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Abstract 
In this research paper, a mathematical model of the isothermal flow of upper convected Maxwell (UCM) 
fluid with thermal radiation through a saturated porous media was studied in detail, with different 
physical parameters being considered. Maple 18 software is used to implement this strategy. The 
analysis of the results showed that the flow system was significantly influenced by the Schmidt, Darcy, 
and Deborah numbers, the unsteadiness parameter, the Maxwell parameter, the magnetic field 
parameter, and other physical characteristics. The influence of several physical characteristics on the 
flow system are discussed and shown graphically. 

Keywords: Upper Convected Maxwell Fluid; Isothermal flow; Thermal Radiation; Porous 
Medium; Viscosity 
 
 
INTRODUCTION 
The investigations of non-Newtonian fluids in porous media have attracted the attention of 
numerous scholars in recent times. This is because of its wide range of industrial and 
engineering applications, which include, to mention a few, oil reservoir engineering, food 
technology, applied geophysics, geology, groundwater flow, and oil recovery operations. In 
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engineering, fluid flow analysis is essential. Transport processes in porous media are the 
subject of numerous technical and biological fields. Abdelsalam et al. (2023); Fetecau et al. 
(2021); Gbadeyan & Dada (2013); Peter et al. (2019a); Peter et al. (2019b) and Uscilowska (2008) 
are six examples. 

Recent advances in technology, the practical importance of non-Newtonian fluids, and the 
explosive rise of modern industrial materials have made them more popular than Newtonian 
fluids. Numerous fluids utilized in industrial environments exhibit non-Newtonian 
characteristics and actions. Moreover, when the activities occur at a high temperature, the 
effects of radiation are not insignificant. Thermal radiation is an important heat transfer 
process manager through heat-regulating variables being heated or cooled. Heat transfer and 
radiation from the exterior of a heated mass submerged in a fluid-saturated porous media 
have numerous uses in geophysics and engineering. Depending on the material's geometry 
and surface properties, radiation can have an impact on heat transfer and flow in porous 
media. As cited in Jhankal and Kumar (2015); Kashyap, Ojjela & Das (2019); Li et al. (2010); 
Marinca et al. (2014); Mukhopadiyay (2012) and Vidyasagar et al. (2012). 

Previous studies and research overlooked the combined effects of heat radiation, magnetic 
field, viscous dissipation and thermal conductivity. Thus, the combined effects of thermal 
radiation, viscous dissipation, magnetic field, and thermal conductivity on the isothermal 
flow of non-Newtonian fluid in a porous media were assessed in this work using the upper 
convected Maxwell model. 

Mathematical Formulation 
We considered unsteady, laminar flow of an incompressible fluid through saturated porous 
media fills the channel, and it is believed that the flow is irregular. The flow is described by 
the UCM model for explaining shear. The equations take on the following forms according to 
Vajravelu et al.(2017); Mukhopadhya & Gorla (2012) and Ibrahim & Negera (2020): 
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Under the following conditions 
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where =w x-direction, =z y-direction, Fluid density, Relaxation time, 

Viscosity, 2  and  Non-Newtonian fluids, Effective viscosity, Uniform 

magnetic field, Specific heat, Fluid temperature, Heat released due to 

exothermic reaction, Radiation heat flux, Arrhenius pre-exponential factor, 

Activation energy, Initial fluid temperature, =fT Ambient temperature and =fh

Heat transfer coefficient. 
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In order to transform equations (2) – (5),  
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Where  ol is a reference length scale, ov is a reference velocity,  is a dimensionless 

temperature,   is the similarity variable, ( )f is the dimensionless form of velocity, ( )f   is 

the partial differentiation with respect to  ,   is non-dimensional temperature,   is the 

stream function, PU

 

is the unsteadiness parameter, 
 
is the Deborah number, Re  is the 

Reynolds number, n  is a non-Newtonian parameter,   n  is a non-Newtonian parameter, 

Maxwell parameter, Da  is the Darcy number and Pr  is the Prandtl number, Ec  is the 

Ecket number, dR  is the radiation parameter, Bi  is the Biot number,   is the Frank-

Kamenetskii parameter , 1Q is the heat source parameter  
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Equations (6), (1) – (5) and dropping the primes yield 

    

(7)  

 

   (8)
  

 
The modified boundary conditions, equation (4) are as follows: 
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0)( = f ,   1)( = ,    as  →                   (9) 

 
 
3 Method of Solution 

Galerkin-weighted residual approach is utilized to numerically solve the coupled non-linear 
governing boundary layer equations (9) and (10) and their corresponding boundary 
conditions (11) through the use of f solution in the Maple 18 software. 
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We use the following parameter values: 
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These will be the default values in this work. 

 
RESULTS AND DISCUSSION 
Figures 1 through 16 display the results in the following manner: Figures 1–2 depict the effects 
of the unsteadiness parameter on the temperature and velocity fields. It should go without 
saying that raising the unsteadiness parameter raises the velocity. As the unsteadiness 
parameters rise, it looks that the temperature profile is getting lower. Dimensionless patterns 
of temperature and velocity for a range of Deborah number values are shown in Figures 3–4. 
As Deborah's number increases, the velocity and temperature profiles seem to be getting 
smaller. Dimensionless patterns of temperature and velocity for different Darcy numbers are 
shown in Figures 5–6. As the Darcy number rises, a reduction in the velocity and temperature 
profiles is seen. The impact of magnetic variables on the velocity profile is seen in Figure 7. It 
is observed that as the magnetic parameter increases, the velocity profile decreases. The 
impact of Reynolds number on the velocity field is shown in Figure 8. It goes without saying 
that the velocity profiles increase as the Reynolds number does.  
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Figures 9 and 10 illustrate how the radiation parameter and the Prandtl number affect 
temperature profiles. The temperature profiles decrease as the radiation parameter and 
Prandtl number increase. The dimensionless temperature curve for various non-Newtonian 
parameter values is shown in Figure 11. As the non-Newtonian parameters rise, the 
temperature profile decreases. The impact of the porosity parameter on the velocity field is 
shown in Figure 12. It is evident that the velocity profile decreases as the porosity parameter 
increases. Figures 13–14 illustrate how the Ecket number and Frank-Kamenetskii parameter, 
affect temperature profiles. When Frank-Kamenetskii parameter and Ecket number rise, it is 
evident that the temperature profiles decrease. 
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Fig. 7. Impact of 0M  on
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Fig. 13. Impact of Ec  on
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Fig.14. Impact of   on
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CONCLUSION 
This work revealed that thermal radiation parameter, variable thermal conductivity and 
viscosity parameters, magnetic field and third grade fluid parameters, and others have a 
significant impact on the mass flow and the energy transfer phenomena in the flow system. It 
was observed that temperature and velocity of the fluids increase when the value of variable 
viscosity parameter increases.  
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