https://dx.doi.org/10.4314/dujopas.v8ilb. 13
ISSN (Print): 2476-8316
ISSN (Online): 2635-3490
Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 8 No. b March 2022

The Use of Implicit Single-Step Linear Block Method on
Third Order Ordinary Differential Equations by

Interpolation and Collocation Procedure
'Althemai, J. M., 2Sabo, J., 'Yaska Mutah

2Department of Mathematics,

Adamawa State University, Mubi,

Adamawa State-Nigeria.

!Department of Mathematics and Statistics,

Federal Polytechnic, Mubi,

Adamawa State-Nigeria.

Email: sabojohn630@yahoo.com

Abstract

This research showed the use of implicit single-step linear block method on third order ordinary
differential equations by interpolation and collocation procedure. The block method is found using
power series as a basic function through interpolation and collocation. The properties of the block
method were considered. The outcome achieves on the application of new block method on selected tested
modeled third order linear problems was found to give better approximation than the current methods
in literature.
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INTRODUCTION

Real life problems particularly in sciences and engineering can be expressed as differential
equations in order to analyze and understand the physical phenomena (Omar 1999).
Numerous problems in real life situations contain rates of change of one or more independent
variables. These rates of change can be stated in terms of derivatives which tip to differential
equations.

The numerical solution to third order ordinary differential equations is conventionally
answered by a decreasing to a system of first order ordinary differential equations and then
appropriate numerical method for first order would be used to solve the system system
(Skwame et al, 2019). However, the major hindrances for this method are computational
problem which affects the accurateness of the method in terms of the error, complications in
writing computer program for the method and consumption of human energy. In order to
overcome this setbacks or difficulties, this research will proposed the use of implicit single-
step linear block method on higher order initial value problems (specifically, third order initial
value problems) by interpolation and collocation procedure. In developing these methods, a
power series of the form
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y(g)= a9’ 1)

will be used as an approximate solution to initial value problems of ordinary differential
equations of the form

y"'(g)=1(9. ¥(9) ) y(90)= Yo, y'(go) =¥, y"(g0) =¥y @
Block methods will then introduced with the aim of approximating numerical solutions,
(Omar 2004, Kuboye & Omar 2015 and Adeyeye & Omar 2019a). Meanwhile, the block
method which was first proposed by Milne according to (Olabode 2007), has been studied by
some scholars such as (Abdelrahim & Omar 2017, Fasasi 2018, Adeyeye & Omar 2018, Sunday
2018, Skwame, Dalatu, Sabo & Mathew 2019, Abdulsalam, Sanu, Majid 2019, Adeyeye &
Omar 2019a, 2919b, 2019¢, Raymond, Skwame & Adiku 2021, Sabo, Althemai & Hamadina
2021, Sabo, Bakari & Babuba, 2021, Abdelrahim 2021), among others, have developed block
hybrid methods for direct solution of higher order ordinary differential equations without
reduction methods, whereby the accuracy of the methods is better than when it is reduced to
system of first order ordinary differential equations.

Mathematical Formulation of the Method

The approximation of equation (1) as a basic function was consider, where rand Sare the
number of different interpolation and collocation respectively.

Differentiating equation (1) three times and substitute into equation (2) to yield,

r+s-1 )

f(g.y.y'y")= X ii-1i-2Ja; ¢ (3)
=0

A mesh of single-step length is considered with a constant step size h given by

1
n+>

h=4,,; -9, ]=01and four off-step pointsat g ,, g ,,g , and g
S g N

8

Interpolating (1) at point g r= 1(1 3 and collocating (3) at points g 5= or 1 3 1,
8\8/8 8 482
gives a system of nonlinear equation of the form,
AG =K (4)
where,
A=[a, a a, a; a, a a, & as]T,
.
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Solving (4) for a;, j =0(1)8 which are constants to be obtained and substitute into (2) to
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give a one-step continuous block method of the scheme,
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where «,(g), $;(9) and f,(g) are presented as functions of X with

— g - gn
h
where

X

a, =32t> - 20t +3
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Evaluating (5) to obtain the continuous form as

ft
7 401 257 1 13 '
Y, 3 -3 1 yml 655360 430040 245760 20480 983040 13762560 | (8)
v -1 =3 3]y i T 3 247 59 1 1 nel
n% n% 1966080 143360 245760 61440 327680 13762560 | f
y, | 15 =3 2, - 3943 4757 2249 1361 16943 871
N+ - —
"3 393216 86016 16384 12288 196608 917504 | fn+7
L fn+l
Differentiating (5) once, we have
L 1(1)1
1 1 1 3 J 1
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A T - 8\8)2
8 8 4 4 8 j=0
Evaluating (9 at 9,, 9 ;,9 .9 5, 9 ;and g,,,, we have
n+= i n s n+E
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Differentiating (5) twice, we have
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Evaluating (11)at g,,9 ,,9 ,,9 5, 9 ,and g,,,, wehave
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Combining and solving (8), (10) and (12) simultaneously, to give the explicit block method
as
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The Properties of the Block Method
In this section, the basic properties of the method will be recognized.
Order and Error constant of the Method
Consider the linear operator L{y(x):h} defined by
oy 0 s 30”6 e
Ly ():hj= A9 =3 ==y —h®2d 1 (y, )+ b F(Y,,)] (16)
i=0 -

Applying the Taylor series expansion of Y, and F(Y, ) and compare the coefficients of h

ives
tcI;_{y(x): hf=Cyy(x)+Cyy' (x)++++C nPyP(x)+ C, nPyP (x)+C  n 2y P2 (X)+ - (17)
The linear operator L and the associate block method are said to be of order P if
C,=C,==C,=C,,=C,,=0, C,,#0. C,, iscalled the error constant and implies that the
truncation error is given byt =C_ ;h?°y?"(x)+0h"*
Expanding the block in Taylor series gives
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Comparing the coefficient of h, according to (Sunday 2018), the order P of our method is

p=4 4 4 4 4] and the error constant are given respectively by
Cps= [—1.1274 x107° -7.3165x10° -1.0644x10"° -4.0367x10° —3.2294x10°°

Consistency of the Method
A method is supposed to be steady or consistent, in case it has order greater than one. So
from the above study, it is apparent that our method is steady (Omar 2004).

Zero Stability of the Method
A block method is said to be zero stable as h — 0 if the roots of the first characteristics

polynomial p(l’) =0 satisfy ‘[Z A° Rk’l]‘ <1, and those roots with R = 1 must be simple.

(19)

Now,
(1 00 0 0] [00O0O0OT1| |[r 000 -1]

01 000 |(0O0OTO01 Or 00 -1
p(r)=rf0 0 1 0 0[-|0 0 0 0 1|=(0 0 r 0 -1 |=r%r-2)
00010 (00O0O0OT1 0 00T -1
0 00 0 1] [0 0O0O0T1 ||OO0OO0 r-1]
Then, solving for zin

r(r-1)

Althemai, J. M., Sabo, J., Yaska Mutah, DUJOPAS 8 (1b): 106-116, 2022

111



The Use of Implicit Single-Step Linear Block Method on Third Order Ordinary Differential Equations by
Interpolation and Collocation Procedure

gives r =0, 0,0, 0, 1. Hence the block method is said to be zero stable.

Convergence of the Block Method

Theorem: the essential and adequate conditions for a linear multistep method to be
convergent are that it must be consistent and zero-stable. Hence our method derived is
consistent (Skwame et al, 2019).

Region of Absolute Stability of our Method
Applying the boundary locus method, we obtain the stability polynomial as
w) = h“”[— 523 W 1 Wsj . h“[— 10705061 . 8429 Wsj
259796220620800  60610578481152000 22728966930432000  34093450395648000
o 463317839 2311 o). pof 7441243 11 ;
h* - w — w” [+ h? — w' — w
284112086630400 5261334937600 5284823040 880803840

N hs[_ 184343 W 27 WSJ B

860160 28672

(20)
Applying the stability polynomial, we obtain the region of absolute stability in Figure 1
below,

0.5
0.4 ) ¢ O
T
L 4
A
0.4 )
0.5
0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

Figure 1: Region of absolute stability of our method

Mathematical Implementation

The following numerical problems are carefully considered in order to study the
effectiveness and exactness of the new block method when related with the existing
methods. The new block method was applied to solve third order linear problem problems.

Problem one:
Consider the third order linear problem

y"+4y'-x=0,y(0)=y'(0)=0,y"(0)=-1 h=0.1
With the particular solution given by

3 x?
X)=—(1-cos2x)+—
y(x) =15 )+5
Source (Sunday 2018, Adeyeye & Omar 2019a and Aigbiremhon & Omole 2020)
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Table 1. Showing the result for problem one

The Use of Implicit Single-Step Linear Block Method on Third Order Ordinary Differential Equations by

X- particular Solution Commutated Solution Error in Error in Error in Error in
value new (Sunday (Adeyeye & (Aigbiremhon
Method 2018) Omar & Omole
2019a) 2020)
0.1 0.00498751665476719416  0.00498751665476770617 5.1201e-16 ~ 8.3209e-13  0.2304e-14 2.8818e-09
0.2 0.01980106362445904698  0.01980106362447933580 2.0289%-14  3.4752e-12  0.1658e-13 3.2893e-08
0.3 0.04399957220443531927  0.04399957220456152103 1.2620e-13 ~ 7.8178e-12  (.4850e-13 1.1954e-07
0.4 0.07686749199740648358  0.07686749199784637519  4.3989%e-13 ~ 1.3681e-11 0.1147e-12 2.8709e-07
0.5 0.11744331764972380299  0.11744331765085170446 1.1279e-12  2.0825e-11 0.2425e-12 5.5398e-07
0.6 0.16455792103562370419  0.16455792103801160326  2.3879e-12  2.8962e-11 0.4436e-12 9.2975e-07
0.7 0.21688116070620482401  0.21688116071063664648 4.4318e-12  3.7764e-11 0.7467e-12 1.4149e-06
0.8 0.27297491043149163616  0.27297491043895861507  7.4670e-12  4.6879%-11 0.1183e-11 1.9995e-06
0.9 0.33135039275495382287  0.33135039276663008973 1.1676e-11 ~ 5.5941e-11 0.1753e-11 2.6636e-06
1.0 0.39052753185258919756  0.39052753186978796647 1.7199e-11  6.4592¢-11 0.2481e-11 3.3776e-06
0.9
0.8
0.7
0.6
)
= 05 )
= Commutated Solution
% 0.4 . .
< / —&— particular Solution
0.3 /
0.2 /
0 =

1 2 3

4

5 6 7 8 9

10

Figure 2. Showing the solution graph of problem one.

Problem two:

Consider the third order linear problem
y'"'+y'=0, y(0)=0, y'(0)=1 y"(0)=2,h=0.1
With the particular solution given by
y(x)=2(1-cos x)+sin x

Source (Adesanya, Udoh & Ajileye 2013, Areo & Omojola 2017 and Sunday 2018)

Table 2. Showing the result for problem two

X- particular Solution Commutated Solution Error in Error in Error in (Areo  Error in
value new (Adesanya et & Omojola (Sunday
Method al, 2013) 2017) 2018)

0.1 0.10982508609077662011  0.10982508609077668890  6.8790e-17  1.6613e-12 1.1177e-10 3.7470e-16
0.2 0.23853617511257795326  0.23853617511258045075 2.4975e-15  7.5411e-12 9.3348e-10 8.3267e-16
0.3 0.38484722841012753581  0.38484722841013871413 1.1178e-14  1.3843e-09 3.2775e-09 1.3878e-15
0.4 0.54729635430288032607  0.54729635430291085096  3.0525e-14  4.5006e-09 8.0524e-09 1.4433e-15
0.5 0.72426041482345756807  0.72426041482352295179  6.5384e-14  1.0520e-08 1.6249e-08 1.5543e-15
0.6 0.91397124357567876270  0.91397124357579969798  1.2094e-13  1.9715e-08 2.8912e-08 1.9986e-15
0.7 1.11453331266871420120  1.11453331266891678780  2.025%-13  3.2968e-08 4.7125e-08 2.8866e-15
0.8 1.32394267220519191980  1.32394267220550777840 3.1586e-13  5.0419e-08 7.1985e-08 4.4409e-15
0.9 1.54010697308615447550  1.54010697308662074190  4.6627e-13  7.2608e-08 1.0458e-07 3.5527e-15
1.0 1.76086637307161707180  1.76086637307227627070  6.5920e-13  9.9511e-08 1.4596e-07 5.3291e-15
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Figure 3. Showing the solution graph of problem two.

Problem three:

Consider the third order linear problem
y'"+e* =0, y(0)=1 y'(0)=-1 y"(0)=3,h=0.1
With the particular solution given by

y(x)=20+x?)-¢*

Source (Omar & Abdelrahim 2016, Kayode & Obarhua 2017 and Adeyeye & Omar 2019b)

Table 3. Showing the result for problem three

X- Particular Solution Commutated Solution Error in Error in Error in Error in
value new (Omar & (Kayode & (Adeyeye &
Method Abdelrahim Obarhua 2017)  Omar 2019b)
2016)
0.1 0.9148290819243523752  0.91482908192435230895  6.6250e-17 1.1102e-14 1.8241e-13 1.6209e-14
0.2 0.8585972418398301661  0.85859724183982776596  2.4001e-15 1.6076e-13 1.6708e-12 6.6058e-14
0.3 0.8301411924239968960  0.83014119242398628100  1.0615e-14 6.3105e-13 6.0014e-12 1.5277e-13
0.4 0.8281753023587296822  0.82817530235870097786  2.8704e-14 1.6232e-12 1.4860e-11 2.7955e-13
0.5 0.8512787292998718532  0.85127872929981077174  6.1082e-14 3.3591e-12 3.0121e-11 4.5020e-13
0.6 0.8978811996094910251  0.89788119960937840127  1.1262e-13 6.0841e-12 5.3842e-11 6.6835e-13
0.7 0.9662472925295234784  0.96624729252933475621  1.8872e-13 1.0070e-11 8.8316e-11 9.3925e-13
0.8 1.0544590715075323954  1.05445907150723706150  2.9533e-13 1.5616e-11 1.3606e-10 1.2670e-12
0.9 1.1603968888430503362  1.16039688884261129340  4.3904e-13 2.3054e-11 1.9987e-10 1.6578e-12
1.0 1.2817181715409547646  1.28171817154032763920  6.2713e-13 3.2750e-11 2.8281e-10 2.1174e-12
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Figure 4. Showing the solution graph of problem three.

Conclusion

The numerical solution to higher order ordinary differential equations are conventionally
solved by a reduction to a system of first order ordinary differential equations and then
suitable numerical method for first order would be used to solve the system (Sabo, Bakari &
Babuba). This method computes the numerical solution at one point at a time. However, the
major setbacks for this method are computational burden which affects the accuracy of the
method in terms of the error, difficulties in writing computer program for the method and
wastage of human effort. In order to overcome these challenges and bring improvement on
numerical method, we have exposed the direct solution of higher order initial value problems
of ordinary differential equations using power series on single-step third derivative block
hybrid method in this research. The new block method is derived using interpolation and
collocation as a basic function and the basic properties of the block method which include
order, error constant, consistency and zero stability are also analyzed. The new block method
is been applied to solve third order initial value problems of ordinary differential equations
without reducing the equations to their equivalent systems of first order ordinary differential
equations. The outcome showed on the application of new block method on some sampled
modeled third order linear problems was found to give better approximation than the existing
methods. The direct method developed using interpolation and collocation procedure has
been recommended for scholars, students and researchers.

References

Abdulrahim, R. & Omar, Z. (2017). A four-step implicit block method with tree generalized
off-step points for solving fourth order initial value problems directly. Journal of King
Saud University-Science. 29, 401-412.

Abdulrahim, R. (2021). Four step hybrid block method for the direct solution of fourth order
ordinary differential equations. Int. J. Anal. Appl. 12(1), 215-229.

Abdulsalam, A., Senu, N. & Mijid, Z. A. (2019). Direct one-step method for solving third order
boundary value problems. International Journal of Applied Mathematics. 32(2), 155-176.

Adesanya, A. O., Udoh, D. M. & Ajileye, A. M. (2013). A new hybrid block method for the
solution of general third order initial value problems of ODEs. International Journal of
Pure and Applied Mathematics. 86(2), 365-375.

Adeyeye, O & Omar, Z. (2018). New self-starting approach for solving special third order
initial value problems. Int. |. Pure Appl. Math. 118(3), 511-517.

Althemai, J. M., Sabo, J., Yaska Mutah, DUJOPAS 8 (1b): 106-116, 2022 115



The Use of Implicit Single-Step Linear Block Method on Third Order Ordinary Differential Equations by
Interpolation and Collocation Procedure

Adeyeye, O & Omar, Z. (2019a). Direct solution of initial and boundary value problem of third
order ODEs using maximum-order fourth-derivative block method. 4th Innovation and
Analytics Conference & Exhibition. AIP Conf. Proc. 2138, 030002-1-03002-6.

Adeyeye, O & Omar, Z. (2019b). Solving third order ordinary differential equation using
one-step block method with four equidistance generalized hybrid points. International
Journal of Applied Mathematics. 49(2), 1-9.

Adeyeye, O & Omar, Z. (2019c). Solving fourth order linear initial and boundary value
problems using an implicit block method. Proceedings of the Third International
Conference. 167-177.

Aigbiremhom A. A. & Omole, E. O. (2020). A four-step collocation procedure by means of
perturbation term wit application to third-order ordinary differential equation.
International journal of computer Applications. 175(24), 25-36.

Areo, E. A. & Omojola, M. T. (2017). One-twelveth step continuous block method for the
solution of y"' =f(x, y, y', y"), Int. ]. Pure and Appl.Math. 114(2), 165-178.

Fasasi, K. M. (2018). New continue hybrid constant block method for the solution of third

order initial value problem of ordinary differential equations. Academic Journal of Applied
Mathematical Sciences. 4(6), 53-60.

Kayode, S. J. & Obaruha, F. O. (2017). Symmetric 2-step 4-point hybrid method for the solution
of general third order differential equations. Journal of Applied and Computational
Mathematics. 6(2). 1-4.

Kuboye, ]J. O. & Omar, Z. (2015). Numerical solution of third order ordinary differential
equations using a seven-step block method. Int. |]. Math. Anal. 9(15), 743-754.

Olabode, B. T. (2007). Some Linear Multistep Methods for Special and General third Order
Initial Value Problems of Ordinary Differential Equation, PhD Thesis, Federal
University of ~ Technology, Akure. (Unpublished).

Omar, Z. & Abdelrahim, R. (2016). Application of single step with three generalized hybrid
points block method for solving third order ordinary differential equations. J.
Nonlinear Sci. Appl. 9, 2705-2717.

Omar, Z. (1999). Parallel block methods for solving higher order ordinary differential
equations directly. PhD. Thesis, Universiti Putra Malaysia (unpublished).

Omar, Z. (2004). Developing parallel 3-point implicit block method for solving second order
ordinary differential equations directly. IJMS 11 (1), 91-103.

Raymond, D., Skwame, Y. & Lydia, A. (2021). Four step one hybrid block methods for solution
of fourth derivative ordinary differential equations. Journal of Advances in Mathematics
and Computer Science. 36(3), 1-10.

Sabo J., Althemai J. M. & Hamadina M. (2021). The computation of numerical method second
derivative for the direct solution of higher order initial value problems. Dutse Journal

of Pure and Applied Sciences. 7 (2a): 110-121.

Sabo, ]J., Bakari, A.L. & Babuba, S. (2021). On the direct solution of high order initial value
problems of ordinary differential equations on one- step third derivative block
method. Dutse Journal of Pure and Applied Sciences.7 (2b): 134-149.

Skwame, Y., Dalatu, P. I, Sabo, J. & Mathew, M. (2019). Numerical application of third
derivative hybrid block methods on third order initial value problem of ordinary
differential equations. Int. ]. Stat. Appl. Math. 4(6), 90-100.

Skwame, Y., Sabo, J. & Mathew, M. (2019). The treatment of second order ordinary differential
equations using equidistant one-step block hybrid. Asian Journal of Probability and
Statistics. 5(3): 1-9.

Sunday, J. (2018). On the oscillation criteria and computation of third order oscillatory
differential equations, Comm. Math. Appl. 6(4), 615-625.

Althemai, J. M., Sabo, J., Yaska Mutah, DUJOPAS 8 (1b): 106-116, 2022 116



