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Abstract 

The adoption of data mining processes is urgently needed due to the everyday generation of large 
amounts of data at an accelerated rate. The current advancement in the area of data analytics and data 
science has ushered in a new paradigm shift in the use of machine learning and softcomputing 
approaches to a new  paradigm to render a more beneficial approach in constructing algorithms that 
can effectively and efficiently assist expert systems to yield new insight to practitioners – to ensure 
comprehensive decisions on the underlying tuberculosis disease to potential problematic cases. This 
study explored spatial medical data in disease diagnosis to effectivevly and efficiently handle 
problematic cases of Tuberclulosisin Nigeria. Bayesian Network algorithm was used to predict 
potential cases in patients with covid-19 (and other underlying health issues) vis-à-vis its co-
prevalence rate with Tuberculosis with data retrieved from the epidemiology laboratoryof the Asaba 
Federal Medical Centre, Delta State. Training and test versions of the data set were separated. 
Constructed model yields high prediction compared to previous studies in forecast of the prevalence 
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co-infection rate. Results generated show that the confusion matrix model had sensitivity of 0.81, 
specificity 0.08, and prediction accuracy of 0.937 for data not originally used to train. 
Keywords: Epidemic, Tuberculosis, Algorithm, Pandemic, data set, Network 
 
 
INTRODUCTION 
Infectious diseases often spread easily with a variety of impact according to (Jung et al., 2016; 
Oyemade & Ojugo, 2020, 2021) – giving society a great deal of concern. Noticeably, such 
disease range from flu, contagion, epidemics and pandemic (Emordi et al., 2023). Society 
today – is often poised with the quest to minimize its diffusion, which has led to studies 
aimed at providing policy-makers/experts with effective measures to help combat the 
menace (Akazue et al, 2022; Akazue, Yoro et al, 2023; Allenotor et al, 2015). Disease is a 
disorder that impedes performance, and causes a system’s structure to deviate in its 
functioning (Laddha et al., 2022). It is a deviation to the norms or function of a system 
(Allenotor & Ojugo, 2017). A disease is typically related with physical harm and occurs in an 
exact place. (Peng et al., 2022), and yields specific symptoms that appears (Udeze et al., 
2022), to indicate the abnormal conditions in a system (Aghware et al., 2023a, 2023b; Aslan et 
al., 2022). Diseases spread through the use of aerosols, fomites, oral/injected drugs, direct 
contact, and vector-borne (Oyewola et al., 2021). Its outbreak across a society (made up of 
various actors) can morph as epidemic or pandemic (Lawton & Viriri, 2021; Tarawneh et al., 
2019; Ucar & Korkmaz, 2020). The current work investigates linkages, organization, and 
basic properties of interest by modeling propagation events on a social graph of connected 
players (Aslan et al., 2021; Wemembu et al., 2014). There are four main types of diseases that 
are known to exist: infectious, deficient, inherited, and non-hereditary (Ojugo & Yoro, 2013; 
2021; 2021; Okonta et al.,  2013; 2014; Pillai, 2022).  
 
The drive of players have continued to play a critical, important part in the transformational 
course of modeling the outcome in contagion propagation (Malasowe et al., 2023). Because, if 
properly harnessed – it will help experts formulate a pathway to de-escalate and manage 
such local outbreaks via targeted treatments (Muslikh et al., 2023; Ojugo & Ekurume, 2021; 
2021;). In order to help simulate epidemics and produce a dynamic framework as potential 
future contagion prevention strategies, this has also made it necessary to incorporate actor 
migration and their interaction into a model (Soriano-Paños et al., 2019; Zhang et al., 2015). 
With the unfettered, sporadic movement of actors (in a society modeled as a social graph 
with probability distribution of each node observed), a plethora of issues arise, which 
include(s): (a) nodal exposure to illness (i.e directing, (b) recovery rate, or the amount of time 
it takes for infected nodes or actors to recover based on adoption level, and (c) diffusion, or 
the propagation of infection (Macías et al., 2009; Ojugo & Otakore, 2018; 2018; 2020;, 2020; 
2021). 
 
The prevalence rate of the covid-19 illness with underlying tuberculosis on nodal interaction 
via a cluster exposure was modeled in our study using a Bayesian network in order to 
forecast the propagation rate with the arrival of seed-node on a susceptible-infect social 
graph. 
 
MATERIALS / METHODS 
 
Review of Tuberculosis as Underlying Health Complications 
Among a plethora of diseases,  communicable widespread viruses are the main danger, as 
they often yield great calamity to our society’s population (Oladele et al., 2024). Through 
mathematical modeling, these kinds of contagious epidemic diseases can be controlled and 
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their effects on society diminished (Najm, 2009). Tuberculosis, has been a leading infectious 
killer to society’s population as it is currently the second most common infectious disease 
worldwide (Bruinen de Bruin et al., 2020; Hurt, 2019; Said et al., 2023), and the pathogen 
Mycobacterium tuberculosis is the cause of it (Khan, 2018). When an infected individual or 
carrier coughs or sneezes while actively ill with tuberculosis, small droplets from their 
cough or sneeze are inhaled and spread the Mycobacterium tuberculosis infection (Og & 
Ying, 2021). Its symptoms have been known to affect the lungs as pulmonary tuberculosis 
(Oyemade et al., 2016), or other bodily regions, such as extra-pulmonary tuberculosis 
(Mustofa et al., 2023). The Mycobacterium tuberculosis now affects one-third of the world's 
population. Additionally, a greater number of tuberculosis patients led the World Health 
Organization (WHO) to designate the disease a worldwide emergency in 1993. 
 
A scientific model is often a prerequisite to help comprehend the propagation in 
transmission dynamics of tuberculosis – so as to help experts plan on the means to restrain 
its spread (Bhavani & Mangla, 2023). With over 34-million persons estimated to have 
tuberculosis in 2021 – India yields 27% of the population, China with 9%, Indonesia with 8%, 
Philippines with 6%, Pakistan with 5%, Nigeria with 4%, Bangladesh with 4%, and South 
Africa with 3% (Vågsholm et al., 2020). The short-course directly observed therapy (DOTS), 
which consists of four first-line medications, such as isoniazid (INH), rifampin (RIF), 
pyrazinamide (PZA), and ethambutol (EMB), given daily for two months before INH and 
RIF treatment is administered for an additional four months, is no longer available to the 
World Health Organization (WHO) (Voke et al., 2023). 
 
The Corona-Virus as Co-Infection: The Nigerian Frontier 
The coronavirus illness, or COVID-19, first appeared in Wuhan, in the Hubei region of 
China, in December 2019 (Eranga, 2020; Roshan, 2022). About 210 countries have been 
affected by this epidemic worldwide. The virus has found new epicentres since this 
incidence. These are Germany, France, Spain, Italy, and the United States of America. Given 
the potential harm this virus poses to public health, the World Health Organization (WHO) 
has classified it as a global pandemic and is urging governments and health sectors 
worldwide to take it seriously (Crawford et al., 2020; Kolawole et al., 2022; Nilam et al., 2020; 
Osasume, 2021; Ufua et al., 2021). The use of hydrochloroquine and other medications that 
have not yet undergone clinical testing was authorized (Chen et al., 2022; Telenti et al., 2021).  

 
There were doubts by individuals as to how COVID-19 is communicated. The researchers 
continued by stating that symptoms could include dyspnea, sore throat, dry cough, 
shortness of breath, and, in the worst case scenario, fatal pneumonia. Covid-19's nurturing 
phase lasts for two to fourteen days(Ampatzidis et al., 2020). Its symptomatic and 
asymptomatic character has also been linked to its significant global spread, as widespread 
screening and testing have not been able to accurately identify and manage these 
symptomatic and asymptomatic patients, continuing to put everyone at risk (Antia & 
Halloran, 2021; Tsuwa & Yandela, 2021), which will continue to also significantly impact the 
way of life of the people, and business across the globe (Haryani & Maryono, 2023; Leo et al., 
2017; Patrinos et al., 2022; Santura et al., 2021).  
 
No doubt, the world is still  stressed with the realities and new norms that were forced on 
her by covid-19 pandemic – in lieu of the huge economic and financial losses to thousands of 
businesses globally, shutdown of physical infrastructure, with long, medium and short-term 
costs and penalties (Khaki & Wang, 2019; Suruliandi et al., 2021). This huge loss in finance 
can be outrightly attributed to government’s compulsory order to shutdown all business 
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operations to avoid human clustering (Ibor et al., 2023). Nigeria was not left out as the 
lockdown featured high level of restriction on human mobility, good and services as well 
significantly disrupted outputs  and exportations, which in general, hindered business 
growth to undercut many investments resulting to investors’ huge loss, as well as 
confidence in the market (Eboka & Ojugo, 2020). Due to the suspension of business 
operations against this backdrop, there were 318 confirmed cases, 70 patients who had been 
released, and 10 cases that had been declared in Nigeria by April 11, 2020 (Ojugo & Eboka, 
2018; 2020). Government then took radical steps of lockdown with a view to curb the 
epidemic’s spread (Ihama et al., 2023). 
 
Data Gathering and Collection 
We acquired data from the Asaba Federal Medical Centre Epidemiology laboratory located 
in Asaba, Delta State. In the data collected, there were 4,687 instances with 54 attributes, 
including the patient's demographics, results from HIV and other tests, symptoms the 
patient experiences, their medical history, the diagnostic tools used, the treatment plan that 
included dosages and regimens specific to the disease type, as well as the drug reaction, 
follow-up results for the duration of the treatment period, costs, and hospitalizations paid. 
However, characteristics that could influence a patient's conduct throughout therapy (the 
treatment outcome could be anything from cured to failed to discontinued to loss of life to 
transferred out). The data set was organized into groups (Chibuzo & Isiaka, 2020; Durojaye 
et al., 2015) these are: (a) Patient-related characteristics (age, sex, etc.); (b) regimen-related 
characteristics; (c) proximity to a health facility-related characteristics; (d) treatment-related 
side effects; and (e) treatment duration-related characteristics.  
 
A map showing the spread of the covid-19 in affected Nigerian States and patients with 
underlying illnesses and con-infection rates of propagation is shown in Figure 1. 
 

 
Figure 1: Nigerian map with affected states highlighted 

 
A major task in machine learning requires gathering of the right data set with the right 
format – to effectively, train the model with correctly labeled cases. This helps minimize 
classification error. However, many observed data sets are rippled with missing data or with 
unneded data fields. Thus, researchers end up with an imbalanced data set. This implies that 
cleaning must be done and selected paramters from the data set tuned to yiled an optimal 
solution. In order to prevent data-type mismatches when end users try to encode the data 
during the preprocessing stage, the data set must be prepared to suit the model properly. 
Consequently, the model has received enough training to classify the incoming data into the 
appropriate classifications (Ojugo, Akazue, et al., 2023; Ojugo, Ejeh, et al., 2023). 



Co-Infection Prevalence of Covid-19 Underlying Tuberculosis Disease Using a Susceptible Infect Clustering 
Bayes Network  

 

Malasowe B. O. et al, DUJOPAS 10 (2a): 80-94, 2024                                                                                      84 

 

 
 
Clustering Bayesian Network 
A directed acrylytic graph that has been successfully implemented in numerous applications 
is the Bayesian network (BN) (Adishi et al., 2022). This is hinged on Bayes theorem of 
conditional probalities and Belief Network. The denotation P(B, A) indicates the probability 
for which node A is connected to node B. The network's ability to tolerate incomplete and 
noisy data is crucial in this case because it aims to provide a good performance graph even 
with bulky attributes (Ojugo et al., 2015; 2015; 2015). As such, it is a directed graph that 
shows a conditional probability table (CPT) for the parent nodes' occurrence. The probability 
of an event A depending on another event B is represented by the expression P(A|B). This 
has to do with how much faith it has in the plausibility of an event in light of lacking 
information. It suggests that: (a) events P(A|B) and P(B|A) are related; (b) P(A|B) is 
calculated using information about P(B|A); and (c) the outcome updates the conditional 
probability of an event based on fresh data. And it yields the Equation 1: 
 

 
 
 
Proposed Experimental Cluster Bayesian Network 
The Conditional Probability Table was used to train our model (CPT). This suggests that the 
algorithm builds distribution probability distribution tables for all associated nodes on the 
network in order to learn the structure and training data-labels (or accomplishments of 
interest). 
This is accomplished using two methods: multinomial estimator-based probability 
distribution learning and structured learning or accidental discovery utilizing K2, hills 
climbing, or Tabu-Search. If learned, the model commences its testing. The parameters with 
probability distribution were chosen in order to apply this model to the prevalence of the 
underlying illnesses in relation to the classification of the COVID-19treatment. This resulted 
in the appropriate stochastic results for the relevant underlying achievements. To do this 
and correctly classify the data-points, the supervised learning approach for Bayesian 
network building was applied, as shown in Figure 2 below. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Target Prediction Model Construction 

 
Using a matrix that was created from the input data, the model's top eigen vectors allowed it 
to convert the clustering problems into graph cut problems (Behboud, 2020; Ojugo & 
Nwankwo, 2021). The properties of the data points clustered around the cutting graph 
technique so that sparse points were in distinct clusters and densely packed points were in 
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the same cluster. Equation 2 provides the least cut formula, where wij represents a vertex's 
degree from i to j. Ncut and ratio cut are the two modes of balanced cuts. Furthermore, 
clustering is a two-cut technique relaxing. It is a successful partitioning technique that 
incorporates the Ng-Jordan-Weiss and normalized cut procedures, which are also spectral 
partitioning problem relaxations.  
 (Ojugo et al., 2014; Ojugo, Eboka, Yoro, et al., 2015) with the listing described as in algorithm 1. 
 

 
 

Algorithm: Cluster Bayesian Network Algorithm  

Input: Data set, clusters k, parameter s and number of iterations iter 
Output: the set of k clusters 
1. Calculate the affinity matrix  then define   where 

the original points data are si and sj  as well as i and j, respectively */ 
2.  If i ≠ j, then the Aii = 0 
3. The matrix of diagonal degrees, D, is calculated using the elements 
: . In light of this, the Laplacian matrix for the graph G with n input nodes or 

vertices is  

  
4. Locate the k-largest eigenvectorsof matrix L and [x1x2… xk]  

5. After renormalizing each row of x, create the matrix Y as follows:  

6. Reduce the distortion of each row Y such that it can be viewed as a point in the team's 
clustering.  
  employing any clustering technique, including a distance-based clustering strategy.  
7. When the rows of yi are part of cluster j, the original point si is allocated to that 
cluster. 

8. Provide back the cluster center and the collection of k clusters. 

 
 
RESULTS AND DISCUSSION 
Performance of Memetic Algorithm 
To compute model accuracy – we evaluated its performance using Equation 3 to yield the 
confusion matrix as in figure 3 (Akazue, Asuai, et al., 2023; Akazue & Omede, 2023; Obruche 
et al., 2024; Ojugo, Oyemade, et al., 2015; Okperigho et al., 2024). 
 

 
 

 
Figure 3. Model Accuracy prediction 
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Figure 3 yields a performance of 93.7% accuracy, and this agrees with (Barlaud et al., 2019). 
Results as in Table 2 shows the 5-classes (as confirmed, discharged, absconded, death and 
treated). With 30-rules generated, 24-of-the-30-rules were correctly classified in the class 0 
(Gao et al., 2021; Ojugo, et al., 2015; Ojugo, et al., 2015; Ojugo & Yoro, 2020; Yuan & Wu, 2021; 
Zareapoor & Shamsolmoali, 2015). Model also correctly identified benign true-positive 
instance; But in the class 1, the remaining six rules out of thirty were wrongly categorized 
and flagged as false-positive (Yoro, et al., 2023; Yoro, et al., 2023). 
 
RESEARCH FINDINGS 
A Bayesian Network (BN) with 5-fold cross-validation was utilized to effectively evaluate 
the model based on all correctly classified examples as indicated in the confusion matrix 
with the 5-classes (a.b.c.d,e) representing the various treatment groups. A confusion matrix 
shows the rules' accurate classification and true/false classification. Two cases (from b to e) 
were correctly categorized as false in class (a), according to Table 2, while a confirmed class 
of 2568 cases and a discharged class of 1134 cases were reliably classified as true. There are 
no discernible differences between classes (a) and (b), respectively. As a result, the 
classification error has little bearing. But for the proposed cluster Bayesian model, the 
overall software-derived percentage (instances correctly identified) is 93.7563 percent. 
 (Odiakaose et al., 2023).  
 

Table 2. The model's Confusion Matrix  

class a b c d e 

a=confirmed 2568 1 0 0 0 
b=discharged  1134 0 1 0 1 
c=death  13 0 3 5 0 
d=active 409 0 2 1 2 
e=absconded 2 0 0 1 0 

 
 
CONCLUSION 
In order to anticipate the possible spread of the COVID-19 disease among patients with 
underlying disorders, in particular, we created a target model using the Bayesian Network.  
The medical data collection was modified from the Federal Medical Centre in Asaba, Delta 
State, Epidemiology laboratory. 
 
The model's output defied distinct assumptions based on the probability distribution of 
attributes, yielding better performance and an acceptable degree of accuracy. This suggested 
model would be useful to medical providers in assessing and calculating the risk of treating 
COVID-19 instances that test positive for smears. When resources are scarce in a health care 
system, the model can be a practical and economical tool. Additionally, the Bayesian 
Network is one of the greatest predictive tools available for building models to handle 
problems in domains other than component-based system dependability prediction. 
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