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Abstract 
 
This study presents a comprehensive mathematical model for HIV infection dynamics in the presence 
of treatment, focusing on stability analyses. The model incorporates treatment interventions and 
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explores their impact on disease progression, viral load dynamics, and population-level outcomes. A 
stability analysis was conducted to investigate the existence and properties of equilibrium points, 
including disease-free and endemic equilibria. Analysis shows that there is existence of disease-free 

whenever the threshold quantity 0R  is less than unity i.e. 10 R , and otherwise epidemic 

when 10 R . Utilizing mathematical techniques and computational simulations, we explore the 

stability of these equilibrium points under varying conditions and treatment scenarios. Our findings 
elucidate the critical role of treatment in mitigating HIV transmission, reducing viral replication, and 
preserving immune function. This research contributes valuable insights into the dynamics of HIV 
infection and the efficacy of treatment interventions in controlling the spread of the virus.  
 
Keywords: Diphtheria, Disease-Free, Reproduction number, Sensitivity, Simulation 
 
INTRODUCTION 
The Human Immunodeficiency Virus (HIV) is not merely a medical condition but a 
multifaceted challenge that impacts both individuals and societies on various levels. Its 
pervasive effects extend beyond the realm of healthcare, often resulting in profound 
economic and social consequences if not effectively managed (Adewale et al., 2016a; Lu et al., 
2018; Akudibillah et al., 2019; Saldaña et al., 2019; Widyaningsih et al., 2019; Ayele et al., 2021; 
Omame et al., 2021; Akinwumi et al., 2021; Marsudi et al., 2021; Ajao et al., 2023). This virus, 
which causes HIV infection, not only threatens individual health but also poses significant 
challenges to public health systems worldwide (Grigorieva et al., 2020; Cheneke et al., 2021a). 
Developing a definitive cure for HIV has proven to be a significant challenge despite 
extensive research efforts. However, advancements in medical science have led to the 
development of Antiretroviral Therapy (ART) and combination therapies, which have 
revolutionized the management of HIV infection (Ilahi and Nurhalimah, 2019; Mayanja et 
al., 2020; Cheneke et al., 2021a; Seidu et al., 2021). These treatments function by inhibiting the 
replication of the virus in the bloodstream, thereby preventing its progression to the more 
severe stage known as Acquired Immunodeficiency Syndrome (AIDS). By effectively 
controlling viral load and bolstering the immune system, ART has transformed HIV from a 
once-debilitating disease to a chronic yet manageable condition (Nkamba et al., 2019; Rana & 
Sharma, 2020). 
 
Understanding the progression of HIV infection is crucial for effective intervention and 
treatment. The disease unfolds in distinct stages, each characterized by specific clinical 
manifestations and implications for patient management (Saha et al., 2019; Saha & Samanta, 
2019). The primary stage, often asymptomatic, marks the initial presence of the virus in the 
bloodstream, posing challenges for early detection. As the infection progresses, individuals 
may enter the asymptomatic stage, where the virus remains dormant but detectable through 
medical testing. Subsequently, symptoms may manifest in the symptomatic stage, ranging 
from fatigue and weight loss to more severe complications. Without timely intervention, 
HIV can advance to the AIDS stage, where immune function is severely compromised, and 
susceptibility to opportunistic infections increases exponentially. 
 
HIV transmission occurs through various routes, including unsafe sexual practices, 
exposure to infected blood, vertical transmission from mother to child during childbirth or 
breastfeeding, and contact with bodily fluids containing the virus. Addressing these modes 
of transmission requires comprehensive prevention strategies tailored to the needs of 
diverse populations and settings. By implementing evidence-based interventions and 
promoting safer behaviors, towards reducing the burden of HIV/AIDS and achieving 
epidemic control (Olopade et al., 2016; Marsudi et al., 2021). In contrast, adherence to safe 
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practices, such as the ABC principle (Abstinence, Be faithful, Use Condoms), serves as a 
cornerstone for preventing new infections and reducing transmission rates. 
 
Effective control of the HIV epidemic requires a comprehensive approach that integrates 
medical, social, and behavioral interventions. Public health education, promotion of condom 
use, and access to timely treatment are critical components of this strategy (Widyaningsih et 
al., 2019; Omame et al., 2021; Marsudi et al., 2021). By raising awareness, reducing stigma, 
and providing essential services, communities possess the capacity to empower individuals, 
enabling them to make informed decisions concerning their health and overall well-being. 
A mathematical model is essential for representing biological and physical phenomena 
through equations, aiding HIV/AIDS policymakers. It helps compare interventions, 
generalize trial results, identify challenges, monitor program impact, and assess treatment 
strategies. These models bridge theory and practice, providing insights crucial for evidence-
based decision-making in combating the epidemic. (Adewale et al., 2015a, 2015b; Adesanya 
et al., 2016a, 2016b;  Cheneke et al., 2021b, 2022c; Olopade et al., 2024a, 2024b, 2024c). In the 
context of HIV, various mathematical models have been devised to elucidate the intricate 
dynamics of the virus. These models encompass a range of complexities and factors, aiming 
to capture the nuances of HIV transmission, progression, and intervention strategies.  
 
Li & Xiao (2018) studied the immune response to HIV, focusing on viral load and treatment 
strategies. They analyzed the model's dynamics, influenced by HIV disposal and infected 
cell growth rates. Their research provides insights into HIV infection mechanisms and 
optimizing treatment regimens. Maimuna & Aldila (2018) studied the impact of ART on HIV 
spread using a mathematical model. They found that increasing the number of infected 
individuals in ART programs significantly reduced the basic reproductive number of HIV. 
This highlights that expanding ART treatment is crucial in curbing HIV transmission, 
underscoring the importance of proactive strategies in managing infectious diseases. 
 
Naik et al., (2020) introduced a nonlinear fractional order model to study HIV transmission 
and optimize control strategies. Their findings advocate for a dual approach to reduce HIV 
spread: promoting individual preventive measures like safe sex and barrier methods, and 
ensuring continuous monitoring and intervention by healthcare professionals to manage 
and contain the virus effectively. Tigabu et al., (2021) conducted an HIV/AIDS model 
addressing undiagnosed infections, analyzing its equilibrium and stability with an emphasis 
on the reproductive number (Ro). They introduced an optimal control problem using 
prevention and screening. Their numerical results indicated that combining these strategies 
effectively lowered HIV/AIDS prevalence and costs. 
 
This study delves into the intricate dynamics of an HIV model, exploring the intricate 
relationship between bifurcations and stability, particularly in the context of early treatment 
interventions for infected individuals and the parameters that fuel the rapid progression of 
HIV. HIV, a virus notorious for its ability to rapidly mutate and evade the immune system, 
presents a formidable challenge to public health efforts worldwide. By integrating the early 
treatment paradigm into the model framework, this research seeks to deepen our 
understanding of how timely interventions can influence the trajectory of the epidemic. 
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MATERIAL AND METHODS 
 
Formulation of the Model 
At a given time t , the total sexually active population can be represented by a subdivision 

into five mutually exclusive compartments: the susceptible class )(tS , latently infected 

individuals HL , infected undetected individuals UH , infected detected individuals DH , and 

treated individuals TH . Hence, the total population is )()()()()( tHtHtHtLtS TDUH ++++ . 

Individuals are presumed to enter the susceptible class at a consistent rate  . Susceptible 
individuals have the potential to become infected with HIV upon contact with infected 

individuals at a rate , where )( TWUdHUUH HHHL  +++= and H is the 

transmission rates for HIV. The individuals in class DH  exhibit a higher level of 

infectiousness compared to those in class UH . Therefore we have slow progressor 1  that 

moves from latently infected individuals to infected undetected class. Further information 
regarding additional parameters can be found in Table 1. The dynamics of the variables are 
described by 
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Table 1. Description of Variables 
Variables Description 

S Susceptible  

HL  Latent HIV 

DH  Detected HIV  

UH  Undetected HIV  

TH  Treated HIV 

  

Table 2. Description of Parameters 
Parameters Description 

  Recruitment rate   2000 Assumed 


 Natural death rate   0.019 Ibrahim et al., (2021) 

1  Treatment rate    0.1 Ibrahim et al., (2021) 

1  
Slow progressor   0.125 Assumed 

H  

1   

Progression rate   0.068 Assumed 
Progression rate   0.054 Assumed 

UH
 

Detection rate     0.7 Assumed 

H  
Contact rate    0.2 Akinwumi et al., (2021) 

dHUH  ,
 

HIV-induced mortality rate  0.01 Akinwumi et al., (2021) 

WdHU  ,,
 

HIV Modification parameters  0.001 Assumed 

 
 
 
 

                                                                              UH +        

                                   H1                                      H    

 

      H1   UH        UH +  

                                                                              1  

                                                                                                             
 
 
 
Figure 1. Diagram illustrating the HIV model. 

 
Positivity of Solutions 
To establish the epidemiological and mathematical validity of the Human 
Immunodeficiency Virus model, it is imperative to demonstrate that all state variables 

remain non-negative throughout time )0( t . 

 
Theorem 1. 
Let: 

 }0)0(,0)0(,0)0(,0)0(,0)0({ TDUH HHHLS
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Then, the solution )}(),(),(),(),({ tHtHtHtLtS TDUH of the model system equation (1) are 

positive .0t  
 
Proof: 
To establish theorem (1), we utilized the equations from system (1). Considering the first 
equation of the model (1): 

SSHHHL
dt

dS
TWDdHUUHH  −+++−= )(  

From which it follows that: 

S
dt

dS
−=            (3) 

Consequently: 

0+ S
dt

dS
  is the first order homogeneous differential equation. 

I.F.=     
tdt 

 =           (4) 

Multiplying both sides by the integrating factor yields: 

0+ tt S
dt

dS              (5)  

It then follows that, dtSd t 0)(   

Integrating on both sides gives:  

CS t  ,  
tCtS − )(  

Utilizing the initial condition that, when ),0()(,0 StSt == we have: 

CS )0(             (6)  

Hence
tStS − )0()(           (7) 

Since ,0)0(0  Sand then: 

,0)( tS  if →= tandt 0  

Therefore: .00)(  ttS  

Following the same procedure for the remaining variables TDUH HHHL ,,, , therefore, The 

HIV model formulated is well posed both mathematically and epidemiologically.  
 
Existence of Disease- free and Endemic Equilibrium  
To determine critical points, we set: 

dt
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=
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dLH =
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At this free equilibrium, it is assumed that there is no infection, 
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Existence of Endemic Equilibrium (EE) 
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Stability of the HIV model  
The basic reproduction number of the model (2) is determined through the utilization of the 
next generation matrix. (Akinola et al., 2021; Olopade et al., 2021a, 2021b). Using this 
approach, we have:  



















 −−−−

=

0000

0000

)1()1()1()1(

1111

1111

WHdHHUHH

WHdHHUHH

F




    (10)

   





















−

−−

−−
=







1

31

21

1

00

0

00)1(

000

KK

K

K

V
UHH

H
    (11) 

The reproduction number is the principal eigenvalue of the matrix 1−VF . Thus,  
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The threshold quantity HR  is the basic reproduction number of the normalized model 

system (2) for HIV infection in a population. It measures the average number of new 
secondary infections generated by a single infected individual in his or her infectious period 
in a susceptible population (Adewale et al., 2015c, 2016b; Olopade et al., 2017, 2022).  
 
Local Stability of the Disease-Free Equilibrium  
Theorem 2: The disease-free equilibrium of the system (2) demonstrates local asymptotic 

stability (LAS) if 1HR , and instability if 1HR . 

Proof: To ascertain the local stability of the equilibrium point 0E , we compute the Jacobian 

matrix corresponding to it. Examining the stability of the disease-free equilibrium at the 

critical point (



, 0, 0, 0, 0), based on equation (2), yields: 
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Then the characteristic equations are obtained as, 0=− IJ H   (where I is a 5*5 identity 

matrix)  

Hence, 0=− IJ H   implies that: 
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From equation (14), clearly 342312 ,, KKK −=−=−=   and  −=51,  twice 

Given that all real roots are negative, real, and distinct, it suggests that the disease-free 
equilibrium of HIV is locally asymptotically stable, which means the disease can be 
controlled without leading to full blown AIDS. 
 
Global Stability of Disease-Free Equilibrium (HIV) 
We study the global stability of equilibrium without disease and we implement the 
approach of (Phelimon et al., 2023; Adesola et al., 2024a, 2024b), then the equations of 
the model may be rewritten in the form; 
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dt
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          (15) 

With 0)0,( =PG , where 
1RP represents the uninfected classes )(S and 

4RI   represents 

the infected classes ),,,( TDUH HIIL . Also, )0,( *MEo =  denotes the disease-free 

equilibrium of the model. 

The two conditions ( )1H  and ( )2H  stated below must be satisfied for the model to be 

globally stable. 

( )1H : For *),0,( MMF
dt

dM
=  is globally asymptotically stable 

( )2H : 0),(),,(),( −=


IMGIMGAIIMG  for DIM ),(  

Where )0,( *MGDA I= is an M-matrix (the off-diagonal elements of A are non-negative) and 

D represents the feasible region where the model holds biological significance. If conditions 

( )1H  and ( )2H  are met, then the following theorem applies. 

Theorem 3:  The disease-free equilibrium )0,( *MEo =  is a globally asymptotically stable 

equilibrium of the model if 10 R  and that the conditions ( )1H  and ( )2H  are satisfied 

Proof: 

Now )(SM =  and ),,,( TDUH HHHLI =  
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oE  is a globally asymptotic stable equilibrium of 

the model equations. Hence, the two conditions above are satisfied. Therefore, the disease-
free equilibrium is globally asymptotically stable. This implies biologically that the 
prevention of HIV leads to AIDS is independent of the initial sizes of the sub-populations 
whenever the basic production number is less than one. 
 
Local Stability of Endemic Equilibrium 
 
Bifurcation Analysis    
Here, we delve into the potential for both backward and forward bifurcation, employing the 
center manifold theory. Initially, from equation (1), we undertake simplifications and a 
change of variables as follows. Let;  
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54321 xxxxxN ++++=          (20)  

Further, utilizing vector notation ,)( 54321
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The HIV model in the form ( )Tfffff
dt

dX
54321 ,,,,= , can be expressed as follows:
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The Jacobian of the system (2) at the DFE is provided as 

follows:
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In our analysis, we select 
* =H  as our bifurcation parameter, specifically when we 

examine the case of 1=HR   and determine H  from: 
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Then, we have: 
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Thus, the center manifold theory provides a framework for analyzing the dynamics of 

equation (21) with
* =H . It can be demonstrated that the Jacobian matrix of equation (24) 

at 
* =H   possesses a right eigenvector corresponding to the zero eigenvalues, denoted 

by T),,,,( 54321  , with the associated right eigen-values. 
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02  and 05   are free right eigenvector.

 The Jacobian matrix 0  possesses left eigenvectors (related to the zero eigenvalue), which 

are represented by ),,,,( 54321 vvvvvv =  

This gives: 
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Next is the computation bifurcation coefficients of a and b 
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Equation (25) shows that  0a  
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Equation (26) shows that 0b  

In the HIV model, a forward bifurcation occurs at 1=HR , as evidenced by the non-negative 

parameters within model (1), leading us to infer that 0a  and 0b . From the analysis 

above, model (1) demonstrates a supercritical (forward) bifurcation when HR surpasses the 
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threshold 1=HR . This implies the existence of a locally asymptotically stable endemic 

equilibrium point, denoted as ),,,,( ******

0 TDUH HHHLS=  for 1HR . 

 
Figure 2; Forward bifurcation graph 
 
Sensitivity analysis  
This analysis helps determine how sensitive a variable is to the parameters affecting it. The 

normalized forward sensitivity index of a particular variable (denoted as 0R ) with respect to 

a parameter (labeled as P ) is formally defined as: 

0

0

R

P

dP

d
X

R

P =


          (27) 

Table 3.2 Numerical Sensitivity Index for HIV 
 
  

H                   1.00000          + 

H               0.62227    + 

1              0.50027    + 

dH                  0.20122    + 

U                   0.30142    + 

W                   0.20002    + 

1             0.45999    + 

1             -0.20755    - 

UH             -0.55371    - 

             -0.21223    - 

UH                 -0.10235    - 

dH                 -0.12010    - 

 
 

Parameter     Sensitivity Value      Sensitivity Sign 
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Figure 3: Sensitivity Chart of Parameters in the Basic Reproduction Number 

 
Numerical Analysis 
In this section, numerical simulations are utilized to visually demonstrate the analytical 
findings derived in the above analyses. To solve the system of equations (1), we utilize a 
fourth-order Runge-Kutta iterative scheme. The initial values for the variables of model (1) 

are as follows: )300)0(,700)0(),500()0(,1000)0(,2000)0(( ===== TDUH HHHLS . 

Additionally, Table 2 provides both the values and the sources of the parameters utilized in 
the simulations. 

 
Figure 4 The total population of TDUHh HHHLS &,,,  when 0.01 =  
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Figure 5 The total population of TDUHh HHHLS &,,,  when 25.01 =  

 

 

 

Figure 6 The total population of TDUHh HHHLS &,,,  when 5.01 =  
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Figure 7 The total population of TDUHh HHHLS &,,,  when 0.11 =  

 
DISCUSSION  
This study presents a comprehensive analysis of a non-linear deterministic model for HIV, 
with a focus on parameter sensitivity and stability considerations. By thoroughly examining 
the mathematical and epidemiological aspects of the model, our aim is to elucidate the 
significance of each parameter in determining the basic reproduction number. The 
mathematical and epidemiological viability of the model is rigorously assessed, with 
particular attention paid to the positivity of its solutions. This ensures that the model is well-
posed both mathematically and epidemiologically. Upon analysis of the model, it becomes 
evident that the existence of disease-free and endemic equilibrium points is contingent upon 
the basic reproduction number, which plays a critical role in disease dynamics. Specifically, 

the disease is projected to either die out )1( HR  or spread (when it exceeds one), based on 

the value of the HR . 

 
Furthermore, analyses of the disease equilibrium, both locally and globally, are performed 
to ascertain its stability under varying conditions. Bifurcation analysis was investigated on 

HIV, the analysis reveal that 1HR is a sufficient condition to control HIV progression to 

full blown AIDS. This provides valuable insights into the long-term behavior of the disease 
within the population. Furthermore, numerical simulations and sensitivity analyses are 
conducted using MAPLE 18 software to pinpoint parameters that play a substantial role in 
influencing the spread of HIV. The results of these simulations highlight parameters with 
negative indices, which mitigate disease spread, and those with positive indices, which 
amplify the basic reproduction number, thereby intensifying disease transmission.  
 
From figure 2, it becomes evident that parameters associated with positive index values 
significantly influence the basic reproduction number. When this number surpasses unity, it 
signifies a potential escalation towards a more endemic scenario, potentially culminating in 
the development of full-blown AIDS. Notably, four parameters emerge as particularly 
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influential in determining the basic reproduction number: the infective contact rate, the two 
progression rates, and the rate of progression from slow progressors to HIV undetected 
individuals. Expanding on this observation, the infective contact rate represents a pivotal 
factor in the transmission dynamics of HIV, as it governs the likelihood of transmission from 
infected to susceptible individuals. Similarly, the two progression rates dictate the pace at 
which individuals’ transition through different stages of HIV infection, influencing the 
overall disease progression within the population. Moreover, the rate of progression from 
slow progressors to HIV undetected individuals underscores the significance of early 
detection and intervention in mitigating the spread of the virus. By comprehensively 
analyzing the sensitivity of these parameters, we gain valuable insights into the mechanisms 
driving the dynamics of HIV transmission and progression. This understanding is essential 
for informing targeted intervention strategies aimed at curbing the epidemic and improving 
public health outcomes. 
 
The importance of treatment in managing HIV cannot be overstated, particularly in 
preventing its progression to full-blown AIDS. Antiretroviral therapy (ART) stands as a 
cornerstone in the battle against HIV/AIDS, playing a pivotal role in managing the disease 
and improving the quality of life for those infected. By utilizing a combination of 
medications, ART effectively targets different stages of the virus's life cycle, preventing its 
replication and reducing its presence in the bloodstream. This reduction in viral load not 
only helps to preserve immune function but also diminishes the risk of progressing to AIDS. 
The graphical representation depicted in Figure 4 vividly illustrates the progressive nature 
of HIV infection over time. The upward trajectory of viral load and the downward trend in 
CD4 cell count signify the unchecked replication of the virus and the consequential 
deterioration of the immune system. This visual depiction mirrors the natural course of HIV 
infection, where the virus proliferates within the body, causing gradual damage to immune 
cells and resulting in the advancement of the disease. Figure 5 illustrates how initiating 
treatment at an early stage of infection leads to a rapid decline in viral load and preservation 
of CD4 cell count, compared to delayed treatment initiation. This highlights the pivotal role 
of early treatment in suppressing viral replication and preserving immune function, 
ultimately delaying disease progression and reducing the risk of developing AIDS-related 
complications. Figure 6 delves deeper into the impact of comprehensive treatment on HIV 
outcomes. The graph demonstrates the significant benefits of comprehensive treatment in 
achieving viral suppression and immune reconstitution. It shows Individuals receiving 
treatment exhibit lower viral loads, higher CD4 cell counts, when treatment rate is 0.5, and 
improved clinical outcomes compared to those receiving partial or no treatment. This 
underscores the importance of adherence to treatment protocols and ensuring access to 
comprehensive care for all individuals living with HIV. Furthermore, Figure 7 provides 
insights into the long-term effects of early and comprehensive treatment on HIV 
transmission dynamics within the population. By modeling the impact of treatment on viral 
load and transmission rates, the graph highlights the potential of early and comprehensive 
treatment to reduce HIV transmission and curb the spread of the virus. This underscores the 
dual benefits of treatment in improving individual health outcomes while also contributing 
to broader public health efforts to control the HIV epidemic. 
 
CONCLUSION 
Conclusively, while this research highlights the crucial significance of early and 
comprehensive treatment in HIV infection management, it is crucial to recognize certain 
limitations when discussing treatment-antiretroviral therapy (ART) and its role in HIV 
management. Firstly, the study may not fully capture the diverse socioeconomic and 
cultural factors that influence treatment accessibility and adherence, particularly in 
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marginalized communities. Additionally, the findings may be constrained by the study's 
scope and methodology, which may not encompass all variables relevant to treatment 
outcomes. Furthermore, the generalizability of the results may be limited by factors such as 
sample size and selection bias. Despite these limitations, the research underscores the 
essential role of timely intervention and treatment adherence in mitigating the impact of 
HIV infection on both individual health outcomes and population-level transmission 
dynamics. 
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