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Abstract 
 
Blockchain technology has gained significant traction due to its core features of immutability, 
transparency, and decentralization. Smart contracts, self-executing programs stored on blockchains, 
play a vital role in enabling secure and automated transactions. Secure and automated transactions are 
made possible by self-executing programs and smart contracts that are kept on blockchains. The rapid 
progress of blockchain technology has been linked to an increase in security concerns targeting smart 
contracts. In comparison to traditional approaches, deep learning and transformer-based approaches 
have recently demonstrated a number of advantages, such as the capacity to learn from enormous 
datasets of known vulnerabilities and adjust to novel attack patterns. But Masked token training is the 
source of inefficiency for transformer-based approaches like CodeBert, resulting in low accuracy and 
restricted vulnerability coverage. Furthermore, we propose a novel approach, CodeELECTRA, by 
utilizing the Electra approach and context-aware masking to discover vulnerabilities, The model first 
step involves compiling and labeling the dataset of Solidity code that is vulnerable, and this is known 
as preprocessed Solidity code. Next, the logic decides which tokens to mask, the contest-aware masking 
step which employs a technique known as context-aware masking to strategically mask specific 
portions of the code during training. In the third step, model will use the pre-trained ELECTRA model 
to learn contextual representations of the masked code. The masked code is fed into the ELECTRA 
encoder to generate contextual embedding, and the fully connected layer is employed in the final step 
to compare and adjust the ELECTRA models' output in order to classify vulnerabilities. The 
effectiveness of the chosen model in identifying vulnerabilities will evaluate using the Sodifi benchmark 
dataset. CodeELECTRA approach will improve vulnerability detection in blockchain smart contracts. 
 
Keywords: Blockchain technology, Smart contracts, Deep learning, Transformer, 
Vulnerability detection. 
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INTRODUCTION 
Blockchain has become an integral part of modern day-to-day lives. Blockchain technology 
(BCT) has revolutionized new ways to create and exchange digital assets, including electronic 
documents and cryptocurrency such as Bitcoin and Ether (Kongmanee et al., 2019). Blockchain 
systems can be defined as a distributed ledger implementation where transaction records are 
kept and connected via cryptography. Peers can join this peer-to-peer network and acquire a 
copy of the blockchain's current state, which supports these kinds of systems. A consensus 
protocol is utilized by the system peers to decide whether to accept or reject a new transaction 
based on a consensus (Vidal et al., 2023). BCT completely changed the sector and brought 
about a significant shift in the commercial world. By delivering trust, security, and 
transparency, it introduces new breakthroughs in banking, agriculture, healthcare, supply 
chains, and other fields (Pham Trong Linh & Minh Thanh, 2023).  
 
On the most famous blockchain platform, Ethereum, there are already up to 1.5 million smart 
contracts running on the application (Cai et al., 2023). A smart contract's source code is 
frequently converted into bytecode before being implemented on the blockchain. Blockchain 
smart contracts are automated, decentralized applications on the blockchain that describe the 
terms of the agreement between buyers and sellers, reducing the need for trusted 
intermediaries and arbitration. Without a centralized authority, legal framework, or outside 
enforcement mechanism, smart contracts enable trusted transactions and agreements to be 
carried out between dispersed, anonymous individuals. Smart contracts work by following 
simple “if/when…then…” statements that are written into code on a blockchain. A network 
of computers executes the actions when predetermined conditions have been met and 
verified. These actions could include releasing funds to the appropriate parties, registering a 
vehicle, sending notifications, or issuing a ticket (Kongmanee et al., 2019).  
 
Vulnerability detection aims to improve the security of smart contracts. This can be achieved 
by looking into potential weaknesses and comparing the smart contracts to a list of previously 
established and well-known vulnerability patterns. (Sun et al., 2023) Currently, for the 
detection of smart contract vulnerabilities, many vulnerability detection tools have been 
proposed that combine more maturely developed detection methods. From the perspective of 
technology-driven development, smart contract vulnerability detection can be divided into 
traditional methods and machine learning, where traditional methods are driven by expert 
experience in development. In contrast, machine learning methods are driven by data (Chu et 
al., 2023). The specific techniques in this category are classical machine learning models, deep 
learning models, and ensemble learning models. 
 
The branch of computer science known as "machine learning" focuses on teaching computers 
how to learn independently from data via experience (Zhang & Liu, 2022). Generally, machine 
learning methods retrieve the associated smart contract attributes and subsequently employ 
the machine learning algorithm's training classification model to identify vulnerabilities. For 
example, Xie et al. (2023) proposed Block-gram: mining knowledgeable features for efficient 
smart contract vulnerability detection. The majority of security vulnerability detection 
techniques use supervised learning, which finds vulnerabilities by training known 
vulnerability classifiers. The feature extraction methods of these methods are mostly based on 
CFG (Control Flow Graph) or AST (Abstract Syntax Tree), focusing on the analysis of smart 
contract operation code, source code, or byte code. Text mining (Sun et al., 2023). The two 
primary features utilized for smart contract vulnerability identification are text mining 
features and smart contract security metrics. ML-based methods offer several advantages over 
traditional techniques, including the ability to learn from large datasets of known 
vulnerabilities, adapt to new attack patterns, and handle complex and unstructured data. 
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(Vidal et al., 2023) In this context, most techniques are based on supervised learning, which 
involves using labeled datasets to train algorithms that classify data or predict outcomes for 
a particular output. 
 
The use of deep learning techniques for smart contract vulnerability detection has gained 
popularity in recent years due to the field's rapid development. The extraction of features and 
the volume of data utilized for training are critical to the efficacy of vulnerability detection for 
smart contracts, according to the data-driven deep learning technique (Deng et al., 2023). For 
example, Liu et al. (2023) proposed Vulnerable Smart Contract Function Locating Based on a 
Multi-Relational Nested Graph Convolutional Network. While Rossini et al. (2023) proposed 
the use of deep neural networks for security vulnerability detection in smart contracts, Smart 
contract security based on deep learning vulnerability detection solutions can solve the issues 
of limited automation, low efficiency, and reliance on specialized knowledge of conventional 
detection techniques. However, most deep learning-based methods currently in use consider 
the limitations of the available data, struggle to mine information about smart contract 
vulnerabilities, have limited scalability, and ignore multimodal features. Transformers are a 
type of deep learning architecture that are particularly good at jobs involving natural 
language processing (NLP). They are able to spot patterns and examine relationships within 
sequences. The model analyzes the code, extracting its semantic properties and detecting 
vulnerabilities. Transformer models are influencing smart contract vulnerability detection in 
a big way (Ren et al., 2023). Transformers are excellent at figuring out intricate coding 
patterns, which makes them useful for deciphering smart contracts and spotting security 
flaws. For example, Tang et al. (2023) proposed a deep learning-based solution for smart 
contract vulnerability detection, while Sun et al. (2023) proposed ASSBert: an active and semi-
supervised bert for smart contract vulnerability detection, and Jeon et al. (2023) proposed 
SmartConDetect: a highly accurate smart contract code vulnerability detection mechanism 
using BERT. Transformer models can be trained on smart contract bytecode and source code. 
This combined method, known as multimodal learning, offers a more comprehensive picture 
for vulnerability discovery (Chu et al., 2023). 
 
The vulnerability problem with blockchain smart contracts drawn the attention of more 
academics due to the frequency of blockchain security incidents and the growing amount of 
assets engaged in smart contracts (Deng et al., 2023). A rising number of security risks aimed 
at smart contracts have been associated with the rapid advancement of blockchain technology. 
Malicious actors may use these vulnerabilities to hack into systems, steal currency, or alter 
data. Traditional methods for finding vulnerabilities in smart contracts, including fuzzy 
testing, dynamic analysis, static analysis, and symbolic execution, are still widely used to 
detect vulnerabilities in smart contracts. Although the traditional methods can be 
computationally expensive and have difficulties with complex contracts, they may not be 
effective for all types of vulnerabilities, particularly logic-based ones (Guidi & Michienzi, 
2023). Manual code review is time-consuming and vulnerable to errors; it typically has low 
automation, low efficiency, and long detection times because it relies on expert experience. 
The machine learning approach offered several advantages over traditional approach, 
including the ability to learn from large datasets of known vulnerabilities, adapt to new attack 
patterns, and handle complex and unstructured data. Tang et al. (2023) proposed their 
approach, Lightning Cat, a deep learning-based approach for smart contract vulnerability 
detection. Although the above-mentioned existing work addressed the problem of 
vulnerability through deep learning, However, they have a notable weakness that demands 
attention. The approach specifically suffers from inefficiency due to model-masked token 
training, which leads to limited vulnerability coverage and low accuracy. Additionally, the 
models might not be specifically designed for Solidity code. A clear plan must be in place for 
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choosing which code entities to mask while maintaining the syntactical validity of the masked 
code. potentially leading to missed vulnerabilities. 
 
This paper proposes a deep learning solution with a model with a more sample-efficient pre-
training task called CodeELECTRA. Based on the ELECTRA algorithm (Clark et al., 2020), the 
algorithm is more efficient than other pre-training tasks (Tepecik & Demir, 2024). which are 
trained to detect vulnerabilities in smart contract. The proposed CodeELECTRA pre-training 
model. was employed to preprocess the data, enhancing the semantic understanding and 
analysis capabilities of the Solidity code. By leveraging ELECTRA algorithm with context-
aware masking and identify vulnerabilities through the CodeELECTRA model. 
 
PROPOSED MODEL  
In this section, we will fine-tune the deep learning algorithm Electra model with context-
aware masking techniques to carry out the smart contract vulnerability detection task. In 
particular, we proposed a new CodeELECTRA model that captures the semantic features of 
smart contract vulnerabilities through effective fine-tuning strategy for Electra model, which 
solves the inconsistency and context-aware masking. Our proposed model is divided into five 
stages. In section 3.1, we will first give a summary of our framework solution. The next parts 
will provide a thorough explanation of the procedure. 
 
Overview 
Here, we've gone through multiple steps with our vulnerability detection mechanism in the 
smart contract process. In order to obtain the contract fragment, we must first preprocess the 
original smart contract source code file by doing the following steps:  
 
Data cleaning is required in order to: (a) remove blank lines and unnecessary comments; (b) 
remove redundant information that does not affect the state of the contract; and (c) format the 
cleaned contract code to make it easier to use. 
 
Tokenization: Tokens are the fundamental building blocks of the Solidity code that ELECTRA 
will understand, as shown in Figure 1. To do this, the code must be divided into function calls, 
operators, keywords, and identifiers. Etc. 
 
Encoding: Run the preprocessed code sequence through the ELECTRA model, including any 
tokens with special tokens, and maybe tokens that are masked. After that, the model will 
produce an encoding, or vector representation, for the complete code sample. This encoding 
takes into account the context given by the surrounding tokens (even when they are hidden) 
to capture the semantic meaning and links between various code segments. 
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Figure 1: Model Tokenization (Tang et al., 2023) 

 
CodeELECTRA MODEL DEVELOPMENT 
The proposed model in figure 2. is divided into four stages. Preprocessed Solidity code, 
collecting and preparing the labeled dataset of Solidity code that is vulnerable, includes the 
first step. Contest-aware masking in the second stage; the third stage is the Electra model; and 
the final stage is the fully connected layer for vulnerability classification by fine-tuning the 
ELECTRA models and comparing their results. The Sodifi-benchmark dataset is used to 
evaluate the chosen model's efficacy in identifying vulnerabilities. 
 
Preprocessed source code 
Preprocessing the source code is necessary to remove sections that are unrelated to the 
contract execution logic and do not alter the smart contract's state, while also retaining the 
statements that are most closely linked to the vulnerability. pre-process and clean the data. 
This may include cleaning up irrelevant information, standardizing the formatting of the 
code, and fixing any inconsistencies. We will enumerate the following elements that must be 
removed from the source file, contract level, and function level in accordance with the 
development document for Ethereum's official programming language solidity. 
  
Context-aware masking layer:  
The model will analyze the preprocessed code using a chosen technique attention mechanism 
to masks out specific sections of the code based on the analysis. This can entail determining 
whether particular code elements like comments or function calls need to be hidden and 
creating context-aware masking techniques that ensure syntactic correctness. Based on the 
token classifications and surrounding context, the logic determines which tokens to mask. 
CodeELECTRA uses a method called context-aware masking to strategically conceal specific 
portions of the code during training. This enhances the model's capacity to generalize to 
unobserved code and helps it concentrate on critical components for vulnerability detection. 
Token Classification attention mechanism: The attention mechanism within the Electra model 
analyzes the code and classifies each token into a predefined category (keyword, function call, 
variable, etc.). Mask Tokens: Specific tokens or parts of tokens are masked in the original code 
sequence, frequently substituted with a particular ID [MASK]. Masked Code Sequence: The 
resulting sequence depicts the code with masked elements, focusing on crucial places for 
vulnerability identification. The attention scores from the self-attention mechanism are used 
to determine which tokens to mask. Tokens with higher attention scores from relevant context 
(e.g., function call arguments) are more likely to be masked. Tokens with lower scores (e.g., 
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function names, control flow keywords) are less likely to be masked. The approach 
dynamically adapts the masking based on the code's specific context, potentially leading to a 
more nuanced understanding of vulnerabilities. 
 
Equations in Context-Aware Masking: 
Let the original code sequence be represented as 
X = [x1, x2,..., xn]       eqn 1 
Where xi is a token. Using a masking predictor network, the model forecasts a masking 
probability score m_i for every token xi. This network considers the code sequence's present 
context. Based on the expected score m i, a masking function (often placing a threshold on the 
probability) decides whether a token is masked at all. The masked version of the code 
sequence (Y) can be expressed mathematically as follows: 
Y = [y1, y2,..., yn]         eqn 2 
where yi = xi if m_i < threshold (not masked) 
           yi = [MASK] if m_i >= threshold (masked) 
 
Electra model (fine tuning) 
Pre-trained ELECTRA model for code analysis it will Takes the masked code as input. 
Processes the code through its encoder layers, which include: Self-Attention sub-layer: 
Identifies relationships between masked and unmasked parts of the code.  Feed Forward sub-
layer: Introduces non-linearity for complex relationship modeling. Generates a contextual 
embedding that captures the code's meaning despite masking. For fine-tuning we will Train 
the ELECTRA model on a dataset of labeled smart contracts with various vulnerability types. 
This dataset should encompass different categories of vulnerabilities we want the model to 
detect the following vulnerability, integer overflow, reentrancy, timestamp dependency, 
Unhandled exception, Tx.origin, unchecked sent and Transaction-ordering dependence 
(TOD). The Model will use the pre-trained ELECTRA model to learn contextual 
representations of the masked code. The masked code is fed into the ELECTRA encoder to 
generate contextual embedding. 
 
Fully connected layers 
In order to output the classification labels, we will add fully connected layers. First, we added 
a new linear layer with features on top of the existing linear layer. We then utilized the ReLU 
activation function to avoid the limited capacity of a single linear layer. Next, we will 
introduce a dropout layer with a 0.1 dropout rate after the activation layer to prevent 
overfitting. Finally, we used a linear layer with four features for the output. The parameters 
of these new layers were updated during the fine-tuning process. Attention weights, 
represented as wij, are determined by the multi-head self-attention mechanism for every point 
i in the input code sequence. The following formula is used to calculate the attention weights: 

   wij = Softmax   eqn 3 

In this case, d is the dimension of the queries and keys, qi is the query at position I, and kj is 
the key at position J. By multiplying the attention weights wij by the corresponding values vj 
and adding them up, the output of the self-attention mechanism at location i, represented as 
oi, is obtained: 

                                                               Oi     vj1e  eqn 4 
 
A feed-forward neural network sub-layer is also present in each encoder layer. It uses the 
following equation to process the output of the self-attention sub-layer: 

 FFN(x)= ReLU(x·W1+b1)·W2+b2           eqn 5 
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Here, W1,b1, and W2 ,b2 are the feed-forward neural network's parameters, and x is the self-
attention sub-layer's output. 
 

 
Figure 2: Our Proposed CodeELECTRA 

 
PROPOSED EXPERIMENT  
We will train and evaluate the methods in the same contexts to guarantee an equitable 
assessment of the various approaches. All tests will be conducted using the PyCharm 
program, the PyTorch framework, and the Python programming language on a Windows 
computer. The efficacy of CodeELECTRA for enhanced vulnerability detection in blockchain 
smart contracts will be demonstrated by this experiment. CodeELECTRA will have the 
potential to be a useful tool for improving blockchain application security by utilizing 
Electra's architecture and context-aware masking. 
 
Parameter Settings 
The key parameters to consider for our proposed CodeELECTRA experiment are in the Electra 
Base Model, Context-Aware Masking and fully connected layer.  
 
i. Electra Base Model  
The number of encoder layers determines how well the model can understand intricate 
relationships found in code. We try to vary the values (e.g., 12 or 24) according to the size of 
our dataset and available computing power. 
 
Hidden size: The model will learn the dimensionality of the hidden representations. While 
higher values can enhance learning, they will also lengthen the training period. A possible 
typical range is likely to remain 128–768." 
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Dropout rate: During training, neurons will be randomly dropped out to help prevent 
overfitting. Standard values can be adjusted based on validation performance and will be 
initialized at around 0.1. 
 
ii. Context-Aware Masking 
Learning-Based Masking Probability Threshold: This threshold establishes the point at which 
a predicted masking probability is sufficiently high to effectively mask the token. We Try 
varying the values (e.g., 0.5, 0.8) until you find the best balance between hiding significant 
and irrelevant information. 
 
iii. Fully connected layer 
Learning rate will be scheduled to update the model weights during training. A tiny value of 
1e-5 will be used initially and will adapt according to validation performance and 
convergence pace. An Optimizer Will Be Selected to aid in the model's effective convergence, 
such as Adam or RMSprop. A Loss Function will be employed that calculates the prediction 
error of the model. For binary categorization (vulnerable vs. non-vulnerable), binary cross-
entropy will likely be utilized. 
 
PERFORMANCE METRICS 
Several performance metrics, such as accuracy, F1 score, recall, and precision, will be utilized 
for evaluating the methods (Sun et al., 2023). In actuality, accuracy will be defined as the 
proportion of accurately predicted cases (including true positives and true negatives) to the 
total number of cases. It will offer an overall general measure of accuracy. The matrix will 
contrast the predicted value of the machine learning model with the actual goal value. 
The accuracy of a classifier will simply be the frequency with which it makes the correct 
prediction, as shown in eqn. 6. 

 
                                                                                                                           Eqn. 6 

Precision, which is often referred to as positive predictive value, quantifies the percentage of 
accurately predicted positive instances, or true positives, among all instances that are 
projected to be positive. The accuracy of optimistic predictions is the main focus. Is 
described in Eqn. 7 below. 

                     Eqn. 7  
Recall computes the percentage of accurately anticipated positive cases (true positives) out 
of all actual positive instances. It is sometimes referred to as sensitivity or a true positive 
rate. It centers on the model's capacity to recognize every positive example. Is defined in 
Eqn. 8 

                                     Eqn. 8 
F1 score, another significant metric that combines recall and precision is the F1 score. It offers 
a balance between the two while taking into account their trade-offs. When both precision and 



CodeELECTRA: An ELECTRA-based Approach for Improved Vulnerability Detection in Blockchain Smart Contracts   

 

U. B. Usman, K. Umar, A. I. Agaie, DUJOPAS 10 (3b): 95-105, 2024                                                                        103 

  

recall are crucial, or when the dataset is unbalanced, the F1 score is especially helpful. Is 
described in Eqn. 9.                                                  

                                                      Eqn. 9 
2.1 Dataset  

Three most-used and public datasets were gathered in order to provide sufficient 
experimental data: Smartbugs (Durieux et al., 2020) . SoliAudit-benchmark, SoliAudit 
vulnerability analyzer dataset, and SolidiFi-benchmark. We will select seven categories of 
vulnerabilities—timestamp dependency, unhandled exception, transaction-ordering 
dependence (TOD), unchecked sent, integer overflow, reentrancy, and tx.origin, from the 
Solidify benchmark dataset. 
 
EXPECTED RESULTS 
CodeELECTRA is expected to identify vulnerabilities more accurately than baseline 
techniques, with metrics like recall, F1 score, accuracy, and precision. It is expected to work 
well on untested code with various vulnerabilities. Due to context-aware masking, allowing 
greater generalizability to real-world scenarios. Table 1. will show the presentation of the 
metric result data based on our evaluation. 
 
Table 1. Expected Evaluation of the Metrics Results for Each Type of Vulnerability 

Vulnerability Method Accuracy (%) Precision (%) Recall (%) F1(%) 

Reentrancy 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 

Timestamp-
Dependency 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 

TOD 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 

Unchecked sent 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 

Integer overflew 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 

Unhandled 
Exceptions 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 

Tx.origin 

Optimized-
CodeBERT 

X X X X 

Electra X X X X 

CodeElectra X X X X 
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CONCLUSION 
The increasing adoption of blockchain technology and the rising value of assets stored on 
smart contracts highlight the critical need for robust security solutions. The security of 
blockchain systems could be greatly improved by leveraging their competence to learn from 
code with context-aware masking and identify vulnerabilities through CodeELECTRA. Once 
pre-trained, ELECTRA is fine-tuned on a dataset of labeled Solidity code with vulnerabilities. 
This fine-tuning helps the model focus on the specific features and patterns relevant to 
vulnerability detection. CodeELECRA will offer a viable method for enhancing blockchain 
smart contract vulnerability detection. This can foster trust and wider adoption of blockchain 
technology across various industries. The research findings can also will contribute to the 
development of more robust and secure smart contract development practices. 
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