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Abstract 

Lassa fever is a viral disease that is endemic, causing significant morbidity and mortality. However, the 
complexity of the disease dynamics and the interplay of environmental and climatic factors make it 
difficult to get a robust, accurate and reliable model for the disease outbreak prediction. The research 
therefore, developed a geo-computational based model for Lassa fever prediction. The geo-computational 
based model for Lassa fever outbreak prediction will be formulated based on random forest and the 
resulting model will be specified using Unified Modelling Language (UML). The simulation of the 
model was carried out in R Programming Language, Environmental and climatic data variables were 
used to drive the simulation. By integrating advanced computational techniques with geospatial and 
climatic variables, the model achieved a high accuracy rate of 87.74%, demonstrating its proficiency in 
outbreak prediction. Validation results, including an AIC value of 596.97 for the GLM model, 
underscore the reliability of the simulation outcomes. A predictive map generated from the model 
showcases its capacity to forecast outbreaks in Nigerian states. Through this approach, leveraging 
climatic and environmental factors for accurate prediction, this study contributed to enhancing public 
health preparedness and response strategies for combating Lassa fever. 
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INTRODUCTION 
Lassa fever is a viral hemorrhagic fever with non-specific symptoms that has shown an 
upward trend in Nigeria and other West African countries, which is depicted by high 
incidence and case fatality in recent years (Gracie et al., 2021). Lassa fever is an acute viral 
disease caused by an enveloped RNA virus from the Arenaviridae family with a zoonotic 
reservoir and an animal –borne disease. It is in endemic in west Africa especially Nigeria 
where the first case was reported, and is named after the first case occurred in 1969, in Lassa 
town, Borno state, Nigeria, located in the Yedseram river valley at the south end of lake chad. 
Lassa fever host, a rodent which is known as a “multimammate rat” called mastomys natalensis, 
and infects human when it excreta or urine gets in contact with food, household or general 
materials, or open cuts or sores. The multimammate rats have the ability to produce large 
numbers of offspring’s because they breed frequently, thereby are dominant in homes and 
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areas where food is stored. Most human have a direct connection with the rodents because 
the rodents mostly live around homes where they can eat leftovers from humans or places 
where food items are not properly stored, some of these rats can be mistaken as bush rats and 
they can be consumed as a source of food, thus having a direct contact with human. Predicting 
outbreak of Lassa fever is crucial to its prevention, decision making and management. 
 
Researches have shown that these rodents thrive in West African forest. The rodents are 
known to thrive in areas where there are bushes than areas with large populations, and also 
mostly present in drier regions and relatively present in places that are waterlogged. These 
rodents are regarded as semi rodents in most Africa Countries where it is found in close 
association with human habitation, thus breeding is favorable in places where there is 
availability of food supply. (Jurišić, et al, 2022). 
 
The virus is excreted in urine for three to nine weeks from infection and in semen for three 
months. Multimammate rats are more rampant in rural regions, and in lesser numbers in 
forested and urban areas, their presence is a good predictor of the likelihood of humans being 
infected with the Lassa virus. (Promise and Noral, 2020).  
 
Research has shown that the cases of Lassa fever both confirmed and suspected cases are on 
the rise, based on the NCDC's (Nigeria Center for Disease Control) weekly reports and other 
sources of information about Lassa fever indicates that Nigeria is an endemic country for the 
disease, and this is explained by the country's increased surveillance for the disease. Through 
ecological niche modeling, it has been reported that there is a correlation between certain 
environmental variables (such as rainfall, human population density) with outbreaks of the 
Lassa virus infection. West African climate projections predict that there would be an increase 
in both temperature and rainfall, which is expected to lead to an increase in the likelihood of 
the multimammate rat thriving in the West African sub region, consequently increasing the 
chances of human infection with the Lassa virus (Promise and Noral, 2020). 
 
Geo-computation is a field of study combining geographical sciences and computational 
technology such as neural networks, cellular automata, for spatial data analysis, geographic 
data assessment storage, updating and prediction. Geo-computation is the computational 
approach to solving wide range of problems in geographical and earth systems. It has played 
a significant role in prediction of viral hemorrhagic fever including Lassa fever. (Stan et al., 
2000). 
 
Identification of geospatial data enables monitoring, tracing, measuring, assessment and 
modelling. Geospatial techniques encompass remote sensing, Global Positioning Systems 
(GPS) and Geographical Information System (GIS). Among computational techniques 
reported in literature include Artificial Neural Network (ANN), Support Vector Machine 
(SVM), decision trees, fuzzy logic, deep learning etc. 
 
Mohammad and Alexander (2018) provided a comprehensive review of machine learning 
(ML) applications in Geographic Information Science (GIS), emphasizing the importance of 
considering spatial properties in machine learning models. The researchers conducted a 
literature search focusing on spatial science journals to identify recent practices, highlighting 
gaps and opportunities for future research. The review covers data preparation, feature 
extraction and selection, model selection and training, and model evaluation and validation. 
The authors discussed the techniques such as normalization, standardization, PCA, ICA, 



Modelling the Influence of Temperature and Rainfall on the Population Dynamics of Mastomys Natalensis in 

Nigeria.   

 
 

Adekunle T. A., Ogundoyin I. K.,   Akanbi C. O., DUJOPAS 10 (2a): 215-229, 2024                                     217 

 

wavelet transforms, and various ML algorithms including decision trees, random forests, 
SVMs, ANNs, CNNs, RNNs, LSTMs, auto-encoders, and GANs. Evaluation metrics such as 
confusion matrix-based measures and AUC-ROC were also addressed.  
 
Lahoz-Monfort, et al (2019), The authors addressed the problem of predicting the distribution 
of endangered species, which is important for conservation management and policy. 
Traditional methods of species distribution modeling often rely on statistical modeling 
approaches that have limitations in handling complex data and making accurate predictions. 
Machine learning techniques have the potential to improve the accuracy and efficiency of 
species distribution modeling. The authors used machine learning models to predict the 
distribution of two endangered species: the gopher tortoise and the Florida panther. They 
compared the performance of six machine learning models: random forests, artificial neural 
networks, generalized linear models, generalized additive models, classification tree analysis, 
and boosted regression trees. They used various metrics, including the area under the receiver 
operating characteristic curve (AUC) and the true skill statistic (TSS), to evaluate the 
performance of the models. The authors found that machine learning models outperformed 
traditional statistical modeling approaches in predicting the distribution of the two 
endangered species. They found that random forests and boosted regression trees performed 
best among the six machine learning models tested, with AUC values of 0.946 and 0.943, 
respectively, for the gopher tortoise, and AUC values of 0.992 and 0.991, respectively, for the 
Florida panther. The authors also noted that the machine learning models were able to identify 
key environmental variables that influence the distribution of the two species. The paper 
provided a useful demonstration of the potential of machine learning techniques for 
predicting the distribution of endangered species. The authors' used multiple machine 
learning models and their evaluation of different metrics are appropriate and rigorous for this 
kind of study. 
 
Specifically, quite a number of works have been reported in literature of Lassa fever modelling 
and prediction applying geo-computational techniques. These reported works have 
contributed significantly to eradicating Lassa fever outbreak and management efforts. 
However, because of Lassa fever dynamics, most available works are simulation based and 
suffer prediction accuracy and reliability. So far, that have not been prototype tools resulting 
from previous works. In this research, the problem of accuracy and reliability in existing work 
was further improved and a predictive model was produced. 
 
MATERIALS AND METHODS 
 
Data Collection: 
 
Global Biodiversity Information Facility (GBIF) 
Dynamics of Lassa fever host was investigated by reviewing existing literature and 
knowledge gathering from experts. Relevant data on Lassa fever rat host (mastomys 
natalensis) was elicitated from GBIF (Global Biodiversity Information Facility), GBIF is an 
online repository that houses free and open source access to biodiversity data, it has the 
occurrence of the data, the specie, datasets, publishers of the datasets, and the resources. 
Appendix 1shows few of the occurrence dataset for lassa fever host (Mastomys). 1,777 records 
of the dataset was downloaded for the research work. GBIF is an international network and 
data infrastructure funded by the world's governments and aimed at providing anyone, 
anywhere, open access to data about all types of life on Earth. It contains over 51,000 
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occurrences of the lassa fever host (mastomys natalensis) for west Africa, and this was 
subjected to analysis based on the geographical location of Nigeria, which is our point of 
address on the disease  
 
Environmental and Climatic Variables 
Researches have shown that environmental and climatic variables play huge role in the 
susceptibility of lassa fever in Nigeria, hence, temperature, precipitation and soil were used 
to model the presence of lassa fever in Nigeria. 
 
1. Climatologies at high resolution for the earths land surface areas (CHELSA): CHELSA is a 
free climate data at high resolution of 1km. Data that was obtained from this repository will 
include layers from various time and period, to the present and nearest future of monthly 
temperature and precipitation layers. All dataset that was downloaded was in the 
Geographical Tagged Image File Format (GeoTIFF) for all layers of predictors that was used 
in this research, GeoTIFF is a geo-referenced tiff files, which is a public domain metadata 
standard that allows geo-referencing information to be embedded within a TIFF file. All 
GeoTIFF files are saved as integer with a compression = deflate, predictor = 2, and an internal 
scale and offset in case of continuous variables. All dataset that was downloaded in 1km 
resolution, (0.0083333333). Nineteen (19) layers was obtained from the CHELSA repository. 
All CHELSA files that was downloaded contain a variable that define the dimensions of 
longitude and latitude. Table 1 gives the variable short names, long names, units, scale, offsets, 
and explanations. Scale and offset are internally stored in the GeoTIFF files (www. 
https://chelsa-climate.org/) 
 
2. Hydrography 90m, is a repository to download the hydrography of Nigeria in tiles. 
 
Table 1:  Sample CHELSA Dataset  

Shortname Longname unit scale offset explanation 
bio1 mean annual air 

temperature 
°C 0.1 -273.15 mean annual daily mean air temperatures 

averaged over 1 year 
bio2 mean diurnal air 

temperature range 
°C 0.1 0 mean diurnal range of temperatures averaged 

over 1 year 

bio3 Isothermality °C 0.1 0 ratio of diurnal variation to annual variation in 
temperatures 

bio4 temperature seasonality °C/100 0.1 0 standard deviation of the monthly mean 
temperatures 

bio5 mean daily maximum air 
temperature of the 
warmest 
month 

°C 0.1 -273.15 The highest temperature of any monthly daily 
mean maximum temperature 

bio6 mean daily minimum air 
temperature of the coldest 
month 

°C 0.1 -273.15 The lowest temperature of any monthly daily 
mean maximum temperature 

bio7 annual range of air 
temperature 

°C 0.1 0 The difference between the Maximum 
Temperature of Warmest month and the 
Minimum Temperature of Coldest month 

bio8 
 
 
 
 

mean daily mean air 
temperatures 
of the wettest quarter 

°C 0.1 -273.15 The wettest quarter of the year is determined 
(to the nearest month) 

 

https://chelsa-climate.org/
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Model Formulation  
The Lassa fever prediction model was formulated based on random forest approach, model 
architecture was developed and Model was specified using UML (Unified Modelling 
Language). In the model formulation, the datasets are represented using variables, x, y, z, w, 
a normalization function of the dataset which was used to scale datasets individually to a unit 
norm so the datasets have a length of 1 or 0, depicting presence or absence. The Gini index, 
which uses classes (presence or absence) and the probability to determine which of the 
branches is more likely to occur. The gini index is the measure of dispersion. This simply 
measures the separation of presence and absence. The proposed model formulation pseudo 
code is outlined: 
Let x, y, z and w represent the different datasets. 
Where, 
x = “GBIF” 3.1 

y = “HYDRO” 3.2 

z = “CHELSA(rTempM, rCLimM, rClimsv, and rTempsv)” 3.3 

Let N( ) = Normalization Function 
Np = N(x, y, z) 3.5 

Where, Np  = Normalised Input Dataset 
//Normalization Function N( ) 
Xnormalised     = (X – Xmaximum) 
                       Xmaximum - Xminumum 

Z- score was used for the standardization of the datasets 
     Zi =     Ai – mean(A) 
               B 
Ai = Data points of Presence Datasets 
Mean(A) = Sample Mean 
B= Sample Standard Deviation 
// processing Function 
Let Rf ( ) = RandomForest Function 
Vout = Rf (NP) 3.6 

Where, Vout  = prediction outbreak and rat presence location 
//Random Forest 
Since Rf (Np) was classification based, using the Gini Index  

Gini = 1 −  ∑ (𝑃)2𝑑
𝑖=1  

Let C1 = Presence, C2 = Absence 
Q = Current Node for Classification 
Q will create child nodes 
Q = Q1 ∪  Q2 3.7 

 
Note that each samples S1, S2 is partitioned into the two classes presence (C1) and absence (C2). 
P(QJ) = | QJ|  ÷ |𝑄|  , proportion of Qj in Q                                                                  3.8 

 
Where (QJ) is the number of objects in set Q. 
P(Ci | Qj) = |QJ ∩ Ci| /|Qj|, Proportion of Qj  which is in Ci 3.9 

 
Define variations g(Sj) is set Sj 

g(Sj) ∑ 𝑃(2
𝑖=1 Ci | Qj) (1-P(Ci | Qj ))  3.10 



Modelling the Influence of Temperature and Rainfall on the Population Dynamics of Mastomys Natalensis in 

Nigeria.   

 
 

Adekunle T. A., Ogundoyin I. K.,   Akanbi C. O., DUJOPAS 10 (2a): 215-229, 2024                                     220 

 

There is variation g(Sj) is the largest if set Qj is equally divided among 𝐶𝑖 (presence / absence). 
It is the smallest when all of Qj is just one  𝐶𝑖. 
Therefore, Gini Index of variation: 
G = P (Q1) g(Q1) + P(Q2)g (Q2)  3.11 

Weighted Sum of Variations = g(Q1), g(Q2) 
 
The above mathematical formulation is written as an algorithm. 
………………………………………………………………………………………. 
Input 1: GBIF 
Input 2: GSBV 
Input 3: CHELSA 
Output: Presence/ Absence of Lassa fever 
Call: Normalization of predictor datasets 
Call:  Random Forest 
//Normalization of predictor datasets 
Normalization () 
Input 1: Identify the geographic boundaries of predictor datasets 
input 2: Identify the spatial extent of the predictor datasets 
input 3: Identify the spatial resolution of the predictor datasets 
Outputs: Identify the spatial units of the predictor datasets 

Select predictor datasets for geocomputation 
While(spatial conditions are met) do 

Perform spatial transformation to align the data to the geographic boundaries 
Perform spatial aggregation to summarize the data 
Perform spatial analysis to identify patterns and trends 
Perform spatial visualization to identify patterns and trends. 

end while 
Return  Spatial_Accuracy 
// Random Forest 
RandomForest ( ) 
 Step 1. Load the geospatial dataset. 
 Step 2. Preprocess the dataset by handling missing values, encoding categorical variables,      
and scaling numerical features. 
 Step 3. Split the dataset into training and testing sets. 
 Step 4. Initialize an empty list to store the predictions of each decision tree. 
 Step 5. For each decision tree in the random forest: 
               Sample a subset of the training data with replacement. 
             Randomly select a subset of features. 
                  Train the decision tree on the sampled data and selected features. 
                     Make predictions on the testing set using the trained decision tree. 
                     Append the predictions to the list of predictions. 
Step 6   Calculate the final prediction by aggregating the predictions from all decision trees   
Step 7   Evaluate the performance of the random forest model using appropriate metrics  
Step 8   Optionally, tune hyperparameters of the random forest model using techniques like 
grid search or random search. 
Step 9    Repeat steps 5-9 for multiple iterations to improve the model's performance. 
 Step 10    Return the trained random forest model. 
………………………………………………………………………………………………… 
 Algorithm for Lassa fever Prediction Model 
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Model Simulation 
In the Lassa fever Model, several variables were used the mean temperature and standard 
deviation of the warmest Quarter, mean and standard deviation of temperature, hydrology 
from hydrography 90m, The Random Forest algorithm is a powerful machine learning 
method based on decision trees, suitable for both classification and regression tasks. In our 
current research project, we have opted for a classification approach and have employed the 
bootstrap aggregation ensemble technique. This technique involves randomly selecting 
samples from our extensive Lassa fever dataset. 
Once the geospatial analysis phase is complete, we move on to the modeling stage. During 
this phase, we implemented the Random Forest model using the R programming language. 
Through our modeling efforts, we made a significant observation. We found that the 
bioclimatic soil variable did not contribute significantly to the model's performance. As a 
result, we decided to remove it from our model, focusing solely on temperature and 
precipitation variables. This refinement was crucial to ensure that our model remained 
optimal and avoided overfitting issues, ultimately producing a robust and meaningful 
classification model. 
 
RESULTS AND DISCUSSION 
 
Potential habitat distribution for the members of mastomys natalensis based on probability 
in Nigeria 
Figure 1 presents the potential habitat distribution of Mastomys natalensis members in 
Nigeria based on probability. The results obtained from the Random Forest model reveal that 
suitable habitats for these rats are found across the country, with varying levels of suitability 
(Figure 1a). Specifically, the model predicts high habitat suitability in thirteen states, including 
Niger, Zamfara, Kaduna, Sokoto, Katsina, Yobe, Borno, Kebbi, Plateau, Edo, Gombe, and 
Bauchi. 
 
Figure 1b displays the presence map of Lassa fever, the black dots represent where the rats 
are most likely to be found, the greener region has a high probability of the rat host being 
found there. Additionally, Figure 1c provides correlation coefficients for each prediction, with 
diagonal elements showing the variables themselves. Below the diagonal, bivariate scatter 
plots with fitted lines are presented, while above the diagonal, you'll find correlation values 
and significance levels denoted by stars. These stars indicate the significance of each 
correlation, with lower p-values indicating higher significance. Essentially, p-values help 
assess the reliability and importance of each variable in the logistic regression analysis. 
 
The logistic regression model, used in this analysis, explores the relationship between several 
independent variables (rhydro, rTempM, rCLimM, rClimsv, and rTempsv) and a binary 
dependent variable. The "Estimate" column displays estimated coefficients, "Std. Error" shows 
the standard error, "z value" provides the test statistic, and "Pr(>|z|)" gives the associated p-
value. Variables with p-values less than 0.05 are considered statistically significant (* or **). 
The "Null deviance" and "Residual deviance" indicate how well the model fits the data, with 
a lower residual deviance indicating a better fit. The AIC (Akaike Information Criterion) 
quantifies the model's goodness of fit, where a lower AIC suggests a better fit. Lastly, Figure 
1d presents the number of Fisher Scoring iterations required for the model to estimate 
coefficients. 
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In Figure 1e, when plotting the model's response on a map, the Generalized Linear Model 
highlights that the presence of these rats is more likely in greener areas. The greener the 
region, the higher the probability of finding these rats. This comprehensive analysis aids in 
understanding the habitat distribution and factors influencing the presence of Mastomys 
natalensis in Nigeria. 
 
 

    
Figure 1a: Predicted Distribution of Mastomys Natalensis across Nigeria 
 
 

 
Figure 1b: Predicted Distribution of Mastomys Natalensis across Nigeria 
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Figure 1c: The significance of each predictor to the potential habitat suitability of the rats 
 

 
Figure 1d: Generalized Linear Model Output 
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Figure 1e: Map Response of the Generalized Linear Model 

 
In figure 2, the results generated from the random forest classification model, as shown, the 
confusion matrix shows the number of correct and incorrect predictions made by the random 
forest model.  In this case, the model predicted the class (0) correctly for 480 instances, but 
incorrectly classified 56 instances as class (0) that actually belonged to class (1), which shows 
the confusion matrix suggests that the model has an error rate of 12.26%, which means it 
classified 12.26% of the instances incorrectly.  Therefore, the model correctly classified 87.74% 
of the instances. 
 

 
Figure 2: The random Forest classifications shows an accuracy of 87.74% 
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A visual comparison of the results in Figure 3, between the Random Forest model and the 
Generalized Linear Model (GLM). In Figure 3a, the Random Forest model indicates that areas 
marked in red have a 100% likelihood of rat presence, those in yellowish-red have a 75% 
likelihood, green areas have a 50% likelihood, and blue areas have a 25% likelihood of rat 
presence. Conversely, Figure 3b presents the predictions from the Generalized Linear Model, 
where green areas are highly likely to harbor rats, lighter areas have a lower probability of rat 
presence, and blue areas have the lowest probability. To enhance the reliability and robustness 
of the Generalized Linear Model's predictions, we performed cross-validation. Cross-
validation is a pivotal technique in the realm of machine learning. It serves multifaceted 
purposes, including evaluating model performance, mitigating overfitting, optimizing hyper-
parameters, and ensuring that models can adapt effectively to the variability found in real-
world data.  
 
Figure 3 and Figure 4 illustrates the model's output post-cross-validation for the random 
forest and the generalized linear model respectively. In figure 4, areas marked in red indicate 
a high probability of rat presence, assigned a value of 1. Areas with a 0.75 probability, areas 
with a 0.5 probability, and areas with a 0.25 probability are also distinguished. This 
comprehensive evaluation enhances our confidence in the Generalized Linear Model's 
predictions and strengthens its capacity to make reliable inferences regarding rat presence 
across various geographical areas. 
 
 

 
Figure 3a: Random Forest Model                                    Figure 3b: Generalized Linear Model 

 
 
DISCUSSION 
In this study, we utilized the Generalized linear model and the random forest model, and R 
software to conduct a comprehensive analysis of the potential distribution of mastomys 
natalensis under current and future climate scenarios, taking into account various 
environmental factors. The main findings and contributions of this research are, the model 
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Validation, the generalized linear model and random forest model were employed to predict 
the potential range of mastomys natalensis. The validation results demonstrated high 
accuracy, with an AIC value of 596.97 under modern climatic conditions, in the GLM which 
implies a reasonable fit in the model generated, confirming the reliability of the model’s 
simulation outcomes. In the Random forest model generated an accuracy of 87.74%, and most 
importantly the key Factors Influencing its distribution, this study rigorously considered a 
range of factors affecting the distribution of Mastomys natalensis. By conducting variable 
screening and principal component analysis of the random forest model, we identified 5 
environmental variables that significantly influence mastomys natalensis distribution. 
Specifically, the mean temperature of the year, standard deviation of the year and mean 
precipitation of the year and standard deviation of precipitation were identified as the most 
pivotal environmental variables impacting mastomys natalensis distribution suitability. 
 
CONCLUSION 
Our study unveiled the enhanced geographical accuracy of our machine learning model for 
predicting Lassa fever outbreaks, achieved through the seamless integration of Geopython 
programs in jupyter notebook environment and R programming language. Rigorously 
evaluated against two counterparts - a generalized linear model and random forest model - 
our model showcased superior accuracy and dependability. Specifically focusing on 
predicting outbreaks in Nigeria, a heavily affected country, our model outperformed both the 
generalized linear model and the conventional random forest model. This finding contrasts 
with Ajayi and Nwigwe's (2017) investigation into the utilization of multi-agent systems 
(MAS) in managing a Lassa fever epidemic in Abakaliki, Nigeria, a resource-limited area. 
While Lassa fever remains a pressing issue in West Africa, lacking specific treatment or 
vaccine and bearing high mortality rates, their retrospective observational study 
demonstrated significant success in curbing the outbreak post-deployment of MAS teams, 
effectively halting new cases within weeks. 
 
Our findings underscore the potential of machine learning tools, echoing the research by Elith 
and Leathwick (2009), who addressed the challenge of predicting species distributions based 
on presence-only data. They emphasized the significance of developing machine learning 
methods capable of handling challenging environments, such as regions with high 
environmental heterogeneity or limited data. Through a literature review on machine learning 
methods utilized for species distribution prediction with presence-only data, they identified 
support vector machines (SVMs), random forests (RFs), and generalized linear models 
(GLMs) as effective algorithms. Particularly, SVMs and RFs exhibited high accuracy rates 
across various datasets, showcasing promise for species distribution modeling. While GLMs 
also showed potential, they were noted to be less flexible compared to SVMs and RFs. 
Our model's significant contribution to infectious disease epidemiology lies in its effective 
amalgamation of cutting-edge computational methods with geospatial data. This 
comprehensive approach allows for a better understanding of Lassa fever dynamics, thereby 
paving the way for more potent preventative and control measures. Furthermore, our model's 
proven performance serves as a testament to the transformative impact of interdisciplinary 
approaches in infectious disease research, offering increased precision and dependability in 
outbreak forecasting. 
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