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Abstract 
 
Agriculture is a vital industry that supplies food, textiles, and other basic goods to people globally. 
Agricultural crop production has a vital role in influencing the economy and the well-being of farmers. 
Nevertheless, farmers are facing substantial challenges due to the profound changes in environmental 
conditions. A significant challenge they have is determining the most suitable crop for their specific 
location that will optimize both production and profitability. Choosing suitable crop types for a certain 
area may be difficult due to the need for skills and experience in evaluating elements such as soil 
composition, climatic conditions, moisture levels, precipitation, and temperature. Multiple researchers 
have devised several approaches to tackle the issue of crop recommendation. Nevertheless, a significant 
share of these models is specifically tailored for a certain job or are amalgamations that include two or 
three machine-learning algorithms. These current models have restricted prediction accuracy and 
elevated rates of false positives, rendering them inappropriate for the intricacy of the job at hand. This 
study explores the field of precision agriculture with the objective of improving crop recommendation 
systems via the use of an ensemble-based prediction model. This paper incorporates KNN, Decision 
Tree, Random Forest, SVM, Naive Bayes, Logistic Regression, and XGBoost as a series of machine 
learning models. A stacked ensemble prediction model is created by training, evaluating, and comparing 
the Random Forest classifier with the stacked ensemble prediction model. In contrast to existing 
methods, the proposed method exhibits exceptionally high accuracy, reaching 99.8%, exceeding the 
performance of prior studies. Through the application of advanced predictive modeling techniques, this 
paper demonstrates how agricultural operations can be improved. 
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 INTRODUCTION 
The agricultural industry is of paramount importance to our economy, and bolstering this 
sector may yield favorable economic and political consequences for our nation (Aliyev, 
Babayev, Galandarova, Gafarli & Balajayeva, 2023). Technological improvements, biological 
effects, and environmental circumstances have a significant impact on the health and 
productivity of crops (Enerijiofi, Musa, Okolafor, Igiebor, Odozi, & Ikhajiagbe, 2023). 
Agriculture is a vital industry that supplies food, fiber, and other necessary goods to people 
globally. Agricultural crop production has a pivotal role in influencing the economy and the 
well-being of farmers (FAO, 2020). Nevertheless, farmers are facing considerable hurdles due 
to the substantial changes in environmental conditions. An important challenge they have is 
choosing the most suitable crop for their location that will optimize production and financial 
gains (Fischer & Connor, 2018). Choosing the suitable crop kinds for a certain area may be 
difficult due to the need for skill and experience in evaluating characteristics including soil 
type, climate, humidity, rainfall, and temperature (Kephe, Ayisi & Petja, 2021). Furthermore, 
conventional techniques for suggesting crops may not consistently provide precise or current 
information, resulting in less-than-optimal crop production and heightened expenses for 
farmers (Munaweera, Jayawardana, Rajaratnam, Dissanayake, 2022).  
 
Consequently, there is an urgent need to enhance agricultural methodologies in order to 
guarantee long-term viability (Pawlak & Kołodziejczak, 2020). Moreover, a lack of adequate 
technical proficiency and volatile weather patterns resulted in a decrease in yearly agricultural 
output over the majority of the globe (Gopi & Karthikeyan, 2023). Hence, it is essential to 
identify appropriate crops that may effectively boost productivity and production in order to 
fulfill the growing global food demand. Accurate forecast of agricultural output is crucial and 
depends on several aspects such as irrigation systems, weather conditions, and geographical 
location (Reddy & Kumar, 2023). An effective approach to address these difficulties is using 
machine learning algorithms to forecast the appropriateness and yield of crops by considering 
environmental variables (Durai & Shamili, 2022). 
 
ML techniques has the capability to tackle this difficulty. Machine learning algorithms may 
use data-driven analysis to evaluate information and provide customized agricultural 
suggestions (Huang, Srivastava, Ngo, Gao, Wu, & Chiao, 2023). Utilizing machine learning 
algorithms for crop recommendation has great potential in improving agricultural production 
and sustainability. The growing availability of data and advancements in machine learning 
algorithms are anticipated to bolster their importance in the agricultural sector. This 
methodology offers farmers precise and current data regarding crop selection, optimal 
planting time, and allocation of resources. Consequently, farmers can make well-informed 
choices that can result in enhanced yields, decreased expenses, and improved sustainability 
(Dhanaraju, Chenniappan, Ramalingam, Pazhanivelan, & Kaliaperumal, 2022). Despite prior 
research on the subject, most studies have mostly examined single-task learning models and 
have not thoroughly investigated the capabilities of ensemble learning approaches (Rashid et 
al., 2021; Devan, Swetha, Sruthi & Varshini, 2023). 
 
Ensemble learning approaches, a potent paradigm in machine learning, include 
amalgamating the predictions of many models to enhance overall performance and resilience 
(Ganaie et al., 2022). Ensemble approaches use a heterogeneous collection of many models 
rather than depending on a single model to overcome individual limitations and improve the 
precision of predictions (Guo, Wang, Xiao & Xu, 2020). 
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The objective of this study is to develop a prognosis model for crop recommendation. The 
objective will be achieved by the use of an ensemble-based methodology that integrates seven 
discrete machine learning models: K-Nearest Neighbor, Decision Tree, Support Vector 
Machine, Random Forest, Logistic Regression, Naïve Bayes, and XGBoost. The model assists 
farmers in selecting suitable crops that are compatible with their specific soil and climatic 
conditions, hence leading to improved agricultural production. The aim of this model is to 
improve the precision and dependability of crop recommendations. This is achieved by using 
the capabilities of many algorithms and overcoming their constraints via ensemble methods. 
Furthermore, the model may aid farmers in adopting sustainable farming practices by 
reducing the reliance on harmful chemicals and promoting the use of organic fertilizers 
(Çakmakçı, Salık & Çakmakçı, 2023).  
 
The finding has potential benefits that extend beyond the economic rewards for farmers. This 
approach has the capability to augment agricultural output and durability, resulting in 
significant socioeconomic and environmental benefits. The model's ability to provide accurate 
and up-to-date information enables farmers to make well-informed decisions, leading to 
enhanced crop yield, reduced dependence on harmful pesticides, and the promotion of 
sustainable farming practices. As a result, this might improve the farmers' and their families' 
standard of living, while simultaneously promoting environmental conservation. 
 
METHODOLOGIES  
The research methodology is the central framework that encompasses the techniques and 
procedures used to acquire, gather, and assess data, all of which are closely linked to the topic 
of study (Garg, 2016; Mohajan, 2018). The research methodology of the proposed model is 
shown in Figure 1 and consists of many sequential phases (Busetto, Wick & Gumbinger, 2020). 
The procedure involves collecting the dataset, examining and preparing the data, dividing the 
dataset, training the model, evaluating the model, measuring its performance, comparing the 
performance, and formulating a conclusion. 
 

 
Figure 1: Research Design 

Source: Author based on (Rana et al., 2015) 
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i. Dataset Collection: The first stage involves gathering the dataset in CSV format and 
importing it into Jupiter Notebook. 

ii. Data exploration and pre-processing: Perform correlation analysis, eliminate features 
with negative correlation, address missing values, eliminate duplicates, normalize the 
data, and scale the features. 

iii. Splitting dataset: This refers to the process of dividing the dataset into two separate 
parts. One is designated for training purposes, while the other is specifically used for 
testing. 

iv. Training the models: Models are trained using K-Nearest Neighbor, Decision Tree, 
Support Vector Machine, Random Forest, Logistic Regression, Naïve Bayes, and 
XGBoost algorithms. 

v. Testing the models: The analyzed models include K-Nearest Neighbor, Decision Tree, 
Support Vector Machine, Random Forest, Logistic Regression, Naïve Bayes, and 
XGBoost.     

vi. Performance evaluation: The evaluation of the model's performance was conducted 
using the accuracy score and confusion matrix given by Scikit-learn.  

vii. Models Ensembling: this involves combining predictions from all the multiple models 
to improve overall performance. 

viii. Conclusion: This is the ultimate stage when the ensemble model is presented as the 
most optimal model for forecasting appropriate crops for a certain area of land. 
 

 
Source of Dataset 
The dataset was obtained from https://www.kaggle.com/datasets/aksahaha/crop 
recommendation and includes data on the amounts of nitrogen, phosphorus, and potassium 
in the soil as well as measurements of temperature, humidity, pH, and rainfall and how they 
affect the growth of crops (Nti et al., 2023). This dataset can be utilized to create data-based 
suggestions for achieving the best possible nutrient and environmental conditions to enhance 
crop yield (Gosai et al., 2021).  The data size was 2200 records and seven predictors 
(Muhammed, Ahvar, Ahvar & Trocan, 2023). The target variable consists of twenty-two 
classes representing different crops (i.e., ‘mungbean’, ‘apple’, ‘kidney-beans’, ‘banana’ 
‘maize’, ‘blackgram’, ‘chickpea’, ‘mothbeans’, ‘coconut’,‘coffee’, ‘cotton’, ‘grapes’, ‘jute’, 
‘pigeonpeas’, ‘papaya’, ‘mango’, ‘lentil’,‘muskmelon’, ‘orange’, ‘watermelon’, ‘pomegranate’ 
and ‘rice’) each with one hundred (100) samples.  
 

 Formulation of Ensemble-Based Predictive Model for Crop Recommendation 
The mathematical model aims to represent the flow of which a model for the prediction of 
crops and their yields can be developed.  
Let the soil attributes of Nitrogen, Phosphorus, and Potassium be denoted as N, P, and K 
correspondingly. Thus, we may describe their sets as: 
 
𝑵 =  {𝒏𝟏, 𝒏𝟐, … , 𝒏𝟑}       (1) 
 
𝑷 =  {𝒑𝟏, 𝒑𝟐, … , 𝒑𝟑}           (2) 

 
𝐾 =  {𝑘1, 𝑘2, … , 𝑘3}          (3) 
 
Since the combined values of 𝑁, 𝑃 𝑎𝑛𝑑 𝐾 provide Soil (𝑆) properties data;  
 

𝑆 = ∑ 𝑛𝑖
3
𝑖=1 + ∑ 𝑝𝑖 + ∑ 𝑘𝑖

3
𝑖=1

3
𝑖=1         (4) 
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whereby 𝑆 can have a varying value based on the values of 𝑁, 𝑃 𝑎𝑛𝑑 𝐾 at any given time, 
therefore: 
 
𝑆 =  {𝑠1, 𝑠2, … , 𝑠3}         (5) 
 
We can further have 𝑃𝐻 value and the Soil(𝑆) properties to form the environmental 
factor(𝐸): 
 

𝐸 = ∑ 𝑝ℎ𝑖
3
𝑖=1 + ∑ 𝑠𝑖

3
𝑖=1          (6) 

 
Whereby  𝐸 = {𝑒1, 𝑒2, … , 𝑒3} based on the value of PH and S at a given time.  
 
Let 𝑇, 𝑅 𝑎𝑛𝑑 𝐻 represent the set of Temperature, Rainfall, and Humidity. 
 
𝑇 =  {𝑡1, 𝑡2, … , 𝑡3}          (7) 
 
𝑅 =  {𝑟1, 𝑟2, … , 𝑟3}         (8) 
 
𝐻 =  {ℎ1, ℎ2, … , ℎ3}        (9) 
 
The combination of 𝑇, 𝑅 𝑎𝑛𝑑 𝐻 will then provide the Weather(𝑊) factor 
 
𝑊 = 𝑇 + 𝑅 + 𝐻         (10) 
 
We can further have a dataset(𝑄) that will enable the prediction of crops based on 𝑊 𝑎𝑛𝑑 𝐸  
 
𝑄 = 𝑊 + 𝐸         (11) 
 
𝑄 =  {𝑞1, 𝑞2, … , 𝑞3}                    (12) 
 
Let 𝑛 represent the SK-Learn data cleaning model, the function of 𝑛 on 𝑄 will therefore be 
𝑛(𝑄)  producing dataset(𝑑1) 
𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑑1)  =  𝑛(𝑄)                  (13)  
 
Base Model Predictions 
For this study, a total of seven machine-learning models were chosen. Let NB, SVM, KNN, 
LR, DT, XGBOOST, and RF represent Naïve Bayes, Support Vector Machine, K-Nearest 
Neighbor, Logistic Regression, Decision Tree, and extreme Gradient Boosting, respectively.  
The functions nb(d1), svm(d1), knn(d1), lr(d1), dt(d1), rf(d1), and xgboost(d1) correspond to 
the algorithms NB, SVM, KNN, LR, DT, XGBOOST, and RF, respectively. As a result, we have: 
 
𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑛𝑏) =  𝑛𝑏(𝑑1)     (14) 
𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑠𝑣𝑚) =  𝑠𝑣𝑚(𝑑1)     (15) 
𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑘𝑛𝑛) =  𝑘𝑛𝑛(𝑑1)     (16) 
𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑙𝑟) =  𝑙𝑟(𝑑1)     (17) 
𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑑𝑡) =  𝑑𝑡(𝑑1)     (18) 

𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑥𝑔𝑏𝑜𝑜𝑠𝑡) =  𝑥𝑔𝑏𝑜𝑜𝑠𝑡(𝑑1)      (19) 

𝐶𝑟𝑜𝑝𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐶𝑟𝑓) =  𝑟𝑓(𝑑1)     (20) 

where 𝐶 =  {𝑐1, 𝑐2, … , 𝑐3}      (21) 
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Stacking Predictions  
Stacking predictions involves creating a new feature matrix by combining the predictions 
from all base models. In the context of the seven base models (KNN, DT, NB, LR, XGBoost, 
RF, SVM), The stacked predictions into a new feature matrix. 
 Let's denote the predictions from each model as  
 𝑋𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = [𝐶𝑛𝑏 , 𝐶𝑠𝑣𝑚, 𝐶𝑘𝑛𝑛, 𝐶𝑙𝑟, 𝐶𝑑𝑡 ,𝐶𝑥𝑔𝑏𝑜𝑜𝑠𝑡]        (22) 

 
The stacked ensemble matrix 𝑋𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 would be: 
 

𝑋𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =

[
 
 
 
 
 

𝐶𝑛𝑏

𝐶𝑠𝑣𝑚

𝐶𝑘𝑛𝑛

𝐶𝑙𝑟

𝐶𝑑𝑡   

𝐶𝑥𝑔𝑏𝑜𝑜𝑠𝑡]
 
 
 
 
 

           (23) 

 
This new feature matrix is then used as input for the meta-model (Random Forest in this case) 
to make final predictions.  
 
Random Forest Meta-Model 
The Random Forest meta-model is trained on the ensemble feature matrix using the true labels 
Y, represented as 𝑋𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  : 
 
𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑜𝑑𝑒𝑙 =  𝐶𝑟𝑓(𝑋𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 , 𝑌)      (24) 

 
Equation (24) demonstrates how the Random Forest meta-model is trained by using the 
combined predictions from the underlying models (X_ensemble) and the actual labels (Y). 
Once the model is created, it is designated as the Ensemble_model and will be used to generate 
predictions on fresh data. 
 
Prediction from Ensemble Model  
For a new input feature 𝑋, obtain predictions from each base model and stack them as 
before:  

Ẑ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒[ 𝐶𝑛𝑏(𝑋), 𝐶𝑠𝑣𝑚 (𝑋), 𝐶𝑘𝑛𝑛(𝑋), 𝐶𝑙𝑟 (𝑋), 𝐶𝑑𝑡  (𝑋), 𝐶𝑥𝑔𝑏𝑜𝑜𝑠𝑡 (𝑋)] (25) 

 

Ẑ𝑓𝑖𝑛𝑎𝑙 = [𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑜𝑑𝑒𝑙  𝑝𝑟𝑒𝑑𝑖𝑐𝑡(Ẑ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒)]    (26) 

 
The ensemble model leverages the strength of the base models of each of the base models and 
uses the Random Forest to combine their predictions for a more robust final prediction.  
 
 

 Algorithm of the Ensemble-Based Predictive Model for Crop Recommendation 
  

The Stacked Ensemble model for crop recommendation, as described in Algorithm 1, seeks to 
improve predicted accuracy by using the capabilities of numerous base models.  
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Algorithm 1: Algorithm for Crop Ensemble-Based Model  

1. Start  
2. Split the training Data (TD) into 𝑁 𝑓𝑜𝑙𝑑 → 𝐷1, 𝐷2, …𝐷𝑁 
3. For each base model, 𝑚 ∈ 𝑆𝑉𝑀,𝐾𝑁𝑁, 𝐿𝑅, 𝐷𝑇,𝑁𝐵 𝑎𝑛𝑑 𝑋𝐺𝐵𝑂𝑂𝑆𝑇 { 

Train 𝑇𝑚𝑜𝑑𝑒𝑙𝑠,𝑚1,𝑚2, …𝑚𝑁 on 𝑁 − 1 folds of the RF  

Keep the predicted outputs  Ẑ𝑚,𝑡 (𝑋) for 𝑚𝑡 on each test 𝑓𝑜𝑙𝑑 𝐷𝑛 
 
} 

4. Concatenate the predicted output from all base models for each test fold: 

5. 𝑋𝑘 = [Ẑ𝑆𝑉𝑀, 1(𝐷𝑛), Ẑ𝑆𝑉𝑀, 2(𝐷𝑛),…𝑦𝑋𝐺𝐵𝑂𝑂𝑆𝑇, 𝑇(𝐷𝑛)]  
 

6. Train a metal model 𝑓(𝑋) on the concatenate the predicted output 𝑋𝑛 for each fold. 
7. For each test fold 𝐷𝑛 use the base models to predict the output Ẑm(x) and concatenate the 

outputs:  

X= {Ẑ𝑆𝑉𝑀(𝐷𝑛), Ẑ𝐾𝑁𝑁(𝐷𝑛), Ẑ𝐿𝑅(𝐷𝑛), Ẑ𝐷𝑇(𝐷𝑛),  

Ẑ𝑁𝐵(𝐷𝑛), Ẑ𝑋𝐺𝐵𝑂𝑂𝑆𝑇(𝐷𝑛)}  
 

8. Use the trained meta-model to predict the final output: Ẑ𝑓𝑖𝑛𝑎𝑙(𝑥) = 𝑓(𝑥) 

 
9. End 

 
At first, the training data is divided into N folds for cross-validation. Afterward, several basic 
models such as SVM, KNN, LR, DT, NB, and XGBOOST are trained on subsets of the data 
using N-1 folds of a Random Forest. The outputs of these basis models are combined by 
concatenating them and utilized as input for a meta-model, which is trained to maximize the 
combination of the base model outputs. In the final prediction phase, the basic models are 
again used to forecast fresh data, while the meta-model combines these forecasts to provide 
the result. 
 
 
Performance Evaluation Matrices 
Diverse metrics are often used to assess the effectiveness of a categorization model. The 
measurements include Accuracy, Confusion Matrix, Precision, Recall, F1-score, Error Rate, 
and Training time. 
 
Classification Accuracy: The term "accuracy" refers to the ratio of correct predictions 
produced by the model to the total number of predictions made. 

Accuracy (%) = 
𝑇𝑃+𝑇𝑁

𝑇𝑃 +𝑇𝑁+𝐹𝑃+𝐹𝑁  
 × 100    (27) 

 
Precision: Precision is determined by the ratio of true positives to the total of true positives 
and false positives. 
The formula for precision is: 

Precision =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (28) 

 
Sensitivity; Sensitivity is a numerical metric used to calculate the proportion of correctly 
identified positive situations that were incorrectly labeled as negative by the model. It is 
sometimes denoted as recall or true positive rate. Mathematically, it is defined as the ratio of 
the number of true positive (TP) occurrences to the sum of true positive and false negative 
(FN) cases.  
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Sensitivity =  
  𝑇𝑃 

𝑇𝑃+𝐹𝑁
            (29) 

 
Specificity 
Specificity is a synonym for the actual negative rate. Theoretical definition of the term involves 
the calculation of the ratio between the number of true negative (TN) instances and the sum 
of true negative and false positive (FP) cases.  
Mathematically, the expression is as follows: 

Specificity =  
  𝑇𝑁 

𝑇𝑁+𝐹𝑃
                      (30) 

 
F-Score 
The F-score is a statistical metric used to evaluate the effectiveness of a binary classification 
model by measuring its capacity to reliably anticipate occurrences of the positive class. The 
computation employs the metrics of accuracy and recall.  
It is mathematically calculated as:  
 

F1-score = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
     (31) 

 
Error Rate (EER) 
The error rate may be computed by dividing the total count of wrong predictions made on 
the test set by the total count of predictions made on the test set. 
Mathematically, it is expressed as: 
 

Error Rate =  
  𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
    (32) 

 
 
RESULTS AND DISCUSSION 
 
Numerical Experimental Performance of the Proposed Model 
This stage assesses the quantitative experimental performance of the proposed model and 
fine-tunes the number of samples and features. The results are well documented via the use 
of tables and graphs. 
 
Importing the Libraries 
The Python Libraries Pandas, Numpy, CSV, Matplotlib, Seaborn, and Joblib were loaded into 
Jupyter Notebook. Numpy enables fast computation and broadcasting over multi-
dimensional arrays by vectorization (Stančin & Jović, 2019). Pandas is a sophisticated and 
intuitive open-source program designed for the analysis and manipulation of data. It is 
constructed using the Python programming language (Subasi, 2020). Matplotlib and Seaborn 
are Python libraries especially tailored for data visualization. They provide an intuitive 
interface for generating visually captivating and practical graphs. Seaborn is constructed upon 
the framework of Matplotlib and provides a slightly smaller range of functionalities in 
comparison to Matplotlib (Pintor et al., 2019). Figure 2 depicts the inclusion of Pandas, 
Numpy, CSV, Matplotlib, Seaborn, and Joblib Python libraries into the Jupyter Notebook.  
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Figure 2: Importing Python Libraries 

Source: Author 
 
Loading the Dataset 
The dataset was imported into Jupyter Notebook using the pd.read_csv function. Figure 3 
depicts the process of importing the dataset into Jupyter Notebook. 
 

 
Figure 3: Loading the Dataset in Jupyter Notebook 
 
 
Checking for Missing Values 
Each attribute in the dataset was assessed for the existence of missing values, and no instances 
of missing values were detected. Table 1 indicates that there are no missing values (NaN) 
present in any of the columns. There are no missing values in any of the columns, as shown 
by the values in the right column (0 for each column name). 
 

Table 1: Checking for Missing Values in the dataset 
Source: Author 

 

 
 
Descriptive Statistics of Dataset 
The describe () function offers a succinct overview of a dataset including 2200 items and 7 
columns, all of which consist of integer values. Table 2 presents statistical data on many 
parameters, such as Nitrogen, Phosphorus, Potassium, Temperature, Humidity, pH, and 
Rainfall. The dataset comprises statistical measurements such as the mean, standard 
deviation, minimum, maximum, and quartiles. These metrics provide vital insights into the 
mean values and variability of agricultural indicators, facilitating the analysis and detection 
of any anomalous data points. 
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Table 2: Dataset Descriptive Statistics  
 
 

 
Source: Author 

 
Crops Distribution Chart 
The pie chart was generated with the Matplotlib tool to visually represent the distribution of 
distinct values in the "label" column of the Data Frame. Figure 4 presents a pie chart that 
graphically represents the allocation of various crop kinds in the dataset. Every section of the 
visual representation corresponds to a particular crop, and the magnitude of each section 
shows the relative fraction of that crop in the dataset. 
 

 
Figure 4: Crops Distribution Chart 

Source: Author 
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RESULTS  
The results extracted from the findings of the data analysis are presented here. The results are 
presented using figures and tables. 
 
Encoding of Target Variable 
This involves the transformation of alphabetic characters in the dataset into numerical values. 
Figure 5 illustrates the process of creating the Label Encoder object. This object was used to 
convert the category labels in the target variable y into numerical labels. The fit_transform 
method of the Label Encoder is used on the target variable y. This approach simultaneously 
adapts the encoder to the distinct labels in y and converts the labels into numerical 
representations. The encoded labels obtained are kept in the variable y_encoded. 

 
Figure 5: Encode the target variable into numeric values 

 
Getting the Correlation 
This shows the correlation of each of the features to one another. Figure 6 calculates the 
correlation matrix (corr) for the features in the dataset (data) excluding the 'label' column. The 
drop method is used to exclude the 'label' column from the dataset.  
 

 
Figure 6: Getting the Correlation 
 
The obtained data frame is then used to compute the correlation matrix using the corr() 
function seen in Figure 7. 
 

 
Figure 7: Correlation Matrix 
Source: Author 
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Splitting the Dataset into two  
The dataset is divided into input variables (x) and the output variable (y).  The symbol (x) 
represents the characteristics (independent variables) associated with each data point. The 
variable shown by (y), representing the goal label or dependent variable, is associated with 
each data point depicted in Figure 8. 
 

 
Figure 8: Splitting the Dataset into two 

 
 
Train and Test Split 
Data partitioning refers to the process of dividing the data into several sets. The training set 
and the test set. Figure 9 depicts the division of the data into distinct training and testing sets. 

 
Figure 9: Train and Test Split 

 
 
Feature Scaling  
The dataset was standardized using the Standard Scaler method to enhance the performance 
of the models.  Figure 4.10 depicts the process of scaling and standardizing the training, 
validation, and test data using a standard scaler.  
 

 
Figure 10: Feature Scaling 

 
Modeling with the Selected Algorithm 
Dataset fitting involves integrating the dataset into the various phases of model building, 
including training, validation, and testing.  Figure 11 depicts the use of several machine 
learning techniques, such as K-Nearest Neighbor, Decision Tree, Support Vector Machine, 
Random Forest, Logistic Regression, and Naïve Bayes, in the training and testing of data. 
Moreover, it demonstrates the suitability of the training and validation data. 

 
Figure 11: Modeling with the Selected Algorithm 
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Ensemble Model  
The prediction model was created by using a crop ensemble approach and leveraging stacking 
strategies. Stacking is an ensemble learning technique that involves training many diverse 
machine-learning models and combining their outputs into a meta-model to get final 
predictions (Kim et al., 2019). Moreover, the use of stacking efficiently mitigates overfitting by 
enabling the meta-model to assimilate information acquired from the mistakes produced by 
the underlying models. Figure 12 demonstrates the use of the stacking ensemble 
methodology. 
 

 
Figure 12: Implementation of Stacking Ensemble Method 

 
Classification Report of the Ensemble-Based Predictive Model Using Stacking  
 
The classification report for the crop recommendation ensemble-based prediction model is 
shown in Table 3. The crop selection prediction model, using an ensemble-based (stacking) 
strategy, demonstrates robust and consistent performance across several criteria, as seen by 
the classification report. The model exhibits outstanding accuracy, recall, and F1-score metrics 
for each crop class (1 to 7), suggesting its capacity to provide precise predictions with few 
occurrences of both false positives and false negatives. 
 

Table 3: Classification Report of the Ensemble-Based Predictive Model 

 
 



Ensemble-Based Predictive Model for Crop Recommendation. 

 

Umar A. M., DUJOPAS 10 (2c): 391-409, 2024                                                                                            403 
 

Classes 1, 2, 3, and 4 exhibit impeccable performance across all criteria, underscoring the 
model's remarkable accuracy in these particular domains. Class 5 has a little reduced degree 
of precision, although compensates for it with a notable level of retrieval, suggesting that the 
model excels in recognizing occurrences of this class, while there could be some erroneous 
recognitions. Class 6 has a harmonious performance, distinguished by a notable degree of 
precision and retrieval. The model has outstanding accuracy and recall in predicting instances 
of Class 7, highlighting its proficiency in this particular category. The F1-score, computed 
using the micro-average technique, is 0.97, suggesting a substantial degree of overall 
competence. The weighted average provides further evidence of the model's consistent and 
high performance across several classes. 
 
Confusion Matric of the Ensemble-Based Predictive Model Using Stacking 
The stacking ensemble prediction model for crop selection had exceptional performance in all 
categories shown in Figure 13. The accuracy, recall, and F1 scores achieved favorable results 
for classes 1, 2, 3, and 4. Class 5 had a relatively lower level of accuracy, but showed a high 
level of recall and an outstanding F1-score, suggesting few misclassifications. Class 6 
demonstrated exceptional accuracy and achieved a high F1 score, although with a somewhat 
lower recall rate. Class 7 demonstrated outstanding performance in terms of both accuracy 
and comprehensiveness, leading to a high F1 score. 

 
Figure 13: Confusion Matric of the Ensemble-Based Predictive Model Using Stacking 

 
Learning Curve for the Ensemble-Based Predictive Model Using Stacking 
The Figure 14 illustrates the Learning Curve for the Ensemble-Based Predictive Model. The x-
axis of the learning curve reflects either the amount of training data or the number of training 
iterations in the training set. The y-axis of the learning curve represents the numerical value 
of the chosen performance indicator. The training curve illustrates the model's performance 
on the training data over time, while the validation curve showcases the model's performance 
on a separate dataset that was not used during training. In this context, the training score 
remains consistently high at 1.0, suggesting that the model performs well on the training data. 
The cross-validation score starts high at 1.0 when the training set is around 200 samples, and 
increases gradually as the size of the training set increases. This implies that the issue of 
underfitting and overfitting in the model has been resolved. 
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Figure 14: Learning Curve for the Ensemble-Based Predictive Model 

 
ROC Curve for the Ensemble-Based Predictive Model 
In Figure 15, the Area Under the Curve (AUC) values of the Receiver Operating Characteristic 
(ROC) curve for the Ensemble-Based Predictive Model are presented. The dataset consists of 
twenty-two (22) RUC classes of crops. The model successfully predicted fifteen (15) RUC 
classes, encompassing Banana, Chickpea, Coconut, Grapes, Kidneypeas, Lentil, Mango, 
Mothbeans, Mungbean, Muskmelon, Orange, Papaya, Pomegranate, and Watermelon, 
achieving an impressive AUC value of 1.00. For six other RUC classes, including Apple, 
Coffee, Cotton, Jute, Maize, and Pigeonbeans, the model achieved AUC values ranging from 
0.90 to 0.99. However, for one RUC class, specifically Rice, the AUC value was slightly lower 
at 0.88. 
 
The findings indicate that the ensemble-based model excelled in predicting all crops, 
exhibiting AUC values ranging from 0.88 to 1.00. This suggests a remarkable performance 
across various crop types. Such high AUC values imply strong predictive capability and 
accuracy of the model in discerning between different crop classes. 
 
Furthermore, the True Positive Rate (TPR) values, ranging from 0.0 to 0.8, underscore the 
model's ability to correctly identify instances of the positive class across different crop classes. 
This indicates a high level of sensitivity in detecting the presence of specific crops, further 
validating the effectiveness of the ensemble-based predictive model. 
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Figure 15: ROC Curve for the Ensemble-Based Predictive Model 

 
DISCUSSION 
 
Performance Evaluation of Selected Models 
Table 4 offers a comprehensive evaluation of the performance of all models, facilitating 
comparison. This study used a total of eight machine-learning models, namely KNN, Decision 
Tree, Random Forest, Support Vector Machine, Naive Bayes, Logistic Regression, and 
XGBoost. The models were trained and evaluated as distinct classifiers with the objective of 
predicting crop outcomes. The results of the models were analyzed and computed to build 
the stacked ensemble prediction model. 
 
Table 4: Models Performance 

 
The Random Forest (RF) model is regarded as the most superior model because to its 
exceptional accuracy of 99.8%. Furthermore, it demonstrates exceptional accuracy, sensitivity, 
and overall effectiveness, as all metrics get a score of 0.99, highlighting its strong predictive 
skills. The Naive Bayes (NB) algorithm has an impressive accuracy rate of 99.6% and regularly 
demonstrates exceptional precision, recall, and F1-score metrics. The Decision Tree (DT) 
approach demonstrates exceptional performance in all areas, with an impressive accuracy rate 
of 99.5%. The accuracies of the Support Vector Machine (SVM) and K-Nearest Neighbors 
(KNN) are comparable, with SVM obtaining an accuracy of 98.9% and KNN achieving an 
accuracy of 98.4%. Logistic Regression (LR) has a remarkable accuracy rate of 96.1%. By 
comparison, XGBoost has an impressive accuracy rate of 87.1%. Nevertheless, it exhibits 

S/N Model Accuracy  Macro Avg.   

 Precision Recall F Score Support 

1. KNN 98.4 0.98 0.99 0.99 141 
2. DT 99.5 0.96 0.99 0.97 141 
3. SVM 98.9 0.96 0.99 0.99 141 
4. RF 99.8 0.99 0.99 0.99 141 
5. LR 96.1 0.97 0.98 0.98 141 
6. NB 99.6 0.99 0.99 0.99 141 
7. XGBoost 89.1 0.89 0.88 0.88 141 

8. Stacked Model 99.8 0.96 0.99 0.97 141 
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deficiencies in terms of precision, recall, and F1-score. To summarize, the findings emphasize 
the effectiveness of Random Forest and Naive Bayes algorithms in crop selection, highlighting 
their appropriateness for practical use. Figure 16 displays the data in a bar graph. 
 

 
Figure 16: Eight ML Models Accuracy Plot 

 
Comparison with Literature  
Table 5 illustrates the efficacy of our suggested research in comparison to previous studies 
conducted in this domain.  
 
 
Table 5: Comparison with the Literature 

S/N Author/Year Machine Learning Model Accuracy (%) 

1. Khaki & Wang (2019) Deep Reinforcement Learning 93.5 

2. Palanivel & Surianarayana 
(2019) 

KNN, NB, MLR, ANN and RF  72.33–94.13 

3. Kalimuthu, Vaishnavi & 
Kishore (2020) 

Linear regression, LASSO, Light GBM, 
Random Forest, and XGBoost 

RMSE from 
0.07 to 0.2 

4. Nti et al. (2023) AdaBoost GB, Light-GBM, RF, 
XGBoost, and Stacked TBEL 

87.95–99.32 

5. This Study (2024) KNN, Decision Tree, Random Forest, 
Support Vector Machine, Naive Bayes, 
Logistic Regression, XGBoost and 
Stacked Model 

89.1-99.8 

 
The table illustrates the evolution of models over time, with each subsequent study 
introducing a diverse set of machine learning algorithms to enhance predictive accuracy. Our 
study, denoted as the "Stacked Model," stands out by achieving an accuracy score 
approximately 5.4% higher than the most recent research (Nti et al., 2023). 
 
Khaki & Wang (2019) leveraged Deep Reinforcement Learning, obtaining an accuracy of 
93.5%. Palanivel & Surianarayana (2019) employed a combination of KNN, NB, MLR, ANN, 
and RF, yielding accuracy ranging from 72.33% to 94.13%. Kalimuthu, Vaishnavi & Kishore 
(2020) focused on regression models, reporting RMSE values between 0.07 and 0.2. 
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Nti et al. (2023) expanded the range of models with AdaBoost GB, Light-GBM, RF, XGBoost, 
and Stacked TBEL, achieving an accuracy range of 87.95% to 99.32%. In comparison, our study 
(2024) integrated KNN, Decision Tree, Random Forest, Support Vector Machine, Naive Bayes, 
Logistic Regression, XGBoost, and a Stacked Model, surpassing previous benchmarks with an 
accuracy range of 89.1% to 99.8%. 
 
The notable improvement in accuracy by the Stacked Model in our study highlights the 
effectiveness of combining multiple algorithms for enhanced predictive performance in the 
given field. This comparative analysis reinforces the significance of our proposed model as a 
leading approach in the domain. 
 
CONCLUSION  
The aim of this study is to develop a prognostic model using an ensemble-based 
methodology for the purpose of suggesting appropriate crops. In order to achieve this 
objective, it is crucial to have an extensive dataset that encompasses a diverse array of 
meteorological and environmental factors, such as temperature, precipitation, humidity, 
and pH level. Furthermore, it is necessary to include soil properties like as nitrogen, 
phosphorus, and potassium levels. The dataset underwent data cleaning techniques in 
Python to rectify missing values, as well as detect and manage anomalous characters and 
relationships. The technique included using a standard feature scaler to extract relevant 
attributes while removing unnecessary columns. A prediction model was developed by 
combining the mathematical equations of ensemble machine learning models, including 
K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Support Vector Machine 
(SVM), Naive Bayes, Logistic Regression, and XGBoost. The cleaned dataset was used for 
the purposes of training, evaluating, and validating the prognostic model. The model 
achieved a precision level of 99.8%.  Furthermore, the model was subjected to a thorough 
evaluation alongside other pertinent studies, and it shown a higher level of precision in 
comparison to past inquiries. The model greatly improves its performance by efficiently 
lowering the occurrences of false positive and false negative discoveries, while increasing 
the frequency of actual positive outcomes. Implementing this improvement is essential for 
enhancing the precision of forecasts, reducing mistakes, and bolstering the dependability 
of the predictive model. This study sets a standard for sophisticated predictive modeling 
methods, offering useful insights for future investigations in the domain of precision 
agriculture and crop recommendation systems. Nevertheless, the study recognizes 
constraints in designing user interfaces that are appropriate for practical usage by farmers. 
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