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Abstract 

Two field experiments were conducted at the Faculty of Agriculture and Agricultural Engineering 
Research Farm of Abubakar Tafawa Balewa University, Bauchi, between 2006 and 2007 to study the 
effects of phosphorus (0, 25, 50 kg P/ha) and zinc levels (0, 2.5, 5 kg Zn/ha) on Total Soluble 
Carbohydrate and Crude Protein of six cowpea varieties namely: IT90K 277, IT93455 1, IT89KD 288, 
IT97K 568 18, IT90K 82 2 and Kanannado. The objectives of these experiments were to determine which 
levels of P, Zn and the various interactions of P, Zn, and year that had produced the highest total soluble 
carbohydrate (TSC) and crude protein (CP) on the grain contents of the cowpea varieties studied and 
to determine the best varieties in terms of TSC and CP upon the application of these nutrients (P and 
Zn) in Bauchi, Nigeria. The results revealed that increased levels of P from P0 to P50 significantly 
increased the CP and TSC contents of the cowpea grains. Similarly, higher Zn levels (2.5 and 5 kgha-
1) were observed to have significant effects on TSC and CP contents of the cowpea grains. Interactions 
of P and Zn were equally observed to significantly affect TSC and CP contents of the cowpea grains. 
Of all the six (6) cowpea varieties, Kanannado recorded the highest TSC and CP in the cowpea grains. 
With regard to year, 2006 recorded the highest CP while 2007 had the highest TSC. Higher levels of P 
and Zn or their associations were recommended for improving TSC and CP contents of the cowpea 
grains, with emphasis on Kanannado for Bauchi farmers. 
 
Keywords: Cowpea varieties, Total Soluble Carbohydrates and Crude Protein, Vigna 
unguiculata L., Phosphorus and Zinc Levels 
 
 
INTRODUCTION  
Cowpea (Vigna unguiculata L. Walp) is a widely cultivated legume (Alidu et al., 2020) food 
grown around the world (Musa et al., 2017) as food for human (Mfeka et al., 2019) and animal 
consumption (Alidu et al., 2020).The cowpea grains are highly valued for food, and the fodder 
and haulm used to feed livestock during the dry season (Mfeka et al., 2019; Langyintuo et al., 
2003). A moderate cheap and readily av  ailable source of protein and minerals, and contains 
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high concentrations of iron (Fe) and zinc (Zn) (Belar- mino et al., 2013; Abebe & Alemayehu, 
2022). A typical ripe grain of cowpea contains excellent sources of carbohydrate  (50 60%), 
protein (18 35%) (Addo Quaye et al., 2011; Stancheva et al., 2017) and 3.7% ash, an energy value 
of 340 kcal/ 100 g (Putul et al., 2021). Cowpea as well comprises substantial amount of 
micronutrients such as vitamin A, iron, zinc and calcium (Prinyawiwatkul et al., 1996; Quaye 
et al., 2009; Alidu et al., 2020; Affrifah et al., 2022).The crude protein from the grains and leaves 
is within the range of 23 to 32% (Diouf, 2011; Ddamulira et al., 2015; Sebetha et al., 2015; Abebe 
& Alemayehu, 2022). Cowpea leaves, grains and crop residues contain mean crude protein 
ranging from 32 to 34; 23 to 35 and 11 to 25%, respectively, and contains 62% soluble 
carbohydrates (Ahamefule &Peter, 2014; Jayathilake et al., 2018). 
 
Phosphorus is the main plant nutrient concerned with energy transfer in the plant chemical 
reactions (Prasad. 2007; Kayoumu et al., 2023). Phosphorus is an essential component of 
numerous significant compounds in plant cells (Shen et al., 2011; Wieczorek et al., 2022). These 
compounds comprise the sugar phosphates implicated in respiration (Figueroa & Lunn, 2016; 
Fichtner & Lunn, 2021) and photosynthesis (Aluko et al., 2021). It is also involved in the 
biosynthesis of phospholipids of plant membranes (Reszczyńska and Hanaka, 2020), and in 
the nucleotides used in plant energy metabolism and in molecules of DNA and RNA (Taiz 
&Zeiger,1991; Witte &Herde, 2020; Lambers, 2022). Phosphorus is an indispensable nutrient 
for the biosynthesis of chlorophyll (Carstensen et al., 2018; Kayoumu et al., 2023), and in 
addition to being a component of cell nucleus, it plays a fundamental role in cell division and 
development of meristematic tissue (Razaq et al., 2017; Ahmed et al., 2018; Lambers, 2022). 
Phosphorus significantly increases branches, leaves, fresh and dry weight per plant in cowpea 
(Abobatta et al., 2023) at 60 kg P2 O3/ha (Namakka et al., 2017; Kiri et al., 2023). Several studies 
have shown increased tissue P levels with soil availability of P (Balemi & Negisho, 2012; 
Mathew et al., 2018; Wieczorek et al., 2022). Phosphorus plays an outstanding function in 
physiological processes of plants (Kalayu, 2019; Wang et al., 2021; Pan et al., 2022; Jančaitienė 
et al., 2023). Phosphorus is a key component of ATP and it plays a fundamental role in the 
transformation of energy in plants (Hu et al., 2021; Johan et al., 2021; Pan et al., 2022; Lambers, 
2022; Paz Ares et al., 2022) and furthermore, it is crucial for storing energy and its release in 
living cells (Nkaa et al., 2014; Johan et al., 2021; Jančaitienė et al., 2023). The major effect of 
phosphorus on cowpea yield is expressed as an increase in the number of pods per plant and 
number of seeds per pod (Nkaa et al., 2014; Kyei Boahen et al., 2017; Augustine & Godfre, 2019; 
Sudharani et al., 2020; Aryal et al., 2021). Phosphorus was also reported to have increased the 
number of flower primordia (Namakka et al., 2017; Dangi et al., 2019; Sudharani et al., 2020) 
and early root development (Mohammed et al., 2020; Kamboj & Himanshi, 2021). 
 
Zinc essentially functions as a structural component of quite a lot of enzymes including carb
onic anhydrase (Escudero-Almanza etal., 2012; Lionetto etal., 2016; Kim etal., 2020), alcohol d
ehydrase (Castillo-González etal., 2018; de Miranda etal., 2022), alkaline phosphatase (Suzuki
 etal., 2020; Mapodzeke etal., 2021), phospholipase (Dennis etal.,2011; Prasad & Bao, 2019; Zh
ang etal., 2019; Yang etal., 2020; Rai etal., 2021; Saleem etal., 2022; Alsafran etal., 2022), carboxy
peptidase (Coleman, 1991; Brown etal., 1993; Balafrej etal., 2020; Nandal etal., 2021) and RNA 
polymerase (Romheld & Marschner, 1991; Chanfreau, 2013; Fan etal., 2021; Stanton etal., 2022
). Zinc is an essential mineral nutrient and a cofactor of over 300 enzymes and proteins invol
ved in cell division, nucleic acid metabolism and protein synthesis (Marreiro etal., 2017; Casti
llo-González etal., 2018; Cheng & Chen, 2021). Zinc nutrition was observed to significantly in
crease yield and yield components and above ground biomass of faba bean (Vicia faba L.) at 
maturity phase (Weldua etal., 2012; Gerenfes &Negasa, 2021). Cakmak (2000); Subba etal. (20
14); Marreiro etal. (2017) and Benhamdi etal. (2021) have speculated that zinc deficiency stres
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s may impede the activities of a number of antioxidant enzymes, resulting into wide oxidati
ve damage to membrane lipids, proteins, chlorophyll and nucleic acids. Zinc can impact on c
arbohydrate metabolism at many levels (Saleem etal., 2022). Moreover, Zn is essential in the 
biosynthesis of tryptophan, an originator of the auxin-indole-3-acetic acid (Oosterhuis et 
al., 1996; Ahmed et al., 2012; Castillo-González et al., 2018; Saleem et al., 2022).  
 
Zinc deficiency symptoms comprise small leaves, shortened internodes, and interveinal leaf 
chlorosis, giving the plant a stunted appearance (Hacisalihoglu, 2020; Khan etal., 2022). Avail
ability of zinc in soils and its absorption and translocation in plants is influenced by all other
 plant nutrients (Moreno-Lora & Delgado, 2020). Zinc in general interacts negatively with ph
osphorus which depends upon a number of physicochemical properties of soils (Kumar etal.,
 2016; Prasad etal., 2016; Santos etal., 2021). Zinc fertilization (at higher dose of 40 kgha-1) was
 reported to have produced highest protein content in cowpea grains than 0 and 20 kgha-1 (C
havan etal., 2012). Similarly, Kumar etal. (2002), in an earlier study, observed that zinc nutriti
on (at 9.0 kgha-1) improved nodulation, nutrient uptake, protein content and protein yield ov
er control (0 kgha-1) in a variety of (fodder) cowpea. Zinc is known to activate several enzymes 
associated with cell division, cell elongation, and photosynthesis. Consequently, zinc 
nutrition promotes zinc concentration, yield, and crude protein content of a plant (Safak et al., 
2009;  Rudani et al., 2018; Umair et al., 2020; Santos et al., 2021; Saleem et al., 2022). Crops 
treated with zinc were observed to be more robust and grow better since zinc is implicated in 
making RNA and DNA structurally more stable (Chanfreau et al., 2013; Chakraborty & Mishra, 
2020; Saleem et al., 2022), in addition to its involvement in the biogenesis of auxins and 
gibberellins that are known for their abilities to promote growth in plants (Mousavi, 2011; 
Castillo González et al., 2018; Hassan et al., 2020; Mapodzeke et al., 2021).The objectives of this 
study were to examine which levels of P, Zn and the various interactions of P, Zn, and year 
had induced the highest total soluble carbohydrate and crude protein  on the varieties and to 
determine the best varieties in terms of TSC and CP upon the application of these nutrients (P 
and Zn) in the scrub savanna of Nigeria. 
 
 
MATERIALS AND METHODS   
Description of the Site of the Study  
Two field experiments were conducted at the School of Agriculture Research Farm of the Ab
ubakar Tafawa Balewa University, Bauchi, Nigeria, during the growing seasons of 2006 and 
2007 to investigate the effects of phosphorus and zinc interactions on leaf area ratio (LAR) of
 cowpea (Vigna unguiculata (L.) Walp) varieties.  Bauchi, is located at 10.3010° N latitude and 
9.8237° E longitude at an altitude of 109.45 m above sea level. It has a monsoonal climate 
characterized by well-defined rainy and dry seasons. Annual rainfall is mostly distributed 
between the months of May and October. Average rainfall for the 2006 and 2007 mean 
monthly temperature; and other meteorological data were collected during the experimental 
periods. The soils of the experimental site were found to be moderately well drained, deep, 
and tropically sandy loam. The physicochemical properties of the soil of the experimental sites 
for the two years were determined using the procedures described by Black (1965).  
 
Experimental Design  
A split-split plot design with a total size of the experimental area of 50 by 62 m was used. 
There were three (3) replicates and each replicate consisted of three sub-plots; each measuring 
2.25 by 18.9 m. Each sub-plot was divided into six (6) sub-sub-plots with each measuring 2.25 
by 6.30 m. A space of 1 m each was left between main plots, and replicates. Half a meter (0.5 
m), and 50 cm were left between sub-plots, and sub-sub-plots respectively. Main plots were 
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assigned to three different levels of single super phosphate (SSP) namely 0, 25, and 50 kgha-1 
at random. Sub-plots were assigned to three (3) different levels of Zn  namely 0, 2.5, and 5 
kgha-1. A total of fifty-four (54) treatments consisting of six varieties by three SSP levels by 
three Zn levels. The treatments were randomized using table of random numbers as described 
by Gomez & Gomez (1984). The experiment continued up to three and half (3½) months that 
is, from planting to harvest period.  
 
Experimental Plant Materials 
Six cowpea varieties collected from International Institute for Tropical Agriculture (IITA) 
were used in the study. The varieties are IT90K 277, IT93 455 1, IT89KD 288, IT97K 568 18, 
IT90K 82 2, and Kanannado. 
 
Soil Sampling and Analysis  
In each experimental year, soil samples were collected randomly from selected spots in the 
experimental field before land preparation. The samples were taken at two depths (0-15 and 
15-30 cm), using a tubular auger. The physicochemical properties of the soil were determined 
using procedure described by Black (1965). The following soil properties were studied: 
Nitrogen, phosphorus, potassium, power of hydrogen (pH), cation exchange capacity (CEC) 
and particle size.  
 
Land Preparation 
The land was cleared, ploughed and harrowed. It was then marked into 162 sub-sub-plots. 
The sub-plot size was 14.2 cm2. There were 18 sub-sub-plots in a main plot, and 3 main plots 
in a replicate, and 3 replicates in the whole field experiment.  
 
Sowing of Cowpea Varieties 
Sowing was done 3rd and 5th August for the years 2006 and 2007, respectively. Sowing was 
75 cm row to row and 25 cm plant to plant, and three seeds per hill. Seedlings were thinned 
to one per hill two weeks later. The planting dates were considered in such a way that the 
varieties mature after end of the rainy season as recommended by IITA (2000).  
 
Fertilizer Application 
Single Super Phosphate was incorporated into the soil before sowing as top dressing is not 
recommended by ITTA (2000). Soil application of phosphorus is more effective in increasing 
phosphorus content (of the soil) than foliar application (IITA, 1973). Zinc sulphate was used 
as the sources of Zinc and was incorporated in to soil.  
 
Weeds and Pest Control  
The first weeding (hoe weeding) was done about three weeks after sowing (21 DAS). Second 
weeding was at 42 DAS. For the control of insect pests, three sprays of insecticides at 30, 50 
and 60 days were used, using an insecticide dimethyl cyclopropanecarboxylate (karate).  
 
Determination of Crude Protein 
Crude protein was determined by the Kjedahl method (Chopra and Kanweer, 1991). Two 
grams (2 g) of the powdered sample was placed in a Kjedahl flask and 30 ml concentrated 
H2SO4 added; 10 g of K2SO4 was also added. The flask was heated in a fume cupboard using 
heating mantle, first gently but more strongly after frothing stopped. When the solution 
became colourless, it was reacted for another hour and later cooled. The solution was then 
diluted with 200ml distilled water and transferred to 800 ml Kjedahl flask. Four pieces of 
granulated Zinc was put in the flask and 100 ml of 40% caustic soda was added. The flask was 
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connected to the splash heads of the distillation apparatus and 25 ml or 0.1 N H2SO4 was 
collected in the receiving flask and distilled. When the distillation was completed, the flask 
was removed and the distilled titrated against 0.1N caustic soda (NaOH) solution using 
methyl red as indicator. The amount of protein was calculated thus: Weight of N2 = 0.004 x 
volume of 0.1 NH2SO4 taken – volume of 0.1N NaOH used. Crude Protein=Weight of N x 6.25 
 

Therefore, crude protein = 
crude protein

weight of sample
 x 100 

 
Determination of Ether (Crude Fat)  
Ether extract was determined using Soxhlet extraction assembly. 2 g of sample already dried 
in a moisture cup was transferred into previously prepared thimble. The mouth of the thimble 
was plugged with fat free absorbent cotton. The clean, dry receiver flask from the Soxhlet 
(extract) assembly was taken and weighed accurately. The thimble with sample was 
introduced into the Soxhlet. The Soxhlet was filled with petroleum ether by pouring it through 
the condenser at the top by means of glass funnel. The apparatus was placed on a water bath 
at 60 0C fixed by clamps to a retort stand, and cold-water circulation in the condenser started. 
Extraction was done for 8 hours (about 250 times). After the extraction, the thimble with the 
materials were removed from Soxhlet again and heated on the water bath to recover all the 
ether from the flask. The outside of the flask was wiped thoroughly with a clean dry cloth to 
remove film of moisture and dust. It was then dried in a hot air oven at 100 0C for 1 hour, 
cooled in a desiccator and weighed (The extraction thimble with the material were preserved 
in a desiccator for crude fibre determination. Ether extract (crude fat) was calculated as: W2 -

W/M x 1 𝑋 10. 
Where, W2 = weight of empty oil flask; W = weight of flask after extraction; M = weight of 
direct material taken. 
 
Determination of Crude Fibre  
The crude fibre was determined as described by AOAC (1990) procedure. 2 g of fat free sample 
was transferred to 600 ml beaker, and about 1g prepared asbestos and 200ml boiling acid were 
added, together with a little antifoaming agent. The beaker was then heated on the digestion 
apparatus, with periodic rotation to keep the solids from adhering to the sides of beaker. The 
moisture was boiled for exactly 30 minutes and then filtered, in one operation and without 
breaking the suction, 50 -75 ml boiling water was added to the filter. The beaker filter mat, 
and residue were washed with three 50ml portions of water and the residue sucked dry. The 
filter mat and residue were returned to the beaker and 20ml boiling alkali added. The mixture 
was again boiled exactly 30 minutes and filtered, as before without breaking the suction, the 
filter was then washed with 25 ml boiling acid, then with three 50ml portions of boiling water 
and 25 ml alcohol. The filter and residue were dried for 2 hours at 130 0C, cooled in a desiccator 
and reweighed. 
Crude fibre = loss on ignition – loss of asbestos blank  
 
Percentage of Carbohydrate 
Percentage of carbohydrate was calculated as: 100- (Moisture content + ash + crude protein + 
ether extract + crude fibre) = % moisture content + % ash + % crude protein + % ether extract 
+ % crude fibre.  
 
 
 
 



Effects of Phosphorus and Zinc levels on Total Soluble Carbohydrate and Crude Protein in Grain of Cowpea 

(Vigna unguiculata (L.) Walp) Grown in Bauchi, Nigeria  

 

Idris Z. Kiri et a DUJOPAS 10 (1a): 208-230, 2024                                                                                           213 

 

Determination of Moisture Content 
Moisture content was determined by recording fresh weight and dry weight of the sample. 
The percentage moisture of sample was calculated as: Wc = wf-wd x 100/wf. Where: wc = 
water content (g); wf = fresh weight (g); wd = dry weight (g); % moisture = 100 – wd.  
 
Determination of Ash  
The residue remaining from burning or destruction of any biological material or organic 
matter in furnace at 550 0C is called ash. Percentage ash was determined as follows. 2 g of the 
prepared sample was placed in a crucible for determination of ash. The crucible was placed 
in cold muffle furnace maintained at 550 0C + 5 0C overnight. It was kept at this temperature 
until white light grey or reddish ash was obtained which appeared to be from carbonaceous 
particles. The crucible was placed in a desiccator, allowed to cool and later weighed. The ash 
content was expressed as percentage on dry matter basis and was calculated as: (w + a)- a x 
100/R = % ash. Where: w = weight of crucible + ash (g); a = weight of crucible(g); R = weight 
of sample (g).  
 
Data Analysis 
The results obtained were analyzed using analysis of variance (ANOVA). F test was used for 
a split-split-plot design using SAS software to test for significant effects of treatments 
as described by Snedecor and Cochran (1967), Gomez & Gomez (1984), where the observed 
variance ratios were compared with the table values at either 1 or 5%. Differences between 
means were separated by the use of Duncan multiple range test (DMRT). Correlation and path 
co-efficient analyses were carried out to ascertain the causes and effects of the parameters on 
the seed yield using the procedure described by Little & Hills (1978) in order to assess the type 
and magnitude of the cause-and-effect relationships among the variables.  
 
 
RESULTS 
 
Total Soluble Carbohydrate and Crude Protein of Cowpea Grain in 2006 
Results in Table 1 are on the effects of Zinc and SSP levels on TSC and CP of cowpea grains in 
2006. Varieties had significant effects on TSC and CP throughout sampling periods, except CP 
at 2 WAPS. Kanannado recorded the highest TSC throughout sampling periods. The least TSC 
was recorded by IT90k-277-2 at 1 and 2 WAPS, while IT89KD-288 recorded the least TSC at 3 
WAPS. Kanannado recorded the highest CP at 1 and 3 WAPS.  
 
Single Super Phosphate levels had significant effect on both TSC and CP throughout sampling 
period. At 1 WAPS, the highest and least TSC, were recorded by 0 and 25 and 50 SSP kgha-1, 
respectively. However, at 2 WAPS, 25 and 50 recorded higher TSC than 0 SSP kgha-1, whereas, 
at 3 WAPS, 50 and 25 SSP kgha-1 recorded the highest and least TSC. At WAPS, 0 and 50 
recorded higher CP than 25 SSP kgha-1, but at 2 WAPS, the highest at least CP, were recorded 
by 25 and 50 SSP kgha-1, respectively. At 3 WAPS, the highest and least CP was recorded by 0 
and 25 SSP kgha-1. 
 
Zinc levels at 0 and 5 kgha-1 recorded higher TSC at 1 WAPS than 2.5 kgha-1. Zinc levels had 
no significant  (p>0.05) effect on TSC at 2 WAPS. But at 3 WAPS, 2.5 and 5 Zn kgha-1 recorded 
higher TSC than the control. At 1 WAPS, the highest and least effect on Zinc levels on CP, 
were recorded by 2.5 and 0 kgha-1. 2.5 and 0 Zn kgha-1 recorded the highest and least effects 
on CP at 2 WAPS. At 3 WAPS, the highest and least CP was recorded by the control and 2.5 
Zn kgha-1. Interactions between V x P, V x Zn, P x Zn, V x P x Zn had no significant (p>0.05) 
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effect on TSC throughout sampling periods except of V x P and V x Zn at 2 WAPS. Interactions 
between V x P, V x Zn, P x Zn, V x P x Zn were also not significant (p>0.05) on CP at 1 and 2 
but not at 3 WAPS (Table 1). 
 
 
Total Soluble Carbohydrate and Crude Protein of Cowpea Grain in 2007  
The effects of Zinc and SSP levels on TSC and CP of cowpea grain are presented in Table 2. 
Data indicated that varieties, SSP and Zinc levels had significant effect on TSC and CP of 
cowpea grains in 2007. At 3 WAPS, the highest and least TSC and CP were recorded by 
Kanannado and IT90K-277-2, respectively. The control (0 SSP kgha-1) had higher TSC and CP 
than 25 and 50 SSP kgha-1. 2.5 Zn kgha-1 recorded higher TSC than 0 and 5 Zn kgha-1.5 Zn 
kgha-1recorded higher CP than 0 and 2.5 Zn kgha-1. Interactions had no significant (p>0.05) 
effect on both TSC and CP at 3 WAPS. Interactions had significant (p>0.05) effect on TSC at 1 
WAPS but not at 2 WAPS. CP was significantly (p>0.05) affected by interactions at 2 WAPS. 
At 1 WAPS, V x Zn and V x P x Zn had significant (p>0.05) effects on CP but not V x P and P 
x Zn. 
 
 
Total Soluble Carbohydrate and Crude Protein of Cowpea Grain at Combined Effects in 
2006 and 2007  
Data of combined effects of Zinc and SSP levels on TSC and CP of cowpea grains in 2006 and 
2007 are presented in Table 3. Year had no significant (p>0.05) effect TSC and CP at 1 and 2 
WAPS, respectively. The year 2007 recorded higher TSC at 2 and 3 WAPS. Higher CPs at 1 
and 3 WAPS were recorded in 2006. Varieties had no significant (p>0.05) effect on TSC and 
CP throughout sampling periods. At 3 WAPS, Kanannado had the highest TSC and CP. The 
least TSC and CP at the same period, were recorded by IT89KD-288 and IT90K-277-2, 
respectively. SSP levels had significant (p>0.05) effects on TSC and CP throughout sampling 
periods. SSP levels did not have significant effects on TSC at 1 WAPS but at 2 and 3 WAPS. 
At 2 WAPS, 50 SSP kgha-1 had higher TSC than 0 and 25SSP kgha-1, while at 3 WAPS, 25 and 
50 SSP kgha-1 recorded higher TSC than the control. For the effect of SSP levels on CP, 50 and 
0 kgha-1 recorded higher and least CP at 1 WAPS; at 2 WAPS, the highest and least CP were 
recorded by 25 and 50 kgha-1, respectively. The highest and least CP at 3 WAPS was recorded 
by 0 and 25 kgha-1. Zinc levels had no significant (p>0.05) effects on TSC at 1 and 3 but not at 
2 WAPS, where the highest and least TSC were recorded by 0 and 2.5 kgha-1, respectively. 
Zinc levels had significant (p>0.05) effects on CP at 1 and 2 but not at 3 WAPS. At 1 WAPS, 
the highest and least CP were recorded by 5 and 0 Zn kgha-1, while at 2 WAPS, the highest 
and least CP were recorded by 5 and 0 Zn kgha-1, respectively.  
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Table 1. Effect of Phosphorus and Zinc Levels on Total Soluble Carbohydrate and Crude 

Protein of Cowpea Grain at Week After Pod Setting Grown at Bauchi in 2006 
 

Treatment Sampling dates (WAPS) 

 1 2 3 

 TSC (%) CP (%) TSC (%) CP (%) TSC (%) CP (%) 

Varieties       

IT90K-277-2 62.09b              24.14c            63.11f             24.17              63.58a             27.29e                                                                                                                                                                          

IT93-455-1                                                        62.25b              24.28c             63.24d            26.33               63.67a            27.61d                                                                                                                                                                                 

IT89KD-288 62.08b              24.29c             63.16e            26.34               61.49b            27.47d                                                                                                                                                                           

IT97K-568-18 60. 89c              24.69b             63.34c             26.67              61.72b           28.05c                                                                                                                                                                            

IT90K-82-2 62.61b              24.84b              63.61b            26.89              64.05a           28.21b                                                                                                                                                                          

Kanannado   63.27a              25.30a              64.36a             26.84              64.76a           29.11a 

SE + 0.589                0.028               0.014               0.388 1.227             0.017                                                                                            

                                                                                                  

SSP (kgha-1) 
 

      

0 62.43a           24.62a                 63.45b           26.68b             62.92b           28.00a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

25 62.43a           24.54b                63.47a           26.80a              62.77c           27.91c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

50 61.73b           24.61a              63.48a           26.13c             63.95a           27.98b

SE + 0. 417            0.020                  0. 010           0.275               0.868 0.012                                       

                               

Zinc (kgha-1)       

0 62.13a           24.56b                 63.47           26.20b               61.80b           28.05a                                                                    

2.5 61.74b           24.61a                 63.47           24.76a                63.93a           27.87c 

5.0 62.44a           24.60b                 63.47           26.65a                63.91a           27.96b                  

SE + 0. 417            0. 020                 0.010            0.275                 0.868             0.012                                                    

                                                                                            

Interactions       

V x P  n. s                                                              n. s                                                                 * n. s                                                                 n. s                                                                ** 

V x Zn                                                                     n. s                                                             n. s                                                                 ** n. s                                                                n. s                                                              ** 

P x Zn                                                                      n. s                                                                  n. s                                                               n. s                                                                 n. s                                                                 n. s                                                                ** 

V x P x Zn                                                              
 

n. s                                                                   n. s                                                                 n. s                                                                  n. s                                                                 n. s                                                                ** 

…Means in a column followed by the letter(s) within treatments are not significant different at 5% level of 
probability using DMRT 
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Table 2. Effect of Phosphorus and Zinc Levels on Total Soluble Carbohydrate and Crude 

Protein of Cowpea Grain at Week After Pod Setting Grown at Bauchi in 2007 
 

Treatment Sampling dates (WAPS) 

 1 2 3 

 TSC (%) CP (%) TSC (%) CP (%) TSC (%) CP (%) 

Varieties       

IT90K-277-2 62.00d              24.24d            63.05            25.12e              63.44e             27.20f                                                                                                                                                                          

IT93-455-1                                                        62.14c              24.27d             63.20            26.26d              63.63d            27.54d                                                                                                                                                                                 

IT89KD-288 62.14c              24.25d             63.25            26.27d              63.58d            27.42e                                                                                                                                                                           

IT97K-568-18 62. 23b             24.58c             63.30            26.60c              63.79c            28.00c                                                                                                                                                                                                                       

IT90K-82-2 62.12c              24.74b              64.59            26.78b              64.13b           28.17b                                                                                                                                                                          

Kanannado   63.12a                          25.20a              64.14            27.93a              64.68a           29.98a                                                                                                                                                                                                          

SE + 0.029                0.039               0.640             0.045 0.046             0.064                                                                                            

                                                                   

SSP (kgha-1) 
 

      

0 62.26b             24.58a              63.32b           26.59b             62.95a           27.93a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

25 62.39a             24.54b              63.41b           26.79a             63.84b           27.81b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

50 62.38a            24.52b              74.04a            26.59b             63.83b           27.92a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

SE + 0. 021             0.027                0. 110            0.032                0.032 0.046                                                                                  

                                                                                       

Zinc (kgha-1)       

0 62.35b           24.47c                 72.98a           26.75a               63.84b           27.89a                 

2.5 62.32c           24.53b                 63.38b           26.54c                63.92a           27.84b                 

5.0 63.36a           24.64a                 63.41b           26.69b                63.86b           27.93a                  

SE + 0. 021           0. 027                 0.010              0.032                  0.032             0.046                                                                      

                                                                                                                                                                                                 

Interactions       

V x P  **  n. s n. s                      **                                                                  **                                                           ** 

V x Zn                                                                      **                                                           *                                                              n. s                      **                                                               **                                                    ** 

P x Zn                                                                       **                                                              n. s                                                       n. s                                                           **                                                               **                                                        ** 

V x P x Zn                                                               **                                                               **                                                            n. s                                                                                                                        **                                                                 **                                                         ** 

Means in a column followed by the letter(s) within treatments are not significant different at 5% level of probability 
using DMRT 
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Table 3. Combined Effect of Phosphorus and Zinc Levels on Total Soluble Carbohydrate and 

Crude Protein of Cowpea Grain at Week After Pod Setting Grown at Bauchi in 2006 and 2007 
 

Treatment Sampling dates (WAPS) 

 1 2 3 

 TSC (%) CP (%) TSC (%) CP (%) TSC (%) CP (%) 

Year (Y)       

2006 62.20 24.59a 63.47b 26.54 63.21b 27.96a 

2007 62.34 24.55b 66.92a 26.66 63.88a 27.89b 

SE + 0.160 0.016 2.500 0.132 0.270 0.013 

                                                           

Varieties       

IT90K-277-2 62.05c              24.19e            63.08b             26.15c              63.51a             27.24f                                                                                                                                                                          

IT93-455-1                                                        62.19c              24.27d             62.22b            26.29c               63.65a            27.58d 

IT89KD-288 63.11a              24.27d             62.21b            26.30c               63.53a            27.45e                                                                                                                                                                          

IT97K-568-18 61. 56d             24.64c             63.32b             26.64b              62.75b           28.03c                                                                                                                                                                            

IT90K-82-2 62.51b              24.76b              74.10a            26.82b              64.09a           28.19b                                                                                                                                                                          

Kanannado   62.20a              25.25a              64.25a             27.39a              64.72a           29.05a 

SE + 0.295                0.026               4.315               0.227 0.639             0.014                                                                                            

                                                           

SSP (kgha-1) 
 

      

0 62.34               24.60c               63.39b           26.64b             63.43b           27.96a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

25 62.41              24.54b                63.44b           26.80a             63.31a                        27.86b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

50 61.05             24.57a                68.76a           26.36c              63.89a           27.95a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

SE + 0. 209            0.017                  3. 053           0.126                0.431            0.012                                                                 

                                                                                          

Zinc (kgha-1)       

0 62.38           24.52c                 68.72a           26.47b               62.82b           27.97                 

2.5 62.03           24.57b                 63.42b           26.65a                63.92            27.85                 

5.0 62.40           24.62a                 63.44b           26.67a                63.89            27.94                  

SE + 0. 208           0. 013                  3.052             0.138                 0.432             0.090                                                                         

       

Interactions       

V x P  n. s                                                              * n. s                                                                 n. s                                                                 n. s                                                                ** 

V x Zn                                                                     n. s                                                              n. s                                                                 n. s                                                                 n. s                                                                n. s                                                              ** 

P x Zn                                                                      n. s                                                                  n. s                                                               n. s                                                                 n. s                                                                 n. s                                                                ** 

V x P x Zn                                                             n. s                                                                   * n. s                                                                 n. s                                                                 n. s                                                                ** 

Y x V n. s                                                                 n. s                                                               n. s                                                                   n. s                                                                   n. s                                                                  n. s 

Y x P n. s                                                                 ** n. s                                                                    n. s                                                                   n. s                                                                    * 

Y x Zn n. s                                                                   n. s                    n. s                                                                   n. s                                                                    n. s                                                                   n. s 

Y x V x P n. s                                                                  n. s                    n. s                                                                   n. s                                                                  n. s                                                                  n. s 

Y x V x Zn n.s                                                                   * n. s                                                                   n. s                                                                   n. s                                                                   * 

Y x V x P x Zn n. s                                                                    ** n. s                                                                   n. s                                                                   n. s                                                                  * 

Y x P x Zn n.s                                                                   n. s                    n. s                                                                  n. s                                                                  n.s                                                                   * 

Means in a column followed by the letter(s) within treatments are not significant different at 5% level of probability using 
DMRT 
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The observation that year 2006 had higher CP while 2007 had higher Total Soluble TSC  
could be attributed to difference in meteorological factors. Temperature (Daniel et al., 
2008; Moore et al., 2021), sunshine and photoperiod (Haque et al., 2015; Macioszek et al., 
2021; Roeber etal., 2022) are reported to influence enzymic activity and other metabolic 
processes that are necessary for the synthesis of both protein (Hildebrandt et al., 2015; 
Rasheed et al., 2020; Trovato et al., 2021) and starch (Apriyanto et al., 2020; Tetlow & 
Bertoft; 2020; Yu etal., 2022). For example, temperature influences the development of 
cowpea varieties (Angelotti & Barbosa, 2020); heat stress during flowering may modify a 
sequence of physicochemical processes, comprising heat shock proteins, antioxidants, 
metabolites and hormones centred with sugar starvation (Liu etal. 2019). Temperature 
was reported to significantly affect CP content of cowpea compared to the control 
(Nevhulaudzi, 2020). 
 
The observation that Kanannado recorded the highest TSC and CP in the cowpea grain 
planted may be attributed to its possession of large canopy, whose primary function is to 
intercept radiation to derive photosynthesis and other metabolic processes (Frantz et al., 
2000; Fageria et al., 2006; Digrado et al., 2020; Liu et al., 2021; Sultana et al., 2023). Again, 
and its inherent ability to transport larger amount of photosynthate from sinks to sources 
than other varieties may be attributed to the recorded results. This interception is 
determined largely by leaf area, configuration relative to the sun, and to a lesser extent 
the spatial arrangements of leaves (Digrado et al., 2020). Because crop growth and yield 
are largely determined by photosynthesis which is generally increased by greater 
interception of sunlight and thus increasing grain or dry matter yield (Fageria et al., 2006; 
Alidu & Appiah, 2022). 
 
The observations that each of P (0, 25, 50 kgha-1) and Zn (0, 2.5, 5.0 kgha-1) levels at one 
time or the other induced higher effect on TSC and CP than others could be ascribed to 
the fact that the effect of each of P and Zn levels on translocation and partitioning of both 
TSC and CP may be attributed to be determined by the duo of climatic factors and mineral 
nutrition. Hence, the association of rainfall, humidity, sunshine, temperature, etc. may in 
collaboration with mineral nutrients e.g., P and Zn, interfere with the synthesis of both 
protein and starch formation. However, the finding in this study is not in conformity with 
that of Magani and Kochinda (2009), Rathore et al. (2015), and Mohammed et al. (2021) 
who reported in their different studies, that higher doses of P and Zn levels improved CP 
content (including ether extract and ash) and TSC in cowpea than the lower doses (and 
the control). According to Blum et al. (1997); Paixão et al. (2019); Zhang et al. (2022); 
vigorous leaf growth in crop plants has generally been associated with long-term gains 
in photosynthetic potential. Plant size may provide substantial yield benefits (Fageria et 
al., 2006; Rosas et al., 2013; Tswanya et al., 2023). 
 
Phosphorus had significant (p>0.05) effects on TSC and CP and it is obvious from Tables 
1, 2 and 3 that increasing levels of P from P0 to P50 kgha-1 significantly (p>0.05)  increased 
the CP and TSC contents of the cowpea leaf, being highest at 50 kgha 1. This may be due 
to the fact that P is required for synthesis of phospholipids (Zhu et al., 2022), nucleotides, 
ATP, glycophosphates, and other phosphate esters (Fageria et al., 2006; Kolodiazhnyi, 
2021; Lambers, 2022). Phosphorus deficiency decreases photosynthetic activity for several 
plant species (Israel and Rufty, 1988; Carstensen et al., 2018; Meng et al., 2021; Kayoumu 
et al., 2023). Higher P levels (25 and 50 kgha-1) were observed to have significant effects 
on TSC than the control. This observation could be adduced to the cumulative effect of P 
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in the processes of cell division and protein nutrition (Zafar, 2003; Kvakic´ et al., 2020; 
Bechtaoui et al., 2021).  
 
Higher Zn levels (2.5 and 5 kgha-1) were observed to have significant (p>0.05) effects on 
TSC than the control. This may be due to the fact that Zn is important in fruiting (Khan 
et al., 2022), growth and metabolism of crop plants (Fageria, 2009; Andresen et al., 2018; 
Dobrikova et al., 2021). This observation may be ascribed to the fact that Zn is involved 
either directly or indirectly in starch formation, since Zn deficient plants often have been 
reported to have reduced starch concentrations (Fageria et al., 2006; Rudani et al., 2018; 
Fan et al., 2021). Zn is also vital for oxidation processes in plant cells (Cakmak, 2000; 
Bastakoti, 2023), involved in transformation of carbohydrates, and regulates sugars in 
plants. Its deficiency retards photosynthesis and N metabolism (Sadeghzadeh, 2013; 
Suganya et al., 2020).  
 
Interactions of P and Zn were observed to significantly (p>0.05) affect TSC and CP by 
stimulating growth and development with consequent remobilization of enzymes 
involved in synthesis of protein and starch macromolecules. Associations of P and Zn 
were observed, at one period or the other, to interact with variety, year or both to 
significantly (p>0.05) affect TSC and CP. These observations could be due to the influence 
of each of P, and Zn, in protein synthesis, growth and metabolism in plants and thus 
enhancing yield and seed quality (Mousavi, 2011; Chavan et al., 2012; Weldua et al., 2012; 
Rathore et al., 2015; Santos et al., 2021; Gerenfes & Negasa, 2021; Sánchez-Rodríguez et al., 
2021). 
 
 
CONCLUSION AND RECOMMENDATIONS 
Applications of higher levels of P and Zn or their associations were reported in this study 
to have improved TSC and CP contents of the cowpea grains at some period after pod 
setting, than lower levels. However, TSC and CP could further be augmented by 
ensuring an optimum environmental condition that favours growth and yield quality. 
This could be best achieved through best management practices such as proper weeding, 
thinning of plants, adequate fertilization, pests and insect control, and more importantly 
selecting viable seeds. Finally, for improved CP and TSC, Kananado is recommended for 
Bauchi farmers. 
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