
https://dx.doi.org/10.4314/dujopas.v9i1b.20
ISSN (Print): 2476-8316

ISSN (Online): 2635-3490
Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 9 No. 1b March 2023

*Author for Correspondence

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 209

Evaluation, Computation and Coding of
Iterative Function Using Recursive Approach

G. A. Otu1*, M.S. Oyebanji1, F. I. Okonkwo2, R.U. Ugbe4,

A. C. Okafor1, S. A. Usman3 & O. A Ubadike1

1. Department of Computer Science

 Air Force Institute of Technology Kaduna,
Nigeria

2. Department of Information and Communication Engineering

 Air Force Institute of Technology Kaduna,
Nigeria

3. Department of Cyber Security

Air Force Institute of Technology Kaduna,
Nigeria

4. Department of Physics

Nigerian Defence Academy Kaduna,
Nigeria

Email: godwinotu@afit.edu.ng

Abstract
Iteration and recursion are very pivotal concepts in understanding the logic and building blocks of all
computer programs across all programming paradigms. Although the theory of iteration together with
the development and implementation of iterative algorithm is easy to grasp, that of recursion remains
elusive to programmers especially novice programmers. In this research, functions composition is
applied in the explanation of iteration using recursion. The method demonstrates an easy and elaborate
way of writing iterative programs using recursion by identifying the significant variables in both
constructs. Function composition is used to write the recursive function, the recursive variable is
identified as a variable that converges towards the base case, also the base case is also identified as being
the terminating point of the function call else the function call runs and fill the stack memory causing
stack overflow. The recursive part is the loop update and base case the termination condition in iterative
programs. The results obtained simplifies how to write iterative codes using recursion.

Keywords: Base case, Composition, Iteration, Recursion, Recursive case

INTRODUCTION
Iteration and recursion are fundamental concepts in computer science and understanding
them is important for students in foundation programming courses. The various approaches
used to teach and comprehend iteration and recursion has been studied widely by many
computer science education research groups. However, students still struggle with both
concepts and instructors still find it difficult to teach these theories effectively. Endres et
al.(2021) surveyed that computer science educators identified recursion and loops as two of
the most challenging areas to teach. While a recursive algorithm is one that calls itself to solve

mailto:godwinotu@afit.edu.ng

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 210

a given problem, an iterative algorithm uses a repeated set of instructions in order to solve the
same problem.(Darsh, 2019).

Many researches and authors have elegantly taught and discussed iteration and recursion but
understanding both concepts still pose a problem to amateur programmers. (Liu, et al., 2019).
Describes that transforming recursion to iteration eliminates the use of stack frames during
program execution. This eliminates the space consumed by the stack frame as well as the time
overhead of allocating and de-allocating the frames, yielding significant performance
improvement in both time and space. According to Darsh (2019), outlined that recursion and
iteration algorithms are used as a base model or method for many other algorithms. Recursive
algorithms tend to be more elegant when an algorithm is much bigger. This means that the
code is smaller as opposed to an iterative algorithm, making it much easier when debugging
a program. Recursion is particularly useful and favoured when searching through specific
types of data structures like trees whereas iterative algorithms tend to search through data
structures like arrays. Iterative algorithms are generally favoured over recursive algorithms
as they tend to execute faster, and do not require extra memory. Recursion stores all its
function calls in a stack which means that more memory needs to be allocated, making
recursion a much slower algorithm to use. These existing researches have mostly studied the
degree of understanding both concepts but have failed to point the relationship between both
theories in terms of how solutions to problems can be built with respect to each method. In
this research function composition will be treated elaborately so that computer programmers
or algorithm developers will understand program logic which is the requisite skill for anyone
venturing into programming. Also make computer researchers to understand that proper
understanding of functions and function composition is the foundation of the greatest pillar
of programming which is modular programming. Mastering modular programming
technique leads to the development of bug-free codes because of incremental design. These
are many reasons are so vital to really understand this important concepts.

Many researches have been conducted to bring sheath light on recursion and iteration. While
some have explained recursion through iteration and other have talked about speed of
recursive and iteration algorithms, some space complexity analysis of the algorithms of these
two concepts, others have worked on the choice of implementation of various tasks based on
these concepts. In this we are learning how to program iteratively using recursion with
function composition method. Let us take a look at the existing body of research on these
concepts.

 Sharma and Vishwas (2022) explained how easy it is to transform an iterative algorithm to a
recursive type but, as evident, it usually requires slightly more effort to convert an algorithm,
which is recursive by nature, into an equivalent iterative algorithm. They tried to develop a
technique to convert recursive algorithms to iterative ones. Although this method might not
be completely generalized, but it can be considered as being applicable in a large class of
algorithms. The procedure was demonstrated on some well-known recursive algorithms such
tower of Hanoi, quicksort, binary tree traversals and more. Rinderknecht (2014) opined that
embedded recursion is wrongly conceived as an expression of the familiar counting or
accumulation technique within loops, not the consequence of the analysis of the original
problem. As a remedy, students could be taught to think declaratively when programming
recursively in imperative languages that is, to distinguish specification from evaluation.
Myreen and Gordon (2009) proposed a unique method of translating programs, through
complete automatic deduction, into recursive functions defined directly in the native logic of
a theorem prover. This technique has a lot of benefits for program verification. Lokshtanov et

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 211

al. (2018) discussed exhaustively when recursion is better approach to iteration using a linear-
time algorithm for acyclicity with few error vertices. The results of an empirical study was
carried out on 130 students in Introduction to programming classes. Their initial preference,
success rate, comprehension and subsequent preference were identified and studied when
dealing with programming tasks which could be programmed using either iteration or
recursion. It showed that students prefer iteration to recursion (Sulov, 2016). Johnson-Naird
et al. (2021) explained how naïve individuals devise informal programs in natural language
and is itself implemented in a computer program that creates programs using recursion.
Jinping (2013) focused on the analytical program writing technique of the recursive algorithm,
as well as the optimization of recursive program. Zhu and Sun (2023) analyzed the concept
and function of C language recursion, process description of recursion algorithm, and finally
gives the implementation strategy of C language recursion algorithm. Liu and Stoller (1999)
states a powerful and systematic method, based on incrementalization, for transforming
general recursion into iteration. An industrial algorithm implemented using java
programming language was able to automatically change iterative loops to corresponding
recursive methods and was generalized to cover other languages that support recursion (Insa
and Silva, 2015).

We can scientifically use function composition to describe recursive programs and from which
iterative program can be written without difficulty.

METHODOLOGY
Function composition will be used to describe how to solve computable feasible functions
using recursion and then use the technique to program the given problem iteratively. Given
two functions if one function becomes an input for the other, then function composition has
taken place. Example given the function f(x) and another g(x) if g(x) becomes an input of f(x)
then the composition will be written as f(g(x)), conversely it is also true if f(x) becomes the
input of g(x) the composition will be written as g(f(x)). It can be buttressed with the following
example: given f(x) = 2x + 3x2 and g(x) = x2, f(g(x)) will be equal to 2(x2) + 3(x2)2. Note that the
output of f(g(x)) is not same as that of g(f(x)).

Let apply the method in the solution of the product of two positive integer values using
recursion. The product of numbers is the sum of products which is function composition. We
solve for sum recursively and then use product as an input for the sum function.
Sum(a, b)……………………….....the sum function.
Sum(a,0)……………………….......the base case for the sum function returns a
1 + Sum(a, b-1)…………………....the recursive case for sum function
Product(a, b)……………………....the product function
Product(a,1)……………………….the base case for the product function returns a
Sum(a, Product(a, b))………….the recursive for product function which is function
composition.

Iterative procedure can be easily deduced from the recursive technique thus:
The initial value is derived from the recursive variable b which will be assigned 1 from the
base case. The recursive value b will also be used to set the loop condition, then the loop is
incremented towards making the condition false so that it can terminate. With these a
computer programmer can have deep knowledge of iteration through recursion.

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 212

Fig. 1: Flowchart to represent factorial function using recursion

The pseudo code for solving problems recursively

(a) Set up a for loop:
(i) This should initialize a counter which will iterate towards an end condition.
(ii) Insert your instructions into the for loop.

(b) When the for loop ends, print the solution to the problem.

Fig. 2: Flowchart to represent factorial function using iteration

factorial (N)

N>=1
return factorialNum()

factorialNum(N-1)
YES

NO

Start

Stop

for i=1; i<=N; i++

I<=N
return factorialNum()

factorial = factorial
YES

NO

Start

Stop

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 213

The pseudo code for solving problems recursively.
(1) Set up the recursive function

(a) Create an if statement
(i) This will contain an instruction which will call itself repeatedly to solve the
problem whilst the condition is true.
(ii) Once condition is false, end the function.

Example 1
Let solve product (3, 2)
product (3, 2) = sum (3, product(3.2)) from the function composition.
product (3, 1) = sum (3, product(3,1)) the product function decrementing towards the base
case of one (1).
product (3, 1) = 3 the base case for the product function, this clearly explains that the
product of 3 and 1 is 3.
1 + sum (3, 3) substituting the value of the product function into the sum of products.
1+ sum (3, 2) the recursive part of the sum function decrements towards the base case.
1 + sum (3, 1) the sum function continues decrementing towards the base case.
1 + sum (3, 0) the sum function gets to the base case and returns the value three.
Sum (3, 0) = 3 this value is substituted backwards into 1 + sum (3, 1) which gives four. The
value four (4) is the substituted backwards into 1 + sum (3, 2) which gives five. The value
five (5) is then substituted into 1 + sum (3.3) which gives the value six (6).

Example 2.

Factorial
The factorial function can also be realized either recursively or iteratively. The recursive
approach can be written down using function composition thus:
f(x) is the factorial function. When x is either zero or one is the base case and in both conditions
one is returned, x * f(x-1) is the recursive case which continues to compose until it gets to the
base case before computation to get the result is initiated. For example for x equal to 5 the
composition function can be written thus: f(f(f(f(f(x))))) the function starts processing from the
highest value of x which is 5 and accumulation the intermediate results in the stack until it
gets to the base case which can be implemented to be either one or zero. For iteration the loop
control variable is initialized to the base case which is one preferably and the product of the
loop control variable is compounded on a designated initialized variable.

RESULTS AND DISCUSSION
Computer program for the multiplication operation using recursion
package tutorials;
import java.util.Scanner;
public class recursion {

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int firstNumber;
 int secondNumber;
 int counter=0;
 int max = 2;
 do {
 System.out.print("enter first number ");
 firstNumber = input.nextInt();

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 214

 System.out.print("enter second number ");
 secondNumber = input.nextInt();
 System.out.print("the product of "+firstNumber+ " and "+secondNumber + "
= "+multNumbers(firstNumber,secondNumber));
 counter = counter + 1;
 System.out.println();
 }
 while(counter<max);
 }
 public static int addNumbers(int x, int y){
 if (y == 0)
 return x;
 else
 return 1+ addNumbers(x, y-1);
 }
 public static int multNumbers(int x, int y){
 if (y == 1)
 return x;
 else
 return addNumbers(x, multNumbers(x, y-1));
 }

 }

Program Output
enter first number 3
enter second number 3
the product of 3 and 3 = 9
enter first number 2
enter second number 6
the product of 2 and 6 = 12
Computer program for the multiplication operation using iteraion
package tutorials;
import java.util.Scanner;
public class MultiplicationIteration {
 public static void main (String [] args){
 Scanner input = new Scanner(System.in);
 int counter=0;
 int max = 2;
 do {
 int firstNumber, secondNumber;
 System.out.print("enter first number ");
 firstNumber = input.nextInt();
 System.out.print("enter second number ");
 secondNumber = input.nextInt();
 System.out.print("the product of "+firstNumber+ " and
"+secondNumber + " = "+multNumbers(firstNumber,secondNumber));
 counter = counter + 1;
 System.out.println();
 }

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 215

 while(counter<max);
 }
 public static int multNumbers(int x, int y){ // function
definition
 int secondNumber=0;
 for (int i = 1; i <=x; i++){
 secondNumber +=1;
 }
 return secondNumber * y;
 }
 }
Program Output
enter first number 12
enter second number 3
the product of 12 and 3 = 36
enter first number 4
enter second number 4
the product of 4 and 4 = 16
Computer program for factorial operation using recursion
package tutorials;
import java.util.Scanner;
public class FactorialRecursion {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int counter=0;
 int max = 4;
 do {
 int Number;
 System.out.print("enter number ");
 Number = input.nextInt();
 System.out.print("the factorial of "+Number+ " using recursion"+ " = "+
performFactorial(Number));
 counter = counter + 1;
 System.out.println();
 }
 while(counter<max);
 }

 public static int performFactorial(int x){ // function definition
 if (x==1)
 return 1;
 else
 return x * performFactorial(x-1);
 }
 }

Program output
the factorial of 12 using recursion = 479001600
enter number 11
the factorial of 11 using recursion = 39916800

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 216

enter number 3
the factorial of 3 using recursion = 6

Computer program for factorial operation using iteration.
package tutorials;
import java.util.Scanner;
public class IterationFactorial {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int counter=0;
 int max = 4;
 do {
 int Number;
 System.out.print("enter number ");
 Number = input.nextInt();
 System.out.print("the factorial of "+Number+ " using iteration"+ " = "+
performFactorial(Number));
 counter = counter + 1;
 System.out.println();
 }
 while(counter<max);
 }
 public static int performFactorial(int x){ // function definition
 int fact = 1;
 for (int i = 1; i<=x; i++) {
 fact = fact * i;
 }
 return fact;
 }
 }
Program output.
enter number 19
the factorial of 19 using iteration = 109641728
enter number 12
the factorial of 12 using iteration = 479001600
enter number 6
the factorial of 6 using iteration = 720
enter number 2
the factorial of 2 using iteration = 2

The implementations and outputs clearly show both logically and in simplicity how the
concepts of recursion and iteration relates, and how the knowledge of recursion strengthens
the computer programmer on not only the programming of tasks using iteration from
knowledge derived from recursion, but also assist the programmer to understand logic in
programming which is the salient ingredient any developer should acquire. Recursion is
slightly contrasting and tricky to iteration. While recursion follows LIFO (Last-In-First-
Operation) which is a stack operation. The stack produces intermediate results in the stack
memory as the recursive operations moves towards the base case. The intermediate results
will not be processed to completion until the program execution gets to base case. The base
case is the terminating point in a recursive function, so, the value derived from the base case

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 217

is used to substitute backwardly to where the recursive call started. If the base case is not
properly written it might either make the program to run without terminating and thereby
exhausting the stack memory allocated for the function call or erratic result will be produced.
So, programming recursively reduces code complexity, increases code readability and gives
the programmer a detail understanding of the task and how the computer solves it. The
problem is defined and solved based on itself. Since the programmer knows how to define the
base case which is the termination condition, and also can define the recursive condition
which is the fragmentation of the problem into smaller incremental parts, iteration can easily
be implemented from the knowledge of recursion. The programmer can now easily identify
the loop initialization, condition and update when solving a task using iteration. Because
recursion uses a divide and conquer strategy. Recursive codes can easily be debugged,
because if an integral part of the code is correct then increasing the input of the subsequent
recursive function calls will be correct as well.

Finally, having good knowledge on recursion will not only assist in the understanding and
implementation of tasks iteratively and comprehension of programming logic but will assist
the programmer to understand how to approach a task and when to either use iteration or
recursion without abusing both concepts.

CONCLUSION
The research elaborately describes the fundamental confusing concepts of iteration and
recursion by approaching loops using recursion. These core theories ones understood can
assist both beginners and professional programmers to implement many algorithms using
recursion and iteration without abusing the use of both concepts.

REFERENCES
Darsh, J. (2019). Algorithms: Recursion and Iteration. 10.13140/RG.2.2.31991.50080.
Endres, M., Weimer, W., Kamil, A. (2021). An Analysis of Iterative and Recursive Problem

Performance. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432391

Insa, D., Silva, J. (2015). Automatic transformation of iterative loops into recursive
methods,Information and Software Technology,Volume 58,2015, Pages 95-109,ISSN
0950-5849, https://doi.org/10.1016/j.infsof.2014.10.001.

 Jinping, S. (2013). International Journal of Hybrid Information Technology Vol.6, No.6 (2013),
pp.127-134 http://dx.doi.org/10.14257/ijhit.2013.6.6.11 ISSN: 1738-9968 IJHIT

Copyright ⓒ 2013 SERSC Discussion on Writing of Recursive Algorithm
Johnson-Laird, P.N., Bucciarelli, M., Mackiewicz, R., & Khemlani, S.S. (2021). Recursion in

programs, thought, and language. Psychonomic Bulletin & Review, 29, 430 - 454.This
article presents a theory of recursion in thinking and language

Liu,Y. A., Stoller, S., D. (1999). From recursion to iteration: what are the optimizations.
Computer science department, lindley hall 215, Indiana university,Bloomington, IN
47405.

Lokshtanov, D., Ramanujan, M.S., Saurabh, S. (2018). When Recursion is Better than
Iteration: A Linear-Time Algorithm for Acyclicity with Few Error Vertices.
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (pp.1916-1933) DOI:10.1137/1.9781611975031.125

https://doi.org/10.1145/3408877.3432391
https://doi.org/10.1016/j.infsof.2014.10.001
http://dx.doi.org/10.1137/1.9781611975031.125

Evaluation, Computation and Coding of Iterative Function Using Recursive Approach

G. A. Otu et al., DUJOPAS 9 (1b): 209-218, 2023 218

Myreen, M. O., Gordon, M. J.C. (2009). Transforming Programs into Recursive Functions,
Electronic Notes in Theoretical Computer Science, Volume 240,2009,Pages 185-200,ISSN
1571-0661,https://doi.org/10.1016/j.entcs.2009.05.052.

Rinderknecht, C. (2014). A Survey on the Teaching and Learning of Recursive Programming.
Informatics in Education. 13. 87-119.

Sharma, Y., Vishwas, S. (2022) Generating Equivalent Iterative Versions for Recursive
Algorithms. International Research Journal of Modernization in Engineering Technology
and Science Volume: 04/Issue: 07/ www.irjmets.com.

Sulov, V. (2016) Iteration vs Recursion in Introduction to Programming Classes: An Empirical
Study, Cybernetics and Information Technologies Volume 16, No 4 Sofia 2016 Print ISSN:
1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2016-0068.

Zhu, Z., Sun, W.(2021). Research on the Implementation of Recursive Algorithm Based on C
Language. Journal of Physics: Conference Series. 2023. 012015. 10.1088/1742-
6596/2023/1/012015.

http://www.irjmets.com/

