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Abstract 
 

Poliomyelitis, also known as polio, is a contagious viral illness that predominantly impacts young 
children, leading to paralysis and, in severe instances, death. Despite worldwide initiatives aimed at 
elimination, the spread of the poliovirus persists in various areas, highlighting the need for robust 
vaccination strategies. This research employed a mathematical model to explore the dynamics of 
poliovirus transmission, integrating vaccination as a crucial method for disease control. The model was 

analyzed to determine the basic reproduction number ( )0R  and the stability properties of the disease-

free and endemic equilibrium. Our findings demonstrated  that the system achieves local asymptotic 
stability when the basic reproduction number is less than one, global asymptotic stability when it is 
exactly one, and maintains a stable endemic equilibrium when it is greater than one. Sensitivity analysis 
revealed critical parameters influencing the basic reproduction number, emphasizing the impact of 
vaccination coverage and disease transmission rates on polio dynamics. Numerical simulations further 
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elucidated the effectiveness of interventions such as reducing contact rates between susceptible and 
infected individuals and increasing the vaccination rate. Based on our results, we proposed 
recommendations to mitigate the polio burden, including enhanced vaccine availability, improved 
sanitation practices, and targeted healthcare interventions for vulnerable populations. This study 
contributes to the understanding of polio transmission dynamics and provides insights for optimizing 
control strategies towards global eradication efforts. 
 
Keywords: Poliomyelitis, Mathematical modeling, Vaccination, Disease dynamics, 
Eradication strategies 
 
INTRODUCTION  
Poliomyelitis, commonly known as polio, is a highly infectious viral disease caused by the 
poliovirus, primarily affecting young children. Transmission primarily occurs through 
person-to-person contact via the fecal-oral route, although contaminated water and food can 
also spread the virus (CDC, 2023., GPEI, 2O21). Polio can result in a spectrum of outcomes, 
ranging from asymptomatic cases to severe paralysis, affecting approximately 1% of those 
infected (CDC, 2023., Alfaro-Murillo et al, 2020). Belonging to the Enterovirus genus within 
the Picornaviridae family, the poliovirus consists of three serotypes: P1, P2, and P3. It is a 
small, non-enveloped virus with a single-stranded RNA genome. Following initial infection 
in the gastrointestinal tract, the virus can disseminate to lymphatic tissues and the 
bloodstream. In some instances, it crosses the blood-brain barrier to infect motor neurons in 
the spinal cord and brainstem, causing acute flaccid paralysis, characteristic of paralytic 
poliomyelitis (WHO, 2023). Historically,  polio has triggered widespread concern and 
significant morbidity, particularly during the mid-20th century in developed nations. The 
introduction of polio vaccines, notably the inactivated poliovirus vaccine (IPV) and the oral 
poliovirus vaccine (OPV), has resulted in a substantial decline in global polio cases (WHO, 
2022., WHO, 2019) . Despite progress, polio persists in some regions due to challenges in 
vaccination coverage, surveillance, and obstacles related to conflict and accessibility. 
 
The clinical presentation of polio varies, depending on the viral strain and individual immune 
response. Non-paralytic polio, also known as abortive poliomyelitis, typically causes 
symptoms such as fever, sore throat, headache, nausea, vomiting, and abdominal pain, which 
usually resolve within a week (Alfaro-Murillo et al, 20200). Paralytic poliomyelitis presents 
with sudden onset muscle weakness or paralysis, often asymmetrically affecting the legs 
predominantly. Diagnosis relies on clinical symptoms, history of exposure, and laboratory 
confirmation through viral isolation or detection of viral RNA in stool or cerebrospinal fluid. 
Serological testing for poliovirus antibodies aids in determining vaccination status and 
previous exposure (WHO, 20230).The global initiative to eradicate polio, led by the Global 
Polio Eradication Initiative (GPEI), involves collaboration among national governments, the 
World Health Organization (WHO), Rotary International, the U.S. Centers for Disease Control 
and Prevention (CDC), and UNICEF. Strategies include routine immunization with OPV or 
IPV, supplemental vaccination campaigns in high-risk areas, and robust surveillance systems 
to promptly detect and respond to outbreaks (WHO, 2022). While significant strides have been 
made, achieving a polio-free world requires sustained efforts in vaccination, research, and 
healthcare infrastructure development. The control of poliomyelitis centers largely around 
vaccination efforts aimed at achieving global eradication of the disease. Two main types of 
vaccines are pivotal in these efforts: the inactivated poliovirus vaccine (IPV) and the oral 
poliovirus vaccine (OPV). IPV, administered via injection, contains killed poliovirus strains of 
all three serotypes (P1, P2, and P3) and is highly effective in inducing immunity (CDC, 2022). 
OPV, administered orally, contains live attenuated poliovirus strains and offers the advantage 
of promoting intestinal immunity, aiding in interrupting transmission in communities with 



Mathematical Modeling of Poliomyelitis with Control Measure  

 

Agbata et al., DUJOPAS 10 (3b): 186-201, 2024                                                                                     188 

 

poor sanitation. Both vaccines have been integral to reducing polio cases globally, with OPV 
particularly critical in mass immunization campaigns due to its ease of administration and 
ability to confer immunity through herd immunity ( Efforts to control polio also involve 
surveillance to detect outbreaks early and immunization campaigns targeting high-risk 
populations. The Global Polio Eradication Initiative (GPEI) coordinates these efforts, focusing 
on achieving high vaccination coverage rates worldwide and ensuring that no child is left 
unvaccinated. Continued research into new vaccine formulations, improvements in delivery 
strategies, and addressing vaccine hesitancy are ongoing priorities in the quest to eliminate 
polio as a public health threat globally (Alfaro-Murillo et al, 2020). 
 
There is currently no cure for poliomyelitis because the virus attacks the nervous system, 
causing irreversible damage, and there are limitations in effectively targeting and eliminating 
all traces of the virus from the body (Aylward, 2006), but various treatments aim to alleviate 
symptoms, hasten recovery, and prevent complications. Contemporary approaches focus on 
providing relief through measures such as antibiotics to thwart infections in weakened 
muscles, analgesics for pain management, moderate exercise, and a balanced diet. Long-term 
rehabilitation, encompassing occupational therapy, physical therapy, braces, corrective 
footwear, and occasionally orthopedic surgery, is often necessary for effective polio treatment 
(Daniel and Robbins, 1997). To aid breathing, portable ventilators may be essential. 
Historically, during acute polio infections, a noninvasive, negative-pressure ventilator known 
as an iron lung was employed to artificially sustain respiration until independence was 
regained (typically within one to two weeks). In the present day, many individuals enduring 
permanent respiratory paralysis utilize modern jacket-type negative-pressure ventilators 
worn over the chest and abdomen (Goldberg, 2002). Several researchers have studied 
mathematical modeling of infectious diseases. 
 
Hsu and Yang (2023) studied the mathematical modeling of poliomyelitis transmission 
dynamics and control. They provided a comprehensive review of mathematical models used 
to analyze poliovirus transmission and control strategies, including compartmental and 
stochastic models. Their review highlighted the application of these models in assessing 
vaccination strategies, surveillance systems, and outbreak responses, synthesizing recent 
advancements and discussing their implications for global polio eradication efforts. Duintjer 
et al. (2016) focused on an economic analysis of poliovirus risk management policies for 2013–
2052, using mathematical modeling to evaluate various policy options such as vaccination 
strategies and surveillance systems. Their research emphasized the cost-effectiveness of 
different interventions and provided insights into optimal resource allocation and policy 
decisions for sustaining polio eradication efforts. Kalkowska et al. (2015) developed and 
applied a mathematical model to manage imported type 1 wild poliovirus in Israel, evaluating 
the effectiveness of vaccination and surveillance strategies in preventing outbreaks and 
controlling transmission. Their study underscored the importance of rapid response and 
targeted interventions. Brouwe et al. (2018) investigated the epidemiology of a silent polio 
outbreak in Rahat, Israel, using environmental surveillance data. Their modeling study 
identified factors contributing to the outbreak and assessed the effectiveness of environmental 
surveillance in detecting and responding to poliovirus circulation. Brouwer et al. (2017) 
optimized silent environmental surveillance strategies for detecting poliovirus in southern 
Israel, evaluating the sensitivity and cost-effectiveness of various surveillance approaches. 
Their research highlighted the need for continuous monitoring and adaptive surveillance 
strategies to achieve and maintain polio eradication. Hsu and Yang (2023) studied the 
mathematical modeling of poliomyelitis transmission dynamics and control. They provided 
a comprehensive review of mathematical models used to analyze poliovirus transmission and 
control strategies, including compartmental and stochastic models. Their review highlighted 
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the application of these models in assessing vaccination strategies, surveillance systems, and 
outbreak responses, synthesizing recent advancements and discussing their implications for 
global polio eradication efforts. Duintjer et al. (2016) focused on an economic analysis of 
poliovirus risk management policies for 2013–2052, using mathematical modeling to evaluate 
various policy options such as vaccination strategies and surveillance systems. Their research 
emphasized the cost-effectiveness of different interventions and provided insights into 
optimal resource allocation and policy decisions for sustaining polio eradication efforts. 
Kalkowska et al. (2015) developed and applied a mathematical model to manage imported 
type 1 wild poliovirus in Israel, evaluating the effectiveness of vaccination and surveillance 
strategies in preventing outbreaks and controlling transmission. Their study underscored the 
importance of rapid response and targeted interventions. Brouwe et al. (2018) investigated the 
epidemiology of a silent polio outbreak in Rahat, Israel, using environmental surveillance 
data. Their modeling study identified factors contributing to the outbreak and assessed the 
effectiveness of environmental surveillance in detecting and responding to poliovirus 
circulation. Brouwer et al. (2017) optimized silent environmental surveillance strategies for 
detecting poliovirus in southern Israel, evaluating the sensitivity and cost-effectiveness of 
various surveillance approaches. Their research highlighted the need for continuous 
monitoring and adaptive surveillance strategies to achieve and maintain polio eradication. 
Other useful studies can be found in  ( Agbata et al, 2021., Agbata et al, 2022., Acheneje et al, 
2024., Ayla, 2015., Xuan et al, 2022). The research aims to explore the transmission patterns of 
Poliomyelitis and assess the effectiveness of treatment strategies in reducing its spread. It 
seeks to provide a thorough understanding of how Poliomyelitis is transmitted and identify 
methods to control its dissemination, offering insights for public health strategies and policy. 
Key objectives include developing a mathematical model to represent Poliomyelitis 
transmission dynamics, determining the basic reproduction number of the model, analyzing 
its stability, performing a sensitivity analysis to understand the impact of specific parameters, 
and conducting numerical simulations to verify theoretical findings.  
 
MATERIALS AND METHODS 
 
Model  Formulation. 

The human population at time t , given by ( )N t  is sub-divided into five(5) mutually exclusive 

compartments of Susceptible humans ( )S t , Vaccinated humans ( )V t , Exposed humans 

( )E t , Infected humans ( )I t  and Recovered humans ( )R t .

 ( ) ( ) ( ) ( ) ( ) ( )hN t S t V t E t I t R t= + + + + The recruitment rate of humans into the 

susceptible population is at the rate . We denote   as the effective contact rate of humans 

with the probability of been infected per contact with the polio virus in the feces of the infected 
humans. The rate at which the susceptible individuals are vaccinated from polio is denoted as 
 and the vaccinated individuals progress into the recovered class at the rate of  . The 

exposed individuals to polio becomes infected at the rate of  . The rate at which the infected 
individuals recover is denoted as  . The natural death rate of the individuals in the 

population is  while the disease induced death rate is denoted as . 
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Fig. 1: Schematic diagram of the Poliomyelitis model 

 
Assumptions used in the formulation of the model 

• Recovery of infected individuals is possible even though it is minimal. 

• Infected individuals can be vaccinated and their disease conditions are 
managed in the vaccination center. 

• The vaccinated individuals recovered due to effective vaccination. 

• Every individual is recruited into the population through birth. 
    
Table 1:   Variable and Parameters description 

Variable Description 

S  
Susceptible individuals  

V  
Vaccinated population  

E  
Exposed population 

I  
Infected Humans 

R  
Recovered Humans 

Parameter Description 

  Recruitment level  of humans 
  Natural death rate of humans 

  Contact rate of susceptible and infected humans 


 

Vaccination rate of susceptible humans 

  
Progression rate from exposed population to infected class. 

  
Disease induced death rate of infected humans 

  Recovery rate of vaccinated humans. 

  Recovery rate of infected individuals. 
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Model Equations 
Based on the model description provided earlier, the differential equations that represent the 
transmission dynamics of poliomyelitis in the population are formulated as follows: 

( ) ,
dS

S
dt

  = − + +  

( ) ,
dV

S V
dt

  = − +  

( ) ,
dE

S E
dt

  = − +  

( ) ,
dI

E I
dt

   = − + +        (1) 

.
dR

V I R
dt

  = + −  

The force of infection of the Poliomyelitis model in (1) is given as: 

 
I

N


 = ,  

Let ( )1K  = + , ( )2K  = + , ( )3K   = + +  

 
Invariant region of the Poliomyelitis model 
The solution set of the proposed Poliomyelitis model are feasible for all t > 0, if they enter the invariant 
region D, which is given by: 

 ( ), , , , : 0, 0, 0, 0, 0,D S V E I R S V E I R N


 
=       
 

  (2) 

 
Proof 
The total population of the humans in the Poliomyelitis model is given as 
 ( ) ( ) ( ) ( ) ( ) ( )N t S t V t E t I t R t= + + + +       (3) 

The sum of the differential equations is 

 ' ' ' ' '( ) ( ) ( ) ( ) ( ) ( )N t S t V t E t I t R t= + + + +       

On evaluating the algebraic terms, we obtain 

 ( )'( )N t S V E I R I =  − + + + + −       

 '( )N t N I = − −          

 
dN

N
dt

 −          (4) 

Solving the above (4)  equation, we obtained 

 ( ) (0) tN t N e 

 

−  
 + − 

 
       (5) 

Using  Birkhoff and Rota’s theorem on the inequality, we obtain   

 0 N



   as t →         (6) 

Therefore, D   is a positively invariant set under the flow governed by model (2), ensuring 

that no solution trajectory exits through the boundary of  D . Consequently, within this region, 
the poliomyelitis-only model can be deemed both epidemiologically and mathematically well-
defined. 
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Positivity of solution of the Poliomyelitis model 
To establish the epidemiological and mathematical integrity of the poliomyelitis model within 

the defined feasible region D , it is essential to demonstrate that all state variables remain 

nonnegative throughout the entire duration. The feasible region D   is characterized by: 

 ( ) ( ) 5, , , , :D S V E I R R S V E I R N+=  + + + +      (7) 

This is done by considering, 

 ( ) 5, , , , 0S V E I R R+          

 
Lemma 1: 

Suppose  the initial data for the model (1) be ( ), , , , 0S V E I R  . Then the solution set,

( ), , , ,S V E I R  of the model (1) are positive for all time 0t   

 
Proof 

Let  sup 0 : 0, 0, 0, 0, 0 [0, ]t t S V E I R t=        . Thus 0.t   

We have from the first equation that 

 ( )
dS

S
dt

  = − + +        

 ( )
dS

S
dt

   − + +          

This can also be written as 

 ( )
dS

dt
S

   − + +          

We obtained: 

 ( )ln S t C   − + + +         

 
( )

( )
t

S t Ce
  − + +

        (8) 

Applying the initial condition; when 0,  (0)t S C= =  

Therefore, 
( )

( ) (0) 0
t

S t S e
  − + +

  since ( ) 0 +   

Similarly, it can be demonstrated   that , , , 0V E I R   

 
Asymptotic stability analysis of the disease-free equilibrium of the Poliomyelitis model 
The point at which there is no infection present, representing the absence of the disease, is 
referred to as the disease-free equilibrium (DFE) point, denoted as 

  * * * * *

0 , , , , ,0,0,0,0S V E I R


 
= =  

 
     (9) 

 
Basic Reproduction Number of the Poliomyelitis Model 

The basic reproduction number (
0R ) for poliomyelitis-infected individuals represents the 

average number of secondary infections generated by a single infectious individual over their 
entire period of infectiousness in a fully susceptible population (Agbata et al, 2024). This value 
is determined using the next generation operator method applied to the dynamic system (1). 

Therefore, we obtain our  0R  as follows  

 ( )1

0R FV −=  where  is the dominant eigenvalue of 1FV −  
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1

1

0

0 0

K

KF





 
 +=
 
  

, 
2

3

0K
V

K

 
=  

− 
,  

 

3

2 31

2

2 3 2 3

0
K

K K
V

K

K K K K



−

 
 
 =
 
 
 

 

Simplifying the elements of the matrix: we obtained, 

21

2 3 3

1
0

1

K
V

K K K



−

 
 
 =
 
 
 

, ( ) ( )
1 1

1
1 2 3 1 3

0 0

K K

K K K K KFV

  

 −

 
 + +=
 
  

 

Therefore, the greatest eigenvalue of 1FV −  the basic reproduction number of the Poliomyelitis 
only model is 

( )

( )

( )( )( )( )

1

0
1

2 3

0

K

K K

R

R
K

 



  

      

+

=
+

=

+

+ + + +

     (10) 

 
Local Asymptotic Stability of the DFE of the Poliomyelitis Model 
Theorem 1 
The disease-free equilibrium point of the Poliomyelitis only is locally asymptotically stable (LAS) if 

0 1R  , and unstable if 0 1R  . 

Proof 
Using Jacobian matrix to obtain the local stability of the disease free equilibrium point 

 ( )

( ) 1

1

1

0 1
2

1

3

0 0 0

0 0 0

0 0 0

0 0 0

0 0

K

K

K

J K
K

K

K


 





 





  

 
− + − +
 

− 
 

=  −
 +
 

− 
 − 

 

 ( )

( ) 1

1

1

1 0 1
2

1

3

0 0 0

0 0 0

0 0 0

0 0 0

0 0

K

K

K

J K
K

K

K


 





 





  

 
− + − +
 

− 
 

=  −
 +
 

− 
 − 

 

Applying rows and Column   reduction to the matrix, we  obtain 
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 ( )
1

2

12 0

3

K
K

KJ

K







 
− +=
 

−  

 

The characteristics polynomial of ( )2 0J  is 

 ( )
( )1 02

3 2

1

1K R
K K

K


 



−
+ + +

+
 

Applying Routh-Hurwitz criterion to the Characteristics polynomial, we have that 

( )01 0R−           (10) 

 0 1R   

Thus the DFE point of the Poliomyelitis only model is locally asymptotically stable. 
 
Global Asymptotic Stability of the Disease-free equilibrium point of the Poliomyelitis 
Model. 
To examine the global stability of the disease-free equilibrium, we employ the approach 
developed by Castillo-Chavez and Song. To accomplish this, we express the equation 
pertaining to the uninfected class as follows: 

 ( ),
dX

F X Z
dt

=         (11) 

And we re-write the equation in the infected class as  

   ( , )
dZ

G X Z
dt

=         (12) 

Where ( ) 3, ,X S V R R +=  represents the uninfected population and  

 ( ) 3,, RZ E I R +=  represents  the infected population 

 *

0 ( ,0)X = represent the disease free equilibrium of the system, and it globally 

asymptotically stable if it satisfies the following conditions: 

 ( )* *

1 :   ,0 , 
dX

H F X X
dt

= is globally asymptotically stable 

 ( ) ( )*

2 :  ,0 ,ˆ
Z

dZ
H D G X Z G X Z

dt
= −        

 ( )ˆ , 0G X Z  for all ( ),X Z D and where ( )*,0ZD G X  is an M- matrix (i.e the 

diagonal elements are no-negative and it is also the Jacobian of ( )ˆ , 0G X Z   evaluated at 

*( ,0).X  
If the system fulfills the condition stated above, then the following theorem applies. 
Theorem 2 

The equilibrium point *

0 ( ,0).X =  is globally asymptotically stable if 0 1R 
          and 

 1 2,H H are satisfied. 

 

( )

( )( , )

S

F X Z S V

V I R

  

  

  

 − + + 
 

= − + 
 + − 

 , 
( )

( )
( , )

I
S E

G X Z N

E I


 

   

 
− + =

 
− + +  

   

  
At disease free equilibrium, 
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1 :H  

 

( )

0

S

dV
S V

dt

dS

dt

dR

dt

 

 


 − + 




= − 

=

=






         

2 :H  

( )

( )

( )

( )
*( ,0)z

I EE
D G X Z

E II

     

       

− + − +    
= =    − + + − + +    

 

( ) ( ) ( )*, ,0 ,ˆ
ZG X Z D G X Z G X Z= −     

 ( )
1

ˆ

0

, Z

S

NG X

  

 =


−
 

 





 

Clearly, 1
S

N
 this implies that ( )ˆ , 0G X Z  .  

Therefore, it follows that the disease free equilibrium of the Poliomyelitis only model is 
globally asymptotically stable. 
 
Endemic Equilibrium Point of the Poliomyelitis Model 
The endemic equilibrium point is the steady state where there is persistence or prevalence of 
a disease in the population.  
Theorem 3 

The endemic equilibrium point of the Poliomyelitis model in (1) is stable if 0 1R  and unstable if 0 1R   

Proof 
To obtain the endemic equilibrium we set the RHS of the differential equations in (1) to zero 
and solve for the state variables. 
Thus, at the endemic equilibrium point,  

0
dS dV dE dI dR

dt dt dt dt dt
= = = = = .      (13) 

Let ( )** ** ** ** ** **, , , ,S V E I R =  be the endemic equilibrium point. 
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Substituting them into the force of infection, 
**
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I

N


 = , we obtained the following: 

( ) ( )( )( )1 3 1 1 2 3 0

** ** 01K K K K K K R     + + + + − = and ** 0 = denotes the disease 

free equilibrium point of the  Poliomyelitis model, thus at the endemic equilibrium point 
** 0  . 
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Thus for ** to be positive at the endemic equilibrium point, 
0 1 0R −  . 

0 1R   and the endemic equilibrium point is stable. 

2.10  Sensitivity Analysis of the Poliomyelitis Model 
Sensitivity analysis is conducted to identify parameters that influence both the propagation 
and containment of an infection within a population [16]. The sensitivity index of the 
reproduction number for the poliomyelitis model concerning a parameter ( p ) is expressed 

as follows: 
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Figure 2  Bar chat of Poliomyelitis sensitivity Indices 

 
Interpretation of the Poliomyelitis Sensitivity Analysis 
From the sensitivity analysis above, it is observed that the parameters like ,  which are the 

contact rates of susceptible and infected humans and the progression rate from exposed to 
infected classes with positive sensitivity indices enhances the spread of Poliomyelitis within 
the human population. 
 
Conversely, the parameters , ,   which are the rate of recovery of infected humans, the 

natural death rate and the disease induced death rate of infected humans with negative 
sensitivity indices reduces the prevalence of Poliomyelitis within the human population. 
Table 2.  Parameter Values and Sources  

Parameter Value Source 

  1000 Xuan et al, 2022 

  0.002 Xuan et al, 2022 

  0.34 Estimated 

  0.6 Xuan et al, 2022 

  0.5 Xuan et al, 2022 

  0.23 Estimated 

  0.9 Bunimovich-Mendrazitsk & Stone,  
(2005) 

  0.6 Assumed  

 
 

Discussions and Numerical Simulations 
In this segment, we present the graphs derived from our numerical simulation. The initial 
values of the state variables used for our numerical simulations are  
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a. Effect of varying   on the    b. Effect of varying   on the 

    susceptible class          Exposed class 
Figure 3 

 
From the graph in figure 3a, we observed an increase in the population of the susceptible 
humans due to the effect of the vaccination strategy implemented into the population. This 
implies that with time, less individuals becomes susceptible to Polio if vaccination of 
susceptible humans can be fully implemented and adhered to. We also observed from the 
graph in figure 3b an initial increase in the population of the vaccinated humans due to the 
influx of individuals from the susceptible humans. The later decrease observed in the 
vaccinated population is due to the fact that the effective vaccines administered to the 
susceptible humans ultimately leads to their recovery from polio. Hence the government 
should improve its commitment the provision of viable and potent vaccines so as to reduce 
the burden of polio within the human population. 

 
a. Effect of varying   on the     b. Effect of varying   on the 

Exposed Humans           Infected Humans 
Figure 4 
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We observed from figure 4a an initial increase in the population of the exposed humans to 
polio due the influx of humans who might at some certain times refuse to be vaccinated 
against the deadly disease. A later decrease is observed due to the high infectiousness of 
Polio which leads to their progression into the infected class. 

 
a. Effect of varying   on the    b. Effect if varying   on the Recovered class  

Cumulative new cases of polio 
Figure 5 

 
From figure 5a, we observed that an increase in the rate of vaccination leads to the rapid 
recovery of individuals from polio within the human population. This can also be seen in 
figure 5b, that an increase in the rate of vaccination of the susceptible humans leads to a 
decrease in the cumulative new cases of Polio. 
 
CONCLUSION  
In this study, we developed a mathematical model to explore the dynamics of Poliomyelitis 
transmission, incorporating vaccination as a means of control. We determined the basic 

reproduction number 
0R  of the Poliomyelitis model, demonstrating that the system achieves 

local asymptotic stability when 0 1R  , global asymptotic stability when 0 1R  , and maintains 

a stable endemic equilibrium when 0 1R  . Through sensitivity analysis, we assessed the 

impact of various parameters on the basic reproduction number. We found that parameters 
such as ,  , which are the parameters that enhance the spread and burden of Poliomyelitis, 

exhibited positive sensitivity indices, thereby increasing the burden of the disease. 
Conversely, parameters such as , , ,    with negative sensitivity indices, mitigated 

Poliomyelitis transmission. Additionally, we conducted numerical simulations, varying 

parameters such as  , and , denoting the contact rates of susceptible humans and infected 

humans, and the rate of vaccination of susceptible humans. Our simulations revealed that 
reducing the contact between susceptible and infected individuals, and augmenting the 
treatment rate of infected individuals, substantially alleviate the Poliomyelitis burden within 
the human population. Based on our research findings, we recommend several strategies to 
mitigate the burden of Poliomyelitis. First, the government should enhance its commitment 
to providing effective vaccines to lower Polio incidence. Second, improved sewage disposal 
practices, particularly for feces, should be prioritized to minimize transmission through the 
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fecal-oral route. Lastly, there should be a strong emphasis on postnatal care for nursing 
mothers and newborns to reduce the risk of Polio infection in infants. 
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