-order models, by combining the 
Laplace transform and Adomian decomposition method (ADM). Introduced as an extension 
of the classical Adomian decomposition method by ( Jafari and Daftardar-Gejji, 2006).   LADM 
offers a systematic approach to solving nonlinear problems that involve fractional derivatives. 
In LADM, the Laplace transform is first applied to the differential equation, transforming it 
into an algebraic equation in the Laplace domain. The resulting equation is then decomposed 
into a series using the Adomian polynomials. These polynomials represent the nonlinear 
terms of the original equation and are recursively computed to approximate the solution in 
terms of a series. 
 
The method's strength lies in its ability to handle nonlinearities and fractional derivatives 
efficiently, making it particularly suitable for modeling complex phenomena such as 
fractional-order differential equations encountered in epidemiology, finance, physics, and 
engineering ( Jafari and Daftardar-Gejji, 2006). By decomposing the problem into simpler 
components and using iterative techniques, LADM provides a systematic framework for 
obtaining numerical solutions that are often challenging to derive analytically. Applications 
of LADM range from solving differential equations governing infectious disease dynamics, 
such as measles spread models with fractional-order terms, to financial models involving 
fractional calculus. Its flexibility and computational efficiency make LADM a valuable tool in 
both theoretical studies and practical applications where traditional analytical methods may 
be insufficient. 
 
Using the Laplace Adomian Decomposition Method (LADM) offers several benefits, making 
it a valuable numerical technique for solving differential equations, particularly those 
involving fractional derivatives. Here are some benefits of using LADM: 

• Suitability for Fractional Calculus Problems:LADM is specifically designed to 
handle fractional-order differential equations, which often arise in various scientific 
and engineering disciplines. These equations involve derivatives of non-integer order, 
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and LADM provides a systematic approach to obtaining numerical solutions for such 
complex problems ( Jafari and Daftardar-Gejji, 2006). 

• Systematic Decomposition of Nonlinear Terms: The method decomposes the 
nonlinear terms of the differential equation into a series of Adomian polynomials. This 
decomposition simplifies the solution process by breaking down the problem into 
manageable components, facilitating iterative computation and convergence ( Jafari 
and Daftardar-Gejji, 2006). 

• Efficiency in Handling Nonlinearities: LADM efficiently handles nonlinear 
differential equations, which are often challenging to solve using traditional analytical 
methods. By decomposing the nonlinear terms and applying iterative techniques, 
LADM provides accurate approximations of the solution without the need for 
linearization or simplification of the original equation ( Jafari and Daftardar-Gejji, 
2006). 

• Convergence and Accuracy:   The method typically exhibits good convergence 
properties when applied to well-posed problems. Through iterative refinement of the 
Adomian series, LADM can achieve accurate numerical solutions that closely 
approximate the true solution of the differential equation. This accuracy is crucial for 
modeling and predicting real-world phenomena with fractional dynamics ( Jafari and 
Daftardar-Gejji, 2006). 

• Flexibility and Applicability Across Disciplines:  LADM's versatility allows it to be 
applied across various scientific and engineering fields, including epidemiology, 
finance, physics, and chemical engineering. It can handle a wide range of differential 
equations with fractional derivatives, making it a preferred choice for researchers and 
practitioners dealing with complex nonlinear systems ( Jafari and Daftardar-Gejji, 
2006). 

• Integration with Computational Tools:The method can be implemented using 
computational software packages, enhancing its practical utility in solving real-world 
problems. Researchers and engineers can leverage existing numerical libraries and 
programming environments to apply LADM to their specific applications, thereby 
streamlining the solution process and improving productivity ( Jafari and Daftardar-
Gejji, 2006). The Laplace Adomian Decomposition Method (LADM) offers significant 
advantages in solving fractional-order differential equations, including systematic 
handling of nonlinearities, efficiency in computation, accuracy of solutions, and broad 
applicability across disciplines. 

 
Several authors have studied mathematical modeling of infectious diseases with vaccination 
strategies. 
 
Thompson  & Andrews (2023),  studied  mathematical modelling of measles transmission and 
vaccination strategies: Their  study considered  various mathematical models used to analyze 
measles transmission dynamics and vaccination strategies. Thompson and Andrews 
discussed the impacts of vaccination coverage, vaccine efficacy, and population characteristics 
on measles epidemiology. They highlighted critical thresholds for measles elimination and 
the effects of vaccine hesitancy on outbreak dynamics. The review synthesizes findings from 
different modeling approaches, including compartmental and agent-based models, 
illustrating how these models inform public health strategies to control measles globally. The 
authors emphasized the importance of continuous model refinement to address emerging 
challenges in measles eradication efforts. Metcalf & Grenfell  (2022) ,  studied challenges and 
opportunities in modeling measles vaccination. This article considered  the challenges and 
opportunities in modeling measles vaccination strategies aimed at achieving disease 
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elimination. Metcalf and Grenfell discussed the complexities of vaccine hesitancy, population 
immunity dynamics, and the impact of global vaccination campaigns on measles transmission 
dynamics. They highlighted the integration of behavioral and demographic factors into 
mathematical models to optimize vaccination coverage and effectiveness. Their study 
emphasized the role of mathematical modeling in guiding vaccination policies and 
emphasized the need for interdisciplinary collaboration to sustain global measles elimination 
efforts. 
 
 Shim,  & Galvani (2021) ,  studied  measles vaccination for disease control: A modeling 
perspective. Shim and Galvani provided a modeling perspective on measles vaccination 
strategies for disease control. They evaluated the impact of vaccination on measles 
transmission dynamics using mathematical models, exploring various vaccination scenarios 
and strategies. The article discussed the effectiveness of routine immunization, 
supplementary immunization activities, and outbreak response strategies in controlling 
measles outbreaks. Shim and Galvani highlighted the role of targeted vaccination campaigns 
in high-risk populations and the integration of vaccination with other public health 
interventions. They concluded by advocating for the use of mathematical modeling to inform 
proactive vaccination policies and optimize resource allocation for measles control 
efforts.Some relevant works  are found in the following references  Agbata et al. (2021), Ayla, 
(2015),  Agbata et al. (2024), Acheneje et al. (2024), Chitnis et al . (2008),  Okon et al. (2023). 
This study aims to create a mathematical model for measles that integrates the effects of 
double dose vaccination and solve it using the Laplace Adomian Decomposition Method 
(LADM). The objectives are to develop a fractional order mathematical model that includes 
vaccination parameters, derive the corresponding fractional differential equations, and use 
the Laplace transform to convert these into algebraic equations. The Adomian decomposition 
method will then be applied to these equations to obtain numerical solutions. Finally, the 
study will evaluate the impact of double dose vaccination on controlling measles outbreaks 
through numerical simulations and comparisons with real-world data. 
 
Materials and Methods 
 
Model Formulation 
The total population (t)N , is divided into six epidemiological groups: susceptible individuals  

(S) ,, individuals who have received the first dose of vaccination but can still be infected due 

to vaccine failure  1(V ) , individuals who have completed the second dose of vaccine 2(V ) , 

exposed individuals  (E) , infected individuals  (I) , and recovered individuals (R) . Let    be 

the constant recruitment rate. Suppose   denotes the fraction of individuals who refused 

vaccination before entering the population, and  (1 )−  represents individuals who have 

taken the first dose of vaccine before entering the population, where 1  is the rate at which 

susceptible  individuals take the first dose of vaccine, and   denotes the probability of 

transmission by an infected individual with measles.   is the rate at which those who took 
the first dose of vaccine become exposed due to vaccine failure, and  denotes the rate at 

which initially vaccinated individuals become infected due to vaccine failure. 2  is the rate 

of vaccination of initially vaccinated individuals, 3   represents the recovery rate of 

vaccinated individuals,  is the rate at which exposed individuals become infected, and f  is 

the recovery rate of infected individuals.   represents the natural death rate, and   is the 

disease-induced death rate. 
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Model Assumptions 
The model is developed under the following mathematical assumptions  

1. Uniform Interaction: The model assumes that individuals within the population mix 
uniformly, meaning everyone has an equal likelihood of encountering others. 

2. Stable Population Size: Throughout the model, the total population remains constant, 
with negligible birth and death rates over the modeled period. 

3. First Vaccination Dose Group (V1): These individuals have had one dose of the 
measles vaccine but can still be susceptible to infection due to vaccine ineffectiveness. 

4. Vaccine Effectiveness and Failures: We assumed that individuals receiving the first 
vaccine dose might still become exposed or infected due to vaccine failure, indicating 
that the vaccine isn't entirely effective after the initial dose. 

5. Duration of Immunity: The model assumes that individuals who recover from measles 
or complete the vaccination series (two doses) gain immunity for a certain period, with 
the possibility of immunity waning over time. 

6. Transmission Dynamics: The model follows a susceptible-infected-recovered (SIR) 
framework, with individuals transitioning between susceptible, infected, and 
recovered states based on transmission rates and probabilities. 

  
 
 
 
   
 
 
 
 
 
 
 
 
 
 
Fig: 1 Schematic diagram for the Model  
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Variables and Parameters Interpretation 
Variables Interpretation 

S( )t  Susceptible population 

1V ( )t  First dose of vaccinated humans      

2V ( )t   Second dose of vaccinated individuals due to vaccine failure  

E( )t   Exposed individuals   

I( )t  Infected individuals  

R( )t  Recovered humans at time t  

Parameter  Description  

Λ  Constant recruitment rate of susceptible individuals 

  Rate of non-vaccinated individuals  

1 −  
Rate of initially vaccination   

  Transmission rate of infection   

1  Vaccination rate of susceptible individuals    

2  Rate at which individuals in 1V obtain second dose of vaccination due to vaccine 

failure  

3  Recovery rate of vaccinated individuals  

  Rate at which exposure of individuals in  1V due to vaccine failure  

  Rate at which individuals in   1V becomes infected due to vaccine failure  

  Natural death rate   

  Disease induced death 

f  Recovery rate of infected individuals  

 
Fractional Order of the Measles Model 
The Caputo derivative is measured as a differential operator in our model. We present in this 
segment some well-known definitions and effects that we shall be using throughout this 
research (Peter et al. (2021), Shah et al. (2016))  
 
Definition 1. Acheneje et al. (2024), Peter et al. (2021).The Caputo fractional order derivative 
of a function ( f ) on the interval [ TO, ] is defined by: 
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Definition 2 [11] Laplace transform of Caputo derivatives is defined as 

1

0

[ ( )] ( ) (0),
n

C i k

K

D q t S h S S y   − −

=

= −L
 

,1 nn − 
 

,Nn   (4) 

For arbitrary , 0,1,2,... 1,  [ ] 1ic R i n n  = − = + and ][ represents the non-integer part of

 . 

Lemma 1.The following results hold for fractional differentiation equations 
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Introducing fractional-order into the model, we now present a new model described by the 
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The Laplace-Adomian Decomposition Method (LADM) Implementation 
We considered the general procedure of this method with the initial conditions. Applying 
Laplace transforms to both sides of the equation (1), and then we have: 
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With initial conditions 

1 1 2 2 3 4 5 6(0) , (0) ,  (0) ,  (0) ,  (0) ,  (0)S n V n V n E n I n R n= = = = = =  

Dividing equation (7) by ( S  ) we have:  



Numerical Solution of Fractional Order Model of Measles Disease with Double Dose Vaccination 

 

Agbata et al., DUJOPAS 10 (3b): 202-217, 2024                                                                                           209 

 

 

( )

11( ) ( )
1

12( ) 1 ( )
1 1 2

13( ) ( )
2 2 1 3 2

14( ) ( )
1

15( ) ( )
1

16( )
3 2

n
S E S

S S

n
V S V

S S

n
V V V

S S

n
E SE V E

S S

n
I E V f I

S S

n
R fI V R

S S

  


     


  


   


   


 






 = + − + + 
  


 = + −  + − + + +
 



  = + − +
  



 = + + − +
 

 = + + − + +
 

 = + + −



 

L L

L L

L L

L L

L L

L L












   

            (8) 
Decomposing the non-linear term of equation (6) whereby we assume the solution of 
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We have three (1) non-linear terms. The non-linear term in equation (6) are decomposed by 
Adomian polynomial as follows: 
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The polynomials are given by  
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Substituting equation (9), (10) into equation (8) we obtained: 
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Evaluating the Laplace transform of the 2nd terms in the RHS of (16), we obtain 
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Taking the inverse Laplace transform of both sides of (14) 
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When 0n = we obtain, 

1 1 2 2 3 4 5 6(0) , (0) ,  (0) ,  (0) ,  (0) ,  (0)S n V n V n E n I n R n= = = = = =  

   (16) 

When 1n = , we obtain, 



Numerical Solution of Fractional Order Model of Measles Disease with Double Dose Vaccination 

 

Agbata et al., DUJOPAS 10 (3b): 202-217, 2024                                                                                           211 

 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(1) 0 0 ( ) 0
1 1

1 0 ( ) 0
1 2 1 1

1
0 ( ) 0

2 1 3 2 1

1
0 0 0 ( ) 0

1 1

1
0 0 ( ) 0

1 1

1
1

1
2

1

1

1
0 0 01

3 2 1

t
S E S S

t
S VV

V V V

S

E S V E

S

E V f I

S

fI V R

S

E

I

R


 




     



  


  


   


 





  = − − +
   + 




 = −  + − + + +    + 


 = − + 
  +




 = + − +   +



 = + − + + 
  + 


  = + −
  +





   (17) 

When 2n = , we obtain, 
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When 1n n= + , we obtain, 
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The series solution of each compartment can be expressed as: 
 ( ) (0) (1) (2) ...S t S S S= + + +  

 
1 1 1 1( ) (0) (1) (2) ...V t V V V= + + +  

 
2 2 2 2( ) (0) (1) (2) ...V t V V V= + + +  

 ( ) (0) (1) (2) ...E t E E E= + + +  

 ( ) (0) (1) (2) ...I t I I I= + + +       (20) 

 ( ) (0) (1) (2) ...R t R R R= + + +  

 
Numerical Solution of Laplace Adomian Decomposition Method (LADM) 
In this section, we will see the numerical solution of the model. Using the initial conditions, 
the Laplace Adomian Decomposition Method (LADM) gives us an approximate solution  in 
terms of an infinite series presented as: 
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                (21) 
 
For 1 = , the series solution of our model becomes, 
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NUMERICAL SIMULATIONS OF THE MODEL 
Numerical simulations enable modelers to validate mathematical models using real-world 
data and adjust model parameters for increased accuracy. This iterative process ensures that 
models accurately represent patterns of measles transmission and vaccination outcomes. 
Introducing double-dose vaccination introduces new variables such as the interval between 
doses and the effectiveness of immunity boosting. Numerical simulations allow exploration 
of various vaccination scenarios, including different levels of vaccine coverage and efficacy, 
to evaluate their impact on disease control. They facilitate understanding of disease dynamics 
over time, identification of critical parameters, and optimization of control measures (Okon et 
al. 2023). Through simulations, modelers can observe disease progression under different 
conditions, predict outbreaks, evaluate the effectiveness of public health interventions, and 
guide policy decisions. Ultimately, numerical simulation enhances the precision and practical 
utility of mathematical models in comprehending and managing the spread of measles within 
populations ( Agbata et al. 2022). 
 
Table 1 Parameter table of values 

Parameter Value Source 

  0.02755 Stephen et al. (2014) 
  0.027 Okon et al. (2023) 

1  0.167 Agbata et al. (2019) 

  0.08 Okon et al. (2023) 

  0.40 Assumed 

2  0.7 Stephen et al. (2014) 

3  0.167 Stephen et al. (2014) 

  0.002 Assumed 

  0.09091 Stephen et al. (2014) 
  0.001 Assumed 

f  0.004 Stephen et al. (2014) 

  0.002 Assumed 

 



Numerical Solution of Fractional Order Model of Measles Disease with Double Dose Vaccination 

 

Agbata et al., DUJOPAS 10 (3b): 202-217, 2024                                                                                           214 

 

 
Fig 2a. Graph of susceptible human against time. Fig 2b. Graph of first dose vaccination               

 
Fig 2c. Graph of exposed human against time.Fig 2d. Graph of second dose vaccination  

 
Fig 2e. Graph of infected human with time. Fig 2f. Graph of recovered humans over time 
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RESULTS AND DISCUSSION 
Figure 2a depicts the graph of susceptible individuals over time, illustrating a decrease in their 
numbers. This decline corresponds to a slight decrease in the number of individuals who 
received the first dose vaccine, as shown in Figure 2b. However, there is a rapid increase in 
the number of individuals who received the second dose vaccine, as depicted in Figure 2d. 
This increase contributes to a higher recovery rate, as seen in Figure 2f, and a reduction in the 
number of infected individuals, illustrated in Figure 2e. These observations suggest effective 
control of measles within the population. The effective strategy of double-dose vaccination 
results in a significant decrease in the number of exposed individuals, nearly reducing them 
to zero, as indicated in Figure 2c. The above graphical solutions describe the model behavior 
in real life. 
 
Convergence Analysis for the Laplace-Adomian Decomposition Method (LADM). 
The solution to equation (1) is given in infinite series, which uniformly converge to its exact 
solution. To confirm the convergence of series (21), we apply the technique described in 
reference (Peter, et al. 2012). To establish sufficient conditions for the convergence of the 
LADM, we state the following theorem: 
 
Theorem 1 

Let X be a Banach space and :T X X→ be a constructive nonlinear operator such that for 

( ) ( ) ( ) ( )
' ', ,  ,0 1.x x X T x T x k −   Then, T has a unique point x such that Tx x= ,where 

( )1 2, , , , , .x S V V E I R=  The series given can be written by applying the Adominan decomposition 

method as follows: 

 
1 1,n n nx Tx x− −= , 

 
1

1

,  1, 2,3,...
n

i

i

x n
−

=

= =  

And we assume that ( )0 ,rx B x where ( )  ': ;rB x x X x x r=  −  then, we have as follows: 

(i) ( )n rx B x  

(ii) limn nx x→ =  

Proof 
For condition (i), invoking mathematical induction, 
For n=1, we have as follows: 

 ( ) ( )0 0 0 .x x T x T x x x− = −  −  

If this is true for m-1, then 

 
1

0 0 .mx x k x x−−  −  

This gives the following: 

 ( ) ( )1 1 0 .n

m m mx x T x T x k x x k x x− −− = −  −  −  

Therefore,  

0 .n n

mx x k x x k r r−  −    

This directly implies that ( ).n rx B x  

Also, for (ii), we have that since 0

n

mx x k x x−  −  and lim 0n

n k→ = , we can write 

limn nx x→ = . 
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Series Representation of  Theorem 1  in Measles Dynamics: 

In the context of measles epidemiology, we can interpret { nx } as a sequence or series of data 

points that represent various aspects of the disease dynamics over time. For instance 
(Acheneje et al. 2024): 

• Time Series of Measles Cases: { nx } could represent a time series of measles cases 

reported over successive time intervals (e.g., weekly, monthly). The limn nx x→ =  

would indicate that as we consider more and more time points n , the series { nx } of 

reported measles cases converges to x . This convergence suggests a stabilization or a 
consistent trend in the number of reported cases over time. 

• Series of Vaccination Coverage: Alternatively, { nx } might denote a series representing 

vaccination coverage rates measured at different time periods. The limn nx x→ =  

would then imply that as more data points are considered, the series{ nx } of vaccination 

coverage converges to x . This convergence indicates a stable or optimal level of 
vaccination coverage achieved over time. 

 
 Practical Implications: 

• Trend Analysis: Monitoring the series { nx } and observing its convergence to x  can 

provide insights into the long-term trends of measles dynamics or vaccination efforts. 

For example, if { nx } (series of measles cases) converges to a low x , it may indicate 

successful disease control measures or high vaccination coverage in the population. 

• Data Interpretation: Analyzing the series { nx } helps in understanding the temporal 

variations and patterns in measles epidemiology. This data-driven approach allows 
public health officials to make informed decisions regarding interventions and 
resource allocation. 

• Forecasting and Planning: Using historical series { nx } data and its convergence 

properties can assist in forecasting future disease trends and planning effective public 

health strategies. Predicting where { nx } is converging helps in anticipating the 

effectiveness of current policies and adjusting future actions accordingly. 
 
CONCLUSION 
In conclusion, this study successfully utilized the Laplace Adomian Decomposition Method 
(LADM) to model measles dynamics, incorporating double dose vaccination into a fractional 
order differential equation framework. The model demonstrated that higher rates of double 
dose vaccination significantly reduce measles incidence and transmission compared to single 
dose or lower coverage strategies, emphasizing the importance of high vaccination coverage 
for effective disease control. The application of LADM proved valuable in managing 
nonlinearities and solving complex equations, providing accurate numerical solutions crucial 
for evaluating vaccination strategies. Based on these findings, it is recommended to prioritize 
double dose vaccination, continuously monitor and adapt vaccination programs, integrate 
advanced modeling techniques into epidemiological studies, strengthen public awareness 
and vaccine acceptance, and foster global collaboration and data sharing. These steps are 
essential for optimizing vaccination strategies and advancing efforts towards measles 
elimination and improved public health. 
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