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Abstract 
Life and infrastructure are becoming increasingly vulnerable to flooding and flood-related risks along 
the Benue River, particularly in Adamawa catchment, with inadequate knowledge about physical 
factors affecting vulnerability and flood-prone zones. Controlling flood vulnerability involves 
addressing vulnerabilities to communities and infrastructure whilst reducing flood risks and enhancing 
resilience. This study employed geospatial analysis and the Analytical Hierarchy Process (AHP) 
method to model and analyse seven flood vulnerability factors: elevation, drainage, soil type, 
precipitation, bedrock, slope of the surface, and land use/cover. Remote sensing data was utilised to 
create thematic map layers for the factor criterion. A pairwise comparison matrix was created and 
normalised to ensure uniformity. Weights were derived by averaging all of the row’s components and 
calculating the percentage weight. The estimated weights were applied to the theme layers in a weighted 
sum analysis with the highest weight (33.66%) assigned to drainage density while the least (2.68%) 
was assigned to land cover. The aggregation of information from the layers in ArcGIS software using 
the weighted sum analysis method produced a flood vulnerability map depicting the following 
vulnerability levels - low (19.89%), moderate (31.44%), high (31.80%), and extremely high (16.85%). 
Field investigation showed that the majority of the indicated flood-prone zones corresponded to field-
based studies. The technique and findings were validated using a consistency ratio of 0.0944, 
which was discovered to be within the permissible range for satisfactory consistency of the criteria 
applied. A coherence value of 7.748 was obtained signifying severe rainfall causes floods in the area, 
with the River Benue and its tributaries being particularly prone to flooding occurrences. This result 
presents a platform for policy formulation by the relevant agencies to ensure resilience to flooding and 
vulnerability in the study area. 
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INTRODUCTION 
The issue of floods is a major concern worldwide. Floods, which are caused by excessive water 
accumulation constitute a threat to poverty reduction and sustainable development 
(Rashetnia, 2016; Tirivangasi, 2018). Large-scale flood disasters have become more common 
and severe in recent years, resulting in fatalities, property destruction, and massive economic 
losses. The latest example is the terrible flood disaster that devastated major cities in the 
United States (Alabama, Louisiana, Mississippi, New Jersey, and New York). Despite the 
advances in technology, flood catastrophes are becoming more popular and devastating. In 
Africa, flooding has caused displacement, property destruction, and infrastructure 
destruction (Twumasi et al., 2017; Elagib et al., 2021). Africa's emerging countries, notably 
Benin, Ghana, Nigeria, Senegal, and Sudan, have recently experienced devastating floods, that 
killed hundreds of people and others were displaced. Floods and droughts, for instance, are 
responsible for 80% of disaster-related deaths and 70% of economic losses in Sub-Saharan 
Africa (Salami et al., 2017). In the past four decades, 654 flood events have affected 38 million 
people in Sub-Saharan Africa, killing about 13,000 people (Tiepolo, 2014). Numerous studies 
have shown that over 16 severe flood catastrophes of varied degrees have happened in the 
Ibadan metropolis of Nigeria, resulting in over 35,000 deaths and financial losses of millions 
of naira (Eguaroje et al., 2015). In Nigeria, the floods that occurred in 2012 hit 89% of the states 
(32 out of 36 states), while 24 states were seriously affected, impacting an estimated 7.7 million 
people (Nkwunonwo, Whitworth & Baily, 2015). Other flood events in Nigeria that destroyed 
lives and properties include the Ibadan flood of 2011 (Olayinka et al. 2013). In East Africa, Huq 
et al. (2007) reported cases of heavy rains that caused floods and mudslides, causing over 112 
human casualties and forcing tens of thousands of people to abandon their residence in 
Rwanda, Kenya, Burundi, Tanzania, and Uganda. In West Africa generally, floods affect an 
estimated 500,000 persons every year (Jacobsen et al., 2012). Meanwhile, the expected annual 
population impacted by river floods is around 21 million people worldwide, which is 
expected to climb to 54 million by 2030 (WRI, 2016). 
 
Flood events can occur at any moment and have a variety of severe repercussions (property 
damage, interruption of human operations, civilian casualties, destruction of agriculture 
fields, and the spread of numerous illnesses such as cholera and typhoid). Floods are widely 
regarded as the most prevalent and pervasive natural disasters in the world, wreaking havoc 
on the lives and properties of millions of people, as well as infrastructure and natural 
environments (EM-DAT, 2015; Vojinovi, 2015). Floods are responsible for almost 55% of global 
fatalities, affecting around 2.5 billion people (EM-DAT, 2015). Anthropogenic drivers of flood 
risk include rapid urbanisation, uncontrolled urban expansion, unregulated informal 
floodplain settlements, a disregard for garbage management, and inadequate drainage 
maintenance (Eguaroje et al., 2015). 
 
Many researchers have given a range of explanations for vulnerability in various 
circumstances (UNDP 2004; Zheng et al., 2009). According to UNDP (2004), vulnerability 
refers to the circumstances established by physical, social, economic, and environmental 
aspects or activities that increase a community's susceptibility to dangers. According to the 
UK Department for International Development (DFID), vulnerability is the relationship 
between a system's exposure, susceptibility, and coping capability (Roy & Blaschke, 2015). 
Exposure and susceptibility are viewed as systemic pressures that promote vulnerability. 
Susceptibility refers to the ability of individuals, groups, or physical or socioeconomic systems 
to endure the consequences of a threat. Coping capacity, on the other hand, refers to the 
system's ability to mitigate the influence of the risk. It refers to the ability to handle or adjust 
to risk-related stress. It is an outcome of deliberate planning, unexpected changes, and 
emergency relief and reconstruction efforts in reaction to a threat. Vulnerability is both a 
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physical risk and a social response in a specific geographical zone (Zheng et al. 2009). The 
definition by Zheng et al. (2009) suggests a spatial variability in the factors affecting flood 
vulnerability with higher susceptibility in areas with higher influencing factors. 
Understanding the major factors that determine vulnerability to flooding in a locality is key 
in quantifying the impacts of floods on man and the environment.  
 
Several researchers have adopted different factors/criteria for flood vulnerability mapping. 
For instance, Boori & Vozenilek (2014) grouped the major influencing factors of vulnerability 
to flooding into three: (i) natural factors e.g., topography, slope, bedrock, geomorphology, 
soil, land use/cover, hydrology, rainfall, (ii) environmental factors, and (iii) human factors 
e.g., road density, population density, and socio-economic characteristics. Similarly, flood 
vulnerability has been evaluated using various methodologies. For example, Nwilo et al. 
(2012) used Remote Sensing and the Cellular Automaton Evolutionary Slope And River 
(CAESAR) model to assess the flood risk and susceptibility of Adamawa municipalities. They 
conducted a flood zonation of the area and employed longitudinal and cross-sectional profiles 
to demonstrate the pattern of flood-induced sediment loads as well as the presence of blocks 
along the River Benue channel. Roy & Blaschke (2015) employed the Analytical Hierarchy 
Process (AHP) and weighted overlay in GIS to assess flood vulnerability in Bangladesh's 
coastal districts. Their study mapped the flood extents and levels of vulnerability to depict 
spatial variability. Bello & Ogedegbe (2015) investigated flooding and susceptibility in the 
riverine community of Jimeta, Adamawa. They examined the water coverage in the Upper 
Benue basin using spatiotemporal analysis of satellite images and it was shown that at least 
20% of the population is vulnerable to some type of flooding. 
 
Regarding flood modelling, multi-criteria decision tools such as the Analytic Hierarchy 
Process (AHP) have shown immense potential. Feizizadeh & Blaschke (2013) noted that AHP 
is a useful method for determining the consistency between assessment measures and 
proposed alternativesby decision-makers. They discovered that the AHP method effectively 
condensed the complexity of the judgment problem to a collection of pairwise comparisons 
that could be synthesised into a ratio matrix. Pairwise comparisons are employed in the AHP 
to assess the relative significance of each criterion. AHP provides a logical framework for 
formulating a choice dilemma, which means that AHP offers a logical and systematic 
approach to dissecting and analysing complex decision-making problems, ensuring a 
thorough and rational evaluation of all possible alternatives. It is a technique for calculating 
ratio scales, which employs paired comparisons. The strategy focuses on the consistency of 
expert or user assessments. The AHP provides several advantages over other multi-criteria 
procedures, including its flexibility, natural appeal to decision-makers, and capacity to check 
for discrepancies (Roy & Blaschke, 2015). The AHP technique offers the distinct advantage of 
dividing a decision problem into its basic elements and generating criterion ranking, making 
the relevance of every item (metric) becomes apparent. It aids in the collection of both 
subjective and objective evaluation metrics and eliminates bias in decision-making. 
 
Populations and infrastructure along the River Benue are becoming increasingly vulnerable 
to flooding and flood-related dangers. Although studies have highlighted the effects of floods 
in the region, there has been little emphasis on the physical factors that contribute to 
vulnerability. Thus, adequate vulnerability assessment of these systems is crucial. A study 
that combined remote sensing and GIS analysis would be useful in understanding the region's 
different levels of susceptibility and risk. This study uses the AHP approach to model flood 
vulnerability in the Upper Benue River Basin, Nigeria. 
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Description of the study area 
The studied watershed is situated along the Benue River in the Upper Benue basin. The Benue 
River enters Nigeria from Cameroon and runs for around 900 km before joining the Niger 
River in Lokoja. The river runs through at least six Local Government Districts in Adamawa 
State: Demsa, Funfore, Ngurore, Numan, Yola North, and Yola South. The major towns in the 
examined area are Numan, Jimeta, and Yola. The Adamawa catchment is prone to seasonal 
flooding, and significant amounts of sediment are dumped onto floodplains, helping to 
replenish soil fertility.  The area has two seasons: wet or rainy (May - October) and dry 
(November - April). The annual precipitation ranges from 900 to 1500 mm. Adamawa usually 
experiences cold, dry, and dusty trade winds during the Harmattan period (January – April), 
while temperatures increase. Jamala & Oke (2013) observed that during harmattan, which is 
extremely dry, humidity levels can be as low as 10 - 20%. Temperatures in the region range 
from 18℃ to 40℃. The relief is nearly flat to gently sloping, with few rocks. Researchers have 
identified high precipitation, the discharge of large volumes of water from the Lagdo Dam in 
Cameroon, and the existence of rocks along the river channel as the causes of floods in the 
Adamawa catchment, making it unique (Olayinka et al. 2013, Nwilo et al. 2012). Some scenes of 
flooding in the catchment are displayed in Figure 2 while Figure 3 presents some views of the 
river and the floodplain. 
 
Deforestation, overgrazing, and land use practices have influenced the watershed under 
study. For example, deforestation for agricultural purposes, which involves the removal of 
trees, increases surface runoff. Agricultural intensification on floodplains has played a key 
role in changing the flow regime within the ecosystem (Olayinka-Dosunmu et al., 2022). 
Although there is no existing dam in the region, the Lagdo Dam, located upstream in 
Cameroon, is the only dam along the full length of River Benue (from its source in Cameroon 
to the point where it joins the Niger at Lokoja). The Lagdo Dam is a classic multipurpose dam 
that has drastically altered the Adamawa watershed. The greatest flood stages of the River 
Benue within the investigated basin at 5% recurrence occur in August (636 cm) and the lowest 
(175 cm) in January and February. The research area had the highest flood stage (522 cm) in 
September and the lowest value (140 cm) in April when 50% recurrence was assumed. Flood 
stages of 413 cm (highest) and 92 cm (lowest) were reported between September and April, 
with a 100% repetition interval. In general, the monthly frequency of maximum flood stages 
begins to grow in June, peaking between August and September and then declining. In 
October, flood stages drop dramatically. Figures 1- 3 present the maps showing the study 
area, flooding scene, scenes of floodplain areas and a view of part of River Benue. 
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Figure 1: Study area location  

(Source: Adzandeh et al., 2020) 

 
 

  

  
Figure 2: Scenes of flooding events in the study catchment 

(Source: Premium Times, 2012; International Organisation for Migration, 2023) 
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Figure 3: Scenes of floodplain areas and view of part of River Benue  

(Source: Authors fieldwork, 2021) 

  
MATERIALS AND METHODS 
Figure 4 presents the framework for AHP and GIS-based physical flood vulnerability 
mapping, which shows the breakdown of the stage-by-stage procedures ranging from data 
collection to flood vulnerability zone mapping. The data used consists of diverse data sources 
such as remote sensing and rainfall data. Data processing and analysis were conducted using 
an empirical approach that included multi-criteria AHP and GIS tools. In general, the 
methodology used in this study is in tune with Feloni et al. (2020), and Hussain et al. (2021).  
 

 
Figure 4: Stepwise framework of physical flood vulnerability. 

(Source: Modified from Hussain et al., 2021) 
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Data collection for criteria selection and preparation 
This study utilised diverse data sources to accomplish its goal, which is to model and 
understand flood vulnerability levels in the region. In order to do this, the study assessed 
flood susceptibility using seven criteria: drainage density, rainfall, bedrock, land use/cover, 
elevation, slope, and soil.  These criteria were considered due to their significant impact as 
well as their importance to flood vulnerability, which are reported in previous studies (Wu et 
al. 2019). The following subsections describe the datasets used, while Table 1 captures the 
summary characteristics of the data utilised. 
 
Land use/land cover (LULC) 
The 30m resolution satellite photos from the Landsat 8 Operational Land Imager (OLI) were 
used to construct the research region's LULC map. The natural color (4, 3, 2), vegetation 
analysis (6, 5, 4) and color infrared (5, 4, 3) band combinations were substituted for visualising 
the different LULC classes. Thereafter, the Maximum likelihood supervised classification 
algorithm, which is included in the ENVI 5.3 program, was used to classify images. This 
ensured the overarching goal of image classification was achieved. That is, to automatically 
identify all pixels in an image into land cover types or themes. Thus, the final LULC map was 
published in ArcGIS 10.3 software. 
 
Elevation and slope 
Shuttle Radar Topographic Mission (SRTM) version 3.0 Global DEM was utilised to create an 
elevation map of the study area. The SRTM DEM is described in WGS 84 datum, with 1 × 1 
tiles at 1 arc-second (30 m) resolution. It also refers to the EGM96 geoid model. As a result, its 
altitudes are orthogonal and measured in meters vertically. SRTM worldwide coverage offers 
great advantages for wide-area environmental modelling, particularly where the availability 
of data is a barrier (Nwilo et al., 2021). A map depicting the slope of the surface was also 
generated using the slope tool function in the 3D Analyst toolbox in ArcGIS.  
 
Precipitation 
Based on the total monthly precipitation on pluviometric stations distribution around the 
investigated area, a map showing precipitation across the study area was generated using 30 
years of rainfall records (1989-2019) generated from ERA-Interim reanalysis. The method is in 
tune with Adzandeh and Jamba-Ode (2019) approach. The European Centre for Medium-
Range Weather Forecasts (ECMWF) produces ERA-interim, a global atmospheric reanalysis 
provided from January 1, 1979, to August 31, 2019. The ERA-Interim project began in 2006 to 
serve as a bridge between the ECMWF's previous reanalysis, ERA-40 (1957-2002), and the 
next-generation extended reanalysis that the ECMWF anticipates (Berrisford et al. 2011). The 
atmospheric model uses ECMWF's Integrated Forecast System (IFS) cycle 31r2 with 60 vertical 
levels, T255 spherical-harmonic representation, and a reduced Gaussian grid (Berrisford et al., 
2011; Hersbach et al., 2018). The ERA-Interim data assimilation system, which is based on the 
2006 IFS release, employs a four-dimensional variational analysis with a 12-hour analysis 
window, with a spatial resolution of 79 km and an ocean-wave model. This dataset despite its 
resolution is sufficiently adequate to characterise the rainfall patterns in the study area. 
 
Bedrock 
Bedrock information was gathered from the 2004 edition of the Geological Map of Nigeria, 
produced by the Nigeria Geological Survey Agency (NGSA). The source map is on the scale 
of 1: 300,000. The data was visualised and map embellishment was done within the ArcGIS 
10.3 software environment.  
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Soil type 
An existing map obtained from the Federal Department of Agricultural Land Resources in 
Nigeria was utilised to collect soil information using on-screen digitising. The data 
visualisation and soil map embellishment were executed using ArcMap. 
 
Drainage density 
SRTM v3.0 Global DEM was utilised with the line density tool in the ArcGIS Spatial Analyst 
toolbox for the construction of the drainage density (Dd) map of the region. Lower Dd in any 
catchment area denotes permeable underlying soil, heavy vegetal cover, low topography, and 
vice versa (Nwilo et al., 2021). Furthermore, a high volume of Dd implies that a catchment area 
has a high degree of porosity or a strong tendency to resist erosion, and vice versa if only the 
drainage parameter is employed as a measure indicating susceptibility to erosion (Nwilo et 
al., 2021).  

Table 1: Datasets and characteristics 
S/N Dataset Source Scale/ Resolution Epoch End Product 

1 Landsat 8 imagery, path 185 
rows 054; path 186 rows 053; 

path 186 rows 054  

USGS 30m 2018 LULC map 

2 SRTM DEM (version 3.0) USGS 30 m (1 arc-second) 2000 Elevation, Slope and 
Drainage density maps  

3 ERA-interim ECMWF 79 km (T255 
spectral) 

1989-
2019 

Map of precipitation across 
the study area 

4 Geology feature class NGSA/FDALR - 1990 Bedrock map 

5 Soil feature class FDALR - 1990 Soil type map 

 
The Development of the Pairwise Comparison Matrix 
In developing a Pairwise Comparison Matrix (PCM), this study utilised a scale with values 
ranging from 1 to 9 to score the importance of two or more elements.  Saaty (1980) created the 
pairwise comparison approach for AHP. The comparison matrix is of the form shown in Eq. 
(1) (Hamid-Mosaku et al., 2017). It consists of the element {𝑥𝑖𝑗}, where the degree of favour of 

the 𝑖𝑡ℎ element above the 𝑗𝑡ℎ element or conversely is compared in order to determine the 
relative priority of all items. It accepts pairwise comparisons as input and returns weights. 

   

 
 

𝐷 =

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
    
 𝐶1 𝐶2 𝐶3  ⋯ 𝐶𝑛   

𝐶1

𝐶2

𝐶3

⋮
𝐶𝑛 [

 
 
 
 
𝑥11 𝑥12 𝑥13 ⋯ 𝑥1𝑛

𝑥21 𝑥22 𝑥23 ⋯ 𝑥2𝑛

𝑥31 𝑥32 𝑥33 ⋯ 𝑥3𝑛

⋮ ⋮ ⋯ ⋯ ⋮
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 ⋯ 𝑥𝑛𝑛]

 
 
 
 

  

            (1)        

 
Weights are estimated through the normalisation of the eigenvector linked to the reciprocal 
ratio matrix's greatest eigenvalue. To construct a normalised PCM, each element of the matrix 
is divided by its column total as shown in Eq. (2) (Akalin et al., 2013).  

                    

 
 

𝑋𝑖𝑗 = 
𝐶𝑖𝑗

 ∑ 𝐶𝑛
𝑖=1 𝑖𝑗

   

[

𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑥32 𝑥33

]                        (2) 

for all i, j = 1, 2, . . . , n. 
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Computing the criterion weights 
In the weight computation technique, the weighted matrix is obtained by dividing the sum of 
the matrix's normalised columns by the number of criteria used (n) as depicted in Eq. (3) 
(Akalin et al., 2013). This implies calculating the mean of the elements in each row of the 
normalised matrix. These averages approximate the relative weights of the factors under 
consideration. This method interprets the weights as the average of all possible approaches to 
comparing the criteria. 

              

 
 

𝑊𝑖𝑗 = 
 ∑ 𝑋𝑛

𝑗=1 𝑖𝑗

𝑛

   

[

𝑊11

𝑊12

𝑊13

]                                                                         (3) 

  
for all i, j = 1, 2, . . . , n. 
 
 
Consistency check 
This stage evaluates if the weighing up is agreeing. It includes operations such as: (i) multiply 
the first criterion weight by the first column of the original matrix, then multiply the second 
weights by the second column of the original matrix, and so on; then, add the values over the 
rows together; (ii) divide the weighted sum vector by the previously determined criterion 
weights (Table 2). After calculating the consistency vector, the next step is to calculate Lambda 
(λ) and consistency index (CI). Lambda represents the mean of the accord vector. The CI 
computation is built on the remark that lambda is ≥ the number of criteria under examination 
(n) for positive and reciprocal matrix all the time, and λ = n if the PCM is consistent. Thereafter, 
λ - n is defined as an estimate of the degree of inconsistency. The needed consistency level or 
consistency ratio (CR) is measured in the relationship between Cl and random index (RI) 
shown in Eq. 4 (Saaty, 1980). 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                                                             (4)                             

 
The AHP hypothesis recommends that the CR value should be < 0.1. The CI is determined 
using Eq. 5, where λmax represents the greatest eigenvalue of the PCM and n depicts a number 
of criteria. Section 3.2 presents the results of the consistency check and its evaluation. The RI 
values are presented in Table 2. These numbers vary depending on the amount of criteria. 
Seven criteria were employed in this research, and 1.32 is the value of RI utilised (see Table 2). 

 𝐶𝐼,  𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1⁄                                                                                       (5)                                      

where, λmax  (the principal Eigenvalue) is the summation of the products between each member 
of the priority vector and the column total, while n is the number of criteria.   
 

Table 2: Values of random index used for consistency check  
N 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

(Source: Saaty, 1980) 

 
Weighted Linear Combination (WLC)  
Following the approach of Adzandeh & Jamba-Oda (2019), each thematic layer was 
reclassified into four classes, allocated their respective weights, and combined using ArcGIS's 
Weighted Sum Analysis tool to construct the final map depicting different levels of flood 
vulnerability. The overlay operation is represented by Eq. 6.  
          Flood vulnerability zone map (FVZM) =  ∑ 𝑊𝑖𝑋𝑗

𝑛
𝑗=1             (6) 

where, 𝑊𝑖 = % weight for each thematic map and 𝑋𝑗 = reclassified map 

 



Integrating GIS and AHP for a Multi-Criteria Flood Vulnerability Assessment in the Benue River Basin, Nigeria 

Adzandeh A. E. et  al., DUJOPAS 10 (3b): 106-123, 2024                                                                        115 

RESULTS AND DISCUSSION 
 
Analysis of Flood Vulnerability Criteria 
Figure 5 (a-d) displays some of the factor themes (elevation, drainage density, slope, bedrock 
and soil maps) produced for physical flood vulnerability mapping. The elevation changes (127 
- 922) recorded (Figure 5a) affect the land's gradient or slope, which influences the direction 
and velocity of the flow of water during rain events. Higher-elevation areas frequently have 
natural obstacles, such as ridges or hills, that can restrict floodwater passage. Lower-lying 
locations near high elevations may be more vulnerable to flooding because of water 
accumulation and poor drainage. Bedrock map (Figure 5b) showed that the surface materials 
in the investigated area are colluvium deposits over granitic materials, old and subrecent 
alluvium, recent alluvium, sandstones, mudstones and shales, and undifferentiated basement 
complex. Generally, the area is composed of floodplains, sands and sandstone, freshwater 
swamps, and recent alluvium.  The soil categories in the region include sandy-clay, loamy fine 
sand, clay-loam, and sandy-loam, (Figure 5c). Soils have an impact on floods. Flooding occurs 
when the quantity of overland flow surpasses the soil's capacity. Figure 4.15d depicts a 
drainage density map. The drainage system refers to the area where water flows and the 
network that transports it to an outlet. Areas with a deep blue colour are likely to be more 
vulnerable to floods due to the large concentration of streams. 
 
 

 
(a) Elevation 

 
(b) Bedrock 

 
(c) Soil 

 
(d) Drainage density 

Figure 5: (a) Elevation across the study area, (b) bedrock, (c) soil, and (d) drainage density 
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Figure 6 shows the LULC map and the areal distribution of LULC classes. The Overall 
classification accuracy obtained is 98.8% with a Kappa coefficient of 0.994. The LULC consists 
of vegetated land such as grassland, cropland and forests, water bodies, agricultural land and 
urban land/built-up areas. Findings indicated that rainfed agriculture scored the highest with 
3573.03 km2 (54.27%) of the area. Tree crop plantation scored the least with 0.06% (4.28 km2). 
The distribution of areal land use/landcover is as follows: water body - 2.13% (139.93 km2), 
forest - 2.25% (148.12 km2), urban - 0.46% (30.44 km2), and grassland - 2.05% (30.44 km2). LULC 
is crucial in determining the occurrence of floods. Thick vegetation cover slows water's travel 
from the sky to the soil, reducing runoff. Man-made features or impervious surfaces such as 
buildings, roads and concrete reduce soil penetration capacity, resulting in increased runoff. 
Table 3 shows the areal distribution of the LULC classes. Figure 7 (a - b) depicts the slope of 
the surface and precipitation across the study area. The slope of the studied basin ranged up 
to 56 degrees (Figure 7a). This significantly influences flood dynamics, including runoff 
velocity, channel erosion, flood timing, floodplain dynamics, hazard zoning, and 
infrastructure vulnerability. The slope factor can be classified as: (a) nearly ‘level’ (0 – 3 
degree), (b) ‘gentle’ (4 – 7 degree), (c) ‘moderately gentle’ (8–15 degree), and (d) ‘steep’ (>15 
degree). The slope classes ‘nearly level’, ‘gentle’ and ‘moderately gentle’ have high water 
holding capacity. Steeper slopes accelerate surface runoff during rainstorms, increasing water 
flow velocity. Higher runoff velocities can accelerate flood start-up and propagation 
downstream, potentially resulting in flash floods in vulnerable locations. The map (Figure 7b) 
indicates that the precipitation across most regions ranges from 237 mm to 271 mm. The 
highest precipitation values were observed mostly in the southern part of the catchment 
(246mm to 271mm) which represents 54% of the study area. Floods occur when water 
accumulates and releases rapidly from upstream to downstream as a result of heavy rainfall. 
The amount of runoff is proportional to the amount of rain a location receives. 
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Figure 6: Landuse/cover map and areal distribution of LULC classes 

(Source: Modified from Nwilo, Olayinka & Adzandeh, 2019) 

 

 
(a) Slope 

 
(b) Precipitation 

Figure 7: (a) Slope, and (b) precipitation across the study area 

 
The statistical information summarising variables that contribute to flood susceptibility in the 
investigated region is presented in Table 3. The majority of the parameters exhibit a high 
coefficient of variation (CoV), indicating the presence of diverse basin characteristics and 
spatial variability. This suggests that the basin has a variety of land uses, soil types, 
topographies, and vegetation cover. These differences can influence vulnerability parameters, 
leading to variability in vulnerability. The skewness value obtained for all the parameters was 
positive. The elevation ranges from 127 to 922 m, with a mean of 389.2 m and a standard 
deviation (SD) of 325.89. Drainage density ranged from 25 – 703 per km. Precipitation levels 
across the investigated region range from 237 mm to 271 mm. 

 
Table 3: Summary statistics of selected factors of flood vulnerability 

Parameters Mean ±Standard 
Deviation (SD) 

Coefficient of 
variation (%) 

Range (min-max)  Skewness 

Elevation (m) 389.20±325.89 83.73 127.00 – 922.00 1.60 

Drainage density (km-1) 258.40±258.42 100.00 25.00 – 703.00 0.78 

Precipitation (mm) 250.80±13.23 5.27 237.00 – 271.00 0.93 

Soil (hectares) 165803.10±139868.50 84.35 84398.00 – 335461.50 0.39 

Bedrock  (hectares) 132470.60±163737.10 123.60 71.10 – 398254.40 1.35 

Landuse/cover (km2) 506.45±1031.31 203.63 4.28 – 3573.03 2.65 

Slope (in degree) 16.20±22.94 144.66 0.00 – 66.00 1.92 
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Pairwise Comparison Matrix 
Table 4 compares factors to determine their relative relevance in the decision-making process. 
Each cell in the matrix shows the relative importance of one factor compared to another. The 
value in the cell at row "elevation" and column "LULC" is 4, meaning that elevation is 4 times 
more important than LULC. Also, the cell in row "LULC" and column "elevation" contain the 
value 1/4, which is the reciprocal of 4, meaning that LULC is 1/4 as important as elevation. 
The implication in terms of relative importance is that higher values indicate higher 
importance. Rainfall (7) is considered significantly more important than LULC when 
comparing the two. Whereas lower values (fractions) indicate lesser importance. The results 
show that soil (1/5) is much less important than rainfall in their direct comparison. Table 5 
depicts the normalised matrix. The values in the normalised PCM revealed each significance 
compared to others, scaled in such a way that the summation individual column is 1. 
Implication of the normalised matrix is that LULC is generally less important across all 
comparisons. Drainage density is highly important, especially when compared to rainfall 
(0.461), soil (0.248), and slope (0.480). Rainfall is also highly important in several comparisons, 
particularly when compared to elevation (0.303) and slope (0.288). Table 6 shows the 
determined weights used for the thematic layers in a weighted sum analysis to create a map 
depicting flood vulnerability. Based on the values used for computing the consistency index 
(λmax = 7.748, n =7 and RI = 1.32),  CI is equal to 0.125. The judgment process yield a 0.0944 
consistency ratio. The estimated ratio (0.0944), which is < 0.1indicate that the PCM is 
consistent. Findings showed that drainage density has the highest weight (0.337) and weight 
percentage (33.661%), making it the most critical factor in this decision-making process. 
Rainfall and slope are also significant with weights of 0.241 (24.095%) and 0.134 (13.405%) 
respectively. LULC and soil have the lowest weights, indicating they are the least important 
factors in this analysis (Table 6). 
 

Table 4: The Pairwise Comparison Matrix 
Factors LULC Elevation Rainfall Geology Soil Drainage 

Density 
Slope 

LULC 1 1/4 1/7 1/3 1/5 1/9 1/4 

Elevation 4 1 1/3 3 3 1/3 1/2 

Rainfall 7 3 1 3 5 1/2 3 

Geology 3 1/3 1/3 1 3 1/3 1/3 

Soil 5 1/3 1/5 1/3 1 1/5 1/3 

Drainage Density 9 3 2 3 5 1 5 

Slope 4 2 1/3 3 3 1/5 1 

  
 

Table 5: Normalised pairwise comparison matrix 
Factors LULC Elevation Rainfall Geology Soil Drainage 

Density 
Slope 

LULC 0.030 0.025 0.033 0.024 0.010 0.041 0.024 

Elevation 0.121 0.101 0.077 0.220 0.149 0.124 0.048 

Rainfall 0.212 0.303 0.230 0.220 0.248 0.187 0.288 

Geology 0.091 0.034 0.077 0.073 0.149 0.124 0.032 

Soil 0.152 0.034 0.046 0.024 0.050 0.075 0.032 

Drainage Density 0.273 0.303 0.461 0.220 0.248 0.373 0.480 

Slope 0.121 0.202 0.077 0.220 0.149 0.075 0.096 

Sum 1 1 1 1 1 1 1 
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Table 6: Criteria weight and coherence 
Factors LULC Elevation Rainfall Geology Soil Drainage 

Density 
Slope Weight Weight 

(%) 
Coherence 

LULC 0.03 0.025 0.033 0.024 0.01 0.041 0.024 0.027 2.688 0.891 

Elevation 0.121 0.101 0.077 0.22 0.149 0.124 0.048 0.12 11.99 1.2 

Rainfall 0.212 0.303 0.23 0.22 0.248 0.187 0.288 0.241 24.095 0.964 

Geology 0.091 0.034 0.077 0.073 0.149 0.124 0.032 0.083 8.278 1.162 

Soil 0.152 0.034 0.046 0.024 0.05 0.075 0.032 0.059 5.882 1.18 

Drainage 
Density 

0.273 0.303 0.461 0.22 0.248 0.373 0.48 0.337 33.661 1.011 

Slope 0.121 0.202 0.077 0.22 0.149 0.075 0.096 0.134 13.405 1.34 

Total 1 1 1 1 1 1 1 1 100 7.748 

 
Assessment of Flood Vulnerability 
Figure 8 is the map depicting flood susceptibility. Findings indicate that local floodplain 
regions around the Benue Rive and connecting streams are extremely vulnerable. The 
analytical results show that the very highly sensitive and very vulnerable areas each occupy 
48.67% of the research region. The low vulnerability region accounts for 19.89%. Figure 9 
summarises the area-wide distribution of flood vulnerability classifications. 
 

 
Figure 8: Flood vulnerability map of Adamawa Catchment 
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Figure 9: Areal extent percentage coverage of flood vulnerability across the catchment 

 
 
DISCUSSION 
The studied basin has witnessed seasonal flooding due to a considerable increase in River 
Benue flow. Unfortunately, there was a shortage of information regarding the influence of 
water discharge on floods in the watershed (Olayinka-Dosunmu et al. 2022). Olayinka-
Dosunmu et al. (2022) work on river flow and water stage time series for gauge stations along 
the Benue River revealed that Peak discharge for the stations' 10-, 25-, 50-, and 100-year 
scheduled floods surpassed many danger criteria at Jimeta and Numan. This corroborates the 
findings from the present study, which shows that Jimeta and Numan fall within a very high 
flood-vulnerable area. The findings presented about the flood susceptibility mapping around 
the River Benue and its tributaries highlight significant flood risks, with nearly half of the 
research area falling into very high sensitivity and vulnerability categories. Recent studies and 
advancements in flood risk assessment support these observations, emphasizing the 
importance of detailed and accurate flood mapping for effective management and mitigation 
strategies (Nwilo et al., 2012; Adzandeh et al., 2020; Olayinka-Dosunmu et al. 2022). 
 
Current trends in the assessment of risk associated with flooding revolve around the 
applications of Geographical Information Systems (GIS) and Remote sensing, the use of 
hydraulic and hydrological models, consequences of climate variability, and socioeconomic 
vulnerability. Recent studies increasingly utilise GIS and satellite remote sensing to ensure 
accurate flood risk maps (e.g. Saha & Agrawal, 2020; Farhadi & Najafzadeh, 2021). These 
technologies provide high-resolution data and enable detailed analysis of floodplain 
topography and hydrological characteristics. The flood susceptibility map's division into 
categories of low, moderate, high, and extremely high vulnerability aligns with these 
methods, offering granular insights into flood risk distribution. Advanced hydrological and 
hydraulic models, such as the HEC-RAS and SWAT, have been utilised in simulating flood 
scenarios and predicting flood extents and depths (Farooq et al., 2019; Alshammari et al., 2024). 
These models incorporate various parameters, including rainfall data, land use, soil type, and 
river discharge, to produce accurate flood susceptibility maps. The finding that 48.67% of the 
area is highly vulnerable likely results from such comprehensive modelling approaches. 
Furthermore, seasonal flooding caused by present climate changes is a challenge in the 
studied basin. Changes due to global warming have a profound impact on flood hazards, 
modifying rainfall patterns and making severe weather occurrences more frequent and 
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intense (Tabari, 2020). Studies have shown that regions like th e River Benue basin are 
particularly susceptible to these changes, exacerbating flood risks (e.g. Ezra et al., 2023). This 
contextual understanding underscores the significance of the findings, as changes related to 
climate variability are expected to increase the extent of highly vulnerable areas over time. 
Flood risk assessments now often include socio-economic factors, recognising that the impact 
of floods extends beyond physical damage. Areas with high population densities, inadequate 
infrastructure, and low adaptive capacity are prone to the negative consequences of flooding. 
The inclusion of social and economic data in flood vulnerability assessments can explain the 
high percentage of areas classified as very highly sensitive and vulnerable. The identification 
of areas with extremely high flood susceptibility is crucial for disaster preparedness and 
response planning. Authorities can prioritise these areas for the creation of early warning 
systems, and evacuation plans, as well as the construction of flood defences. The detailed 
flood susceptibility map can guide urban planning and land use decisions. Restricting 
development in high-risk zones, implementing flood-resistant building codes, and preserving 
natural floodplains can reduce flood risks and associated damages. 
 
CONCLUSION 
This study has examined the use of GIS and AHP approaches for modelling and analyses of 
vulnerability to flood in the Benue River basin. The approach utilised in this study identified 
flood-prone locations in the Adamawa basin. The main river and its tributaries have been 
identified as flood-prone locations, and as such, they may play a substantial role in watershed 
flooding. The Adamawa catchment's people and infrastructure have recently become more 
vulnerable to flooding and flood-related dangers. This work provides baseline data for flood 
prevention and risk management, which will be beneficial for decision-makers and future 
research. Future studies should concentrate on the links between socioeconomic processes 
and social differences in flood risk. The analytical method utilised in this work might be 
broadened to look at a greater number of case studies in African cities, concentrating on urban 
sensitivity to flood dangers and other elements that contribute to the uneven frequency of 
flood susceptibility. Flood warning systems, quick reaction mechanisms and outfits, 
adherence to zoning and building principles, waste removal and drainage system 
maintenance, public awareness campaigns against flooding and other environmental hazards, 
as well as continuous restoration and victim support, are all recommended. 
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