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Abstract 
In this research work Complex Differential Equations of order two was studied and then solved using 
the Laplace transform technique. The Complex Differential Equations were separated into the real and 
imaginary parts and an expression for the solution form of the complex differential equation of order 
two with constant coefficient was obtained. The solution to the problems were then obtained using 
Laplace technique. The real and imaginary parts of the solution were further obtained using the 
inverse Laplace transform giving the results for the problem, and also illustrative examples are 
included to demonstrate the validity and applicability of the expression for the solution form of the 
problems. 
 
Keywords: Laplace Transform Technique, Inverse Laplace Transform, Dirac Delta Function, 
Complex Differential Equation. 
 
 
INTRODUCTION 
In the field of mathematics, when it comes to the general solution to some type of equations 
especially the elliptic type of equation their solutions are not easily solved for. And so when 
considering such type of equations, the partial differential equation system with even 
number of independent variable can be transformed to a complex partial differential 
equation giving a clear chance of obtaining the solution to the equation using complex 
methods.  
 
Yusufoglu (2006) studied the numerical solution of duffing equation by the Laplace 
Algorithm where the principle of Laplace Decomposition Algorithm (LDA) was described 
and also its advantages and drawbacks. Examples were also studied to show with numerical 
results how the LDA works efficiently. Kexue and Jigen (2011) gave sufficient condition in 
guaranteeing the rationality of solving constant coefficient fractional differential equation 
using Laplace transform method. Yin et al. (2013) developed a new scheme to obtain the 
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exact solutions for the singular initial value problems (IVPs) of Lane-Emden type of problem 
where the new scheme was deduced from the Modified Laplace Decomposition Method 
(MIDM). The problems considered consist of both linear and nonlinear cases and it was seen 
that the exact solution exist in the zeroth component yielding the exact solution in two 
iterations applying the proposed method. Exact solution of some linear fractional 
differential equations by Laplace transform was studied by Saheed (2014) where Laplace 
transform was applied in solving linear fractional-order differential equation. It was 
observed that the Laplace transform is powerful and efficient for obtaining analytic solution 
of linear fractional differential equations. Mohamed and Torky (2013) solved for the 
approximate solutions for Whitham-Broer-Kamp shallow water model, the coupled 
nonlinear reaction equation alongside system of Hirota-Satsuma coupled KdV using the 
Laplace Decomposition Method (LDM) and Pade approximation. It was noted the scheme 
found the solutions without any discretization or restrictive assumption and also free from 
round off errors reducing the numerical computations to a great extent. Numerical study for 
systems of fractional differential equations via Laplace transform was considered by Gupta 
et al. (2015) where numerical algorithm for solving system of fractional differential equation 
was proposed using Homotopy analysis transform method. The numerical results show that 
the approach is easy to implement and accurate when applied to various fractional 
differential equations. Murat (2017) studied the application of Laplace transforms on 
complex differential equations of order one where the real and imaginary parts of the 
solutions were obtained using the inverse Laplace transform. Dinesh (2018) investigated the 
application of Laplace Transform for solving various differential equations with constant 
variable coefficient using linear ordinary differential equations to illustrate the new 
technique. Kazem (2013) applied Laplace transform in solving linear fractional order 
differential equation where the fractional differential equation was transform into algebraic 
equations and then solving them. The technique was used to obtain an exact solution of 
some linear fractional differential equations.  
 
Based on the above mentioned literatures, investigation carried out are on first order 
complex partial differential equations, partial differential equations and nonlinear partial 
differential equation using Laplace transform method, but on the solution of second order 
complex partial differential equation with constant coefficient using Laplace transforms 
have not been studied which form the bases of this paper.   
 
METHODOLOGY 
 
Basic Definitions and Theorems 

Definition 1. Let )(tF  be a function of .0t  Laplace transform of )(tF  is defined. 

𝐿(𝐹(𝑡)) = 𝑓(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0
           (1) 

Since the integral of equation (1) is a function of  s , so we write  𝐿(𝐹(𝑡)) = 𝑓(𝑠)  

 

Theorem 1. If  𝐹(𝑛)(𝑡) is continuous, then 

𝐿 (𝐹(𝑛)(𝑡)) = 𝑠𝑛𝑓(𝑠) − 𝑠𝑛−1𝐹(0) − 𝑠𝑛−2𝐹′(0) − 𝑠𝑛−3𝐹′′(0) − ⋯ − 𝐹𝑛−1(0)                (2) 

where  𝐿(𝐹(𝑡)) = 𝑓(𝑠) 

 
Theorem 2. Laplace transforms of partial derivatives of ),( txu  are given as follows. 

(i) 𝐿 [
𝜕𝑢

𝜕𝑡
] = 𝑠𝑈(𝑥, 𝑠) − 𝑢(𝑥, 0)       (3) 

(ii) 𝐿 [
𝜕𝑢

𝜕𝑥
] =

𝜕𝑈(𝑥,𝑠)

𝜕𝑥
        (4) 
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(iii) 𝐿 [
𝜕2𝑢

𝜕𝑡2 ] = 𝑠2𝑈(𝑥, 𝑠) − 𝑠𝑢(𝑥, 0) − 𝑢′(𝑥, 0)     (5) 

(iv) 𝐿 [
𝜕2𝑢

𝜕𝑥2
] =

𝜕2𝑈(𝑥,𝑠)

𝜕𝑥2 −
𝜕𝑢(𝑥,0)

𝜕𝑥
       (6) 

where 𝑈(𝑥, 𝑠) = 𝐿[𝑢(𝑥, 𝑡)]. 
2.2. Complex Derivatives 
Let 𝑤 = 𝑤(𝑧, 𝑧̅) be a complex function, and 𝑧 = 𝑥 + 𝑦𝑖, 𝑤(𝑧, 𝑧̅) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). First order 
derivatives according to 𝑧 and 𝑧̅ of 𝑤(𝑧, 𝑧̅) are defined as 

𝜕𝑤

𝜕𝑧
=

1

2
(

𝜕𝑤

𝜕𝑥
− 𝑖

𝜕𝑤

𝜕𝑦
)         (7)

    

 

𝜕𝑤

𝜕𝑧̅
=

1

2
(

𝜕𝑤

𝜕𝑥
+ 𝑖

𝜕𝑤

𝜕𝑦
)         (8)  

and for the second order are defined as 
𝜕2𝑤

𝜕𝑧2 =
1

2
(

𝜕2𝑤

𝜕𝑥2 − 𝑖
𝜕2𝑤

𝜕𝑦2 )          (9)          

𝜕2𝑤

𝜕𝑧̅2 =
1

2
(

𝜕2𝑤

𝜕𝑥2 + 𝑖
𝜕2𝑤

𝜕𝑦2 )                                (10)                                           

2.3. Solutions of complex differential equations of second order with constant 
coefficients. 
Theorem 3. Let 𝐴, 𝐵, 𝐶 be a real constants, 𝐹(𝑧, 𝑧̅) is a polynomial of 𝑧, 𝑧̅ and 𝑤 = 𝑢 + 𝑖𝑣 is a 
complex function. Then the solution of  

𝐴
𝜕2𝑤

𝜕𝑧2 + 𝐵
𝜕2𝑤

𝜕𝑧̅2 + 𝐶𝑤 = 𝐹(𝑧, 𝑧̅)                    (11) 

with the initial condition        
 𝑤(𝑥, 0) = 𝑓(𝑥)        (12) 
is given as  
𝑢(𝑥, 𝑦)

= 𝐿−1[
(𝐴 + 𝐵)

𝜕2

𝜕𝑥2 (2𝐹1
∗ + (𝐴 − 𝐵)(𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0))) + 2𝐶 (2𝐹1

∗ + (𝐴 − 𝐵)(𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0))) − 𝑠2(𝐴 − 𝐵)(2𝐹2
∗ + (𝐵 − 𝐴)(𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0)))

((𝐴 + 𝐵)
𝜕2

𝜕𝑥2 + 2𝐶)2 + 𝑠2(𝐴 − 𝐵)2

] 

           (13) 

𝑢𝑢

 
𝑣(𝑥, 𝑦)

= 𝐿−1[
(𝐴 + 𝐵)

𝜕2

𝜕𝑥2 (2𝐹2
∗ + (𝐵 − 𝐴)(𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0))) + 2𝐶 (2𝐹2

∗ + (𝐵 − 𝐴)(𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0))) − 𝑠2(𝐵 − 𝐴)(2𝐹1
∗ + (𝐴 − 𝐵)(𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0)))

((𝐴 + 𝐵)
𝜕2

𝜕𝑥2 + 2𝐶)2 + 𝑠2(𝐴 − 𝐵)2

] 

(14) 
 

and hence the proof is 

𝐴
𝜕2𝑤

𝜕𝑧2 + 𝐵
𝜕2𝑤

𝜕𝑧̅2 + 𝐶𝑤 = 𝐹(𝑧, 𝑧̅)                  (15) 

 

 

Obtaining the following equality by substituting equations (9) and (10) in (15) yields                                

𝐴
1

2
(

𝜕2𝑤

𝜕𝑥2 − 𝑖
𝜕2𝑤

𝜕𝑦2 ) + 𝐵
1

2
(

𝜕2𝑤

𝜕𝑥2 + 𝑖
𝜕2𝑤

𝜕𝑦2 ) + 𝐶𝑤 = 𝐹1(𝑥, 𝑦) + 𝑖𝐹2(𝑥, 𝑦)                                   (16) 

 
If we write 𝑤 = 𝑢 + 𝑖𝑣 in equation (16) we then have 

𝐴 (
𝜕2𝑢

𝜕𝑥2 + 𝑖
𝜕2𝑣

𝜕𝑥2 − 𝑖
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑦2) + 𝐵 (
𝜕2𝑢

𝜕𝑥2 + 𝑖
𝜕2𝑣

𝜕𝑥2 + 𝑖
𝜕2𝑢

𝜕𝑦2 −
𝜕2𝑣

𝜕𝑦2) + 2𝐶(𝑢 + 𝑖𝑣) = 2𝐹1(𝑥, 𝑦) +

2𝑖𝐹2(𝑥, 𝑦)              (17) 
 
Separating equation (17) into real and imaginary parts, then the following system of 
equations are obtained 

(𝐴 + 𝐵)
𝜕2𝑢

𝜕𝑥2 + (𝐴 − 𝐵)
𝜕2𝑣

𝜕𝑦2 + 2𝐶𝑢 = 2𝐹1(𝑥, 𝑦)                                                                    (18) 

 

(𝐴 + 𝐵)
𝜕2𝑣

𝜕𝑥2 + (𝐵 − 𝐴)
𝜕2𝑢

𝜕𝑦2 + 2𝐶𝑣 = 2𝐹2(𝑥, 𝑦)                                                                    (19) 
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Using the Laplace transform on equations (18) and (19) above, we get the following 
equalities 

(𝐴 + 𝐵)
𝜕2𝑈

𝜕𝑥2 + (𝐴 − 𝐵)(𝑠2𝑉 − 𝑠𝑣(𝑥, 0) − 𝑣′(𝑥, 0)) + 2𝐶𝑈 = 2𝐹1
∗            (20) 

 

(𝐴 + 𝐵)
𝜕2𝑉

𝜕𝑥2 + (𝐵 − 𝐴)(𝑠2𝑈 − 𝑠𝑢(𝑥, 0) − 𝑢′(𝑥, 0)) + 2𝐶𝑉 = 2𝐹2
∗                                 (21)  

                                   
where 𝑈, 𝑉, 𝐹1

∗, 𝐹2
∗ are Laplace transforms of 𝑢, 𝑣, 𝐹1, 𝐹2 respectively. Rearranging equation 

(20) and (21) and then solving using Cramer’s rule yields 

(𝐴 + 𝐵)
𝜕2𝑈

𝜕𝑥2 + 2𝐶𝑈 + 𝑠2(𝐴 − 𝐵)𝑉 = (𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0))(𝐴 − 𝐵) + 2𝐹1
∗                   (22) 

 

𝑠2(𝐵 − 𝐴)𝑈 + 2𝐶𝑈 + (𝐴 + 𝐵)
𝜕2𝑉

𝜕𝑥2 + 2𝐶𝑉 = (𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0))(𝐵 − 𝐴) + 2𝐹2
∗       (23) 

 

|
(𝐴 + 𝐵)𝐷 + 2𝐶 𝑠2(𝐴 − 𝐵)

𝑠2(𝐵 − 𝐴) (𝐴 + 𝐵)𝐷 + 2𝐶
| = ((𝐴 + 𝐵)𝐷 + 2𝐶)2 + 𝑠4(𝐴 − 𝐵)2                       (22) 

 

𝑈 =

|
(𝑠𝑣(𝑥,0)+𝑣′(𝑥,0))(𝐴−𝐵)+2𝐹1

∗ 𝑠2(𝐴−𝐵)

(𝑠𝑢(𝑥,0)+𝑢′(𝑥,0))(𝐵−𝐴)+2𝐹2
∗ (𝐴+𝐵)𝐷+2𝐶

|

((𝐴+𝐵)𝐷+2𝐶)2+𝑠4(𝐴−𝐵)2                (23) 

𝑈 =

(𝐴+𝐵)
𝜕2

𝑥2[2𝐹1
∗+(𝐴−𝐵)(𝑠𝑣(𝑥,0)+𝑣′(𝑥,0))]+2𝐶[2𝐹1

∗+(𝐴−𝐵)(𝑠𝑣(𝑥,0)+𝑣′(𝑥,0))]−𝑠2(𝐴−𝐵)[2𝐹2
∗+(𝐵−𝐴)(𝑠𝑢(𝑥,0)+𝑢′(𝑥,0))]

((𝐴+𝐵)𝐷+2𝐶)2+𝑠4(𝐴−𝐵)2         

(24) 

𝑉 =

|
(𝐴+𝐵)𝐷+2𝐶 (𝑠𝑣(𝑥,0)+𝑣′(𝑥,0))(𝐴−𝐵)+2𝐹2

∗

𝑠2(𝐵−𝐴) (𝑠𝑢(𝑥,0)+𝑢′(𝑥,0))(𝐵−𝐴)+2𝐹1
∗

|

((𝐴+𝐵)𝐷+2𝐶)2+𝑠4(𝐴−𝐵)2        (25) 

𝑉 =

(𝐴+𝐵)
𝜕2

𝑥2[2𝐹2
∗+(𝐵−𝐴)(𝑠𝑢(𝑥,0)+𝑢′(𝑥,0))]+2𝐶[2𝐹2

∗+(𝐵−𝐴)(𝑠𝑢(𝑥,0)+𝑢′(𝑥,0))]−𝑠2(𝐵−𝐴)[2𝐹1
∗+(𝐴−𝐵)(𝑠𝑣(𝑥,0)+𝑣′(𝑥,0))]

((𝐴+𝐵)𝐷+2𝐶)2+𝑠4(𝐴−𝐵)2             

(26) 
The following are obtained from the inverse Laplace transform of equations (24) and (26) 

𝑈(𝑥, 𝑦)

= 𝐿−1[
(𝐴 + 𝐵)

𝜕2

𝑥2 [2𝐹1
∗ + (𝐴 − 𝐵)(𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0))] + 2𝐶[2𝐹1

∗ + (𝐴 − 𝐵)(𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0))] − 𝑠2(𝐴 − 𝐵)[2𝐹2
∗ + (𝐵 − 𝐴)(𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0))]

((𝐴 + 𝐵)𝐷 + 2𝐶)
2

+ 𝑠4(𝐴 − 𝐵)2
] 

                            (27) 
𝑉(𝑥, 𝑦)

= 𝐿−1[
(𝐴 + 𝐵)

𝜕2

𝑥2 [2𝐹2
∗ + (𝐵 − 𝐴)(𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0))] + 2𝐶[2𝐹2

∗ + (𝐵 − 𝐴)(𝑠𝑢(𝑥, 0) + 𝑢′(𝑥, 0))] − 𝑠2(𝐵 − 𝐴)[2𝐹1
∗ + (𝐴 − 𝐵)(𝑠𝑣(𝑥, 0) + 𝑣′(𝑥, 0))]

((𝐴 + 𝐵)𝐷 + 2𝐶)
2

+ 𝑠4(𝐴 − 𝐵)2
] 

           (28) 
 

Equations (27) and (28) are the required solution form of the second order complex 
differential equation which on applying them to our examples we get the desired solution 
for them. 
 
RESULTS AND DISCUSSION 
Example 1. Consider the second order complex differential equation 
𝜕2𝑤

𝜕𝑧2 + 2
𝜕2𝑤

𝜕𝑧̅2 = 3𝑧2 + 2                             (29) 

 
with the conditions 
𝑤(𝑥, 0) = 𝑥3 + 𝑥,   𝑤′(𝑥, 0) = 3𝑥2 + 1                  (30) 
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Applying the foresaid solution form to equation (29) subject to equation (30) where the 
coefficients of equation (29) are 𝐴 = 1, 𝐵 = 2, 𝐶 = 0 and 𝐹(𝑧, 𝑧̅) = 3𝑥2 + 2. The  Real and 
imaginary parts of 𝐹(𝑧, 𝑧̅) are 𝐹1(𝑥, 𝑦) = 3𝑥2 − 3𝑦2 + 2 and 𝐹2(𝑥, 𝑦) = 6𝑥𝑦, and the Laplace 
transforms of 𝐹1(𝑥, 𝑦) and 𝐹2(𝑥, 𝑦) are  

𝐹1
∗(𝑥, 𝑠) = 𝐿[𝐹1(𝑥, 𝑦)] =

3𝑥2+2

𝑠
  𝑎𝑛𝑑 𝐹2

∗(𝑥, 𝑠) = 𝐿[𝐹2(𝑥, 𝑦)] =
6𝑥

𝑠2   

applying the solution form yields 

𝑢(𝑥, 𝑦) = 𝐿−1[
3

𝜕2

𝜕𝑥2(
6𝑥2+4

𝑠
−

12

𝑠3)+𝑠2(
12𝑥

𝑠2 +𝑠(𝑥3+𝑥)+(3𝑥2+1))

9𝐷2+𝑠4 ]  

𝑢(𝑥, 𝑦) = 𝐿−1[
36

𝑠
+12𝑥+𝑠3(𝑥3+𝑥)+𝑠2(3𝑥2+1)

𝑠4(1+
9𝐷2

𝑠4 )
]  

𝑢(𝑥, 𝑦) = 𝐿−1[
1

𝑠4(1+
9𝐷2

𝑠4 )
(

36

𝑠
+ 12𝑥 + 𝑠3(𝑥3 + 𝑥) + 𝑠2(3𝑥2 + 1))]  

𝑢(𝑥, 𝑦) = 𝐿−1[
1

𝑠4 (
36

𝑠
+ 12𝑥 + 𝑠3(𝑥3 + 𝑥) + 𝑠2(3𝑥2 + 1) −

54𝑥

𝑠
−

54

𝑠2)]  

𝑢(𝑥, 𝑦) = 𝐿−1[
36−54𝑥

𝑠5 +
12𝑥

𝑠4 +
𝑥3+𝑥

𝑠
+

3𝑥2+1

𝑠2 −
54

𝑠6]  

𝑢(𝑥, 𝑦) = 27𝑦5 +
9𝑥𝑦4

4
−

3𝑦4

2
− 2𝑥𝑦3 − 3𝑥2𝑦 − 𝑥3 + 𝑥 + 𝑦                                              (31) 

 

𝑣(𝑥, 𝑦) = 𝐿−1[
3

𝜕2

𝜕𝑥2(
12𝑥

𝑠2 )−𝑠2(
6𝑥2+4

𝑠
−

12

𝑠3−𝑠(𝑥3+𝑥)+(3𝑥2+1))

9𝐷2+𝑠4 ]  

𝑣(𝑥, 𝑦) = 𝐿−1[
−𝑠(6𝑥2+4)+

12

𝑠
+𝑠3(𝑥3+𝑥)+𝑠2(3𝑥2+1)

9𝐷2+𝑠4 ]  

𝑣(𝑥, 𝑦) = 𝐿−1[
1

𝑠4(1+
9𝐷2

𝑠4 )
(−𝑠(6𝑥2 + 4) +

12

𝑠
+ 𝑠3(𝑥3 + 𝑥) + 𝑠2(3𝑥2 + 1))]  

𝑣(𝑥, 𝑦) = 𝐿−1[
1

𝑠4 (−𝑠(6𝑥2 + 4) +
12

𝑠
+ 𝑠3(𝑥3 + 𝑥) + 𝑠2(3𝑥2 + 1) +

108

𝑠3 −
54𝑥

𝑠
−

54

𝑠2)]  

𝑣(𝑥, 𝑦) = 𝐿−1[
−6𝑥2−4

𝑠3 +
12

𝑠5 +
𝑥3+𝑥

𝑠
+

3𝑥2+1

𝑠2 +
108

𝑠7 −
54𝑥

𝑠5 −
54

𝑠6]  

𝑣(𝑥, 𝑦) = 𝑥3 + 3𝑥2𝑦 − 3𝑥2𝑦2 −
9𝑥𝑦4

4
+ 𝑥 +

3𝑦6

40
−

9𝑦5

20
+

𝑦4

2
− 2𝑦2 + 𝑦               (32) 

 
hence the general solution form is 

𝑤 = 𝑢 + 𝑖𝑣 = 27𝑦5 +
9𝑥𝑦4

4
−

3𝑦4

2
− 2𝑥𝑦3 − 3𝑥2𝑦 − 𝑥3 + 𝑥 + 𝑦 + 𝑖(𝑥3 + 3𝑥2𝑦 − 3𝑥2𝑦2 −

9𝑥𝑦4

4
+

𝑥 +
3𝑦6

40
−

9𝑦5

20
+

𝑦4

2
− 2𝑦2 + 𝑦)                             (33) 

 
Example 2. Solve the following problem 

2
𝜕2𝑤

𝜕𝑧2 −
𝜕2𝑤

𝜕𝑧̅2 = 4𝑧 + 1                      (34) 

 
with the conditions 
 𝑤(𝑥, 0) = 𝑥2 + 5𝑥,   𝑤′(𝑥, 0) = 2𝑥 + 5                 (35) 
 
Also applying the foresaid solution form to equation (34) subject to equation (35) where the 
coefficients of equation (33) are 𝐴 = 2, 𝐵 = −1, 𝐶 = 0 and 𝐹(𝑧, 𝑧̅) = 4𝑧 + 1. The  Real and 
imaginary parts of 𝐹(𝑧, 𝑧̅) are 𝐹1(𝑥, 𝑦) = 4𝑥 + 1 and 𝐹2(𝑥, 𝑦) = 4𝑦, and the Laplace 
transforms of 𝐹1(𝑥, 𝑦) and 𝐹2(𝑥, 𝑦) are  

  𝐹1
∗(𝑥, 𝑠) = 𝐿[𝐹1(𝑥, 𝑦)] =

4𝑥+1

𝑠
  𝑎𝑛𝑑 𝐹2

∗(𝑥, 𝑠) = 𝐿[𝐹2(𝑥, 𝑦)] =
4

𝑠2            

and applying the solution form yield 

𝑢(𝑥, 𝑦) = 𝐿−1[
𝜕2

𝜕𝑥2(
8𝑥+2

𝑠
)−3𝑠2(

8

𝑠2−3𝑠(𝑥2+5𝑥)+3(2𝑥+5))

𝐷2+9𝑠4 ]  
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 𝑢(𝑥, 𝑦) = 𝐿−1[
−24+9𝑠3(𝑥2+5𝑥)−9𝑠2(2𝑥+5)

𝐷4+9𝑠4 ]                 

𝑢(𝑥, 𝑦) = 𝐿−1[
1

9𝑠4(1+
𝐷2

9𝑠4)
(−24 + 9𝑠3(𝑥2 + 5𝑥) − 9𝑠2(2𝑥 + 5))]  

𝑢(𝑥, 𝑦) = 𝐿−1[
1

9𝑠4 (1 −
𝐷2

9𝑠2 +
𝐷4

81𝑠8 − ⋯ )(−24 + 9𝑠3(𝑥2 + 5𝑥) − 9𝑠2(2𝑥 + 5))]  

𝑢(𝑥, 𝑦) = 𝐿−1[
1

9𝑠4 (−24 + 9𝑠3(𝑥2 + 5𝑥) − 9𝑠2(2𝑥 + 5) −
18

𝑠
)]  

𝑢(𝑥, 𝑦) = 𝐿−1[−
24

𝑠4 +
𝑥2+5𝑥

𝑠
−

2𝑥+5

𝑠2 −
2

𝑠5]  

𝑢(𝑥, 𝑦) = −
4𝑦3

9
+ (𝑥2 + 5𝑥) −

(2𝑥+5)𝑦

2
−

𝑦4

12
                 (36) 

 
similarly 

𝑣(𝑥, 𝑦) = 𝐿−1[
𝜕2

𝜕𝑥2(
8

𝑠2)+3𝑠2(
8𝑥2+2

𝑠
+3𝑠(𝑥2+5𝑥)+3(2𝑥+5))

𝐷2+9𝑠4 ]  

𝑣(𝑥, 𝑦) = 𝐿−1[
1

9𝑠4(1+
𝐷2

9𝑠4)
(3𝑠(8𝑥 + 2) + 9𝑠3(𝑥2 + 5𝑥) + 9𝑠2(2𝑥 + 5))]  

𝑣(𝑥, 𝑦) = 𝐿−1[
1

9𝑠4 (1 −
𝐷2

9𝑠2 +
𝐷4

81𝑠8 − ⋯ )(3𝑠(8𝑥 + 2) + 9𝑠3(𝑥2 + 5𝑥) + 9𝑠2(2𝑥 + 5))]  

𝑣(𝑥, 𝑦) = 𝐿−1[
1

9𝑠4 (3𝑠(8𝑥 + 2) + 9𝑠3(𝑥2 + 5𝑥) + 9𝑠2(2𝑥 + 5) −
2

𝑠
)]  

𝑣(𝑥, 𝑦) = 𝐿−1[
8𝑥+2

3𝑠3 +
𝑥2+5𝑥

𝑠
+

2𝑥+5

𝑠2 −
2

9𝑠5]  

𝑣(𝑥, 𝑦) =
(8𝑥+2)𝑦2

6
+ (𝑥2 + 5𝑥) +

(2𝑥+5)𝑦

2
−

𝑦4

108
                  (37) 

 
Hence the general solution form is 

𝑤 = 𝑢 + 𝑖𝑣 = −
4𝑦3

9
+ (𝑥2 + 5𝑥) −

(2𝑥+5)𝑦

2
−

𝑦4

12
+ 𝑖(

(8𝑥+2)𝑦2

6
+ (𝑥2 + 5𝑥) +

(2𝑥+5)𝑦

2
−

𝑦4

108
)             

           (38) 
 

Examples (1) and (2) are second order complex differential equations solved and equations 
(33) and (38) are the obtained solutions to the problem as stated.    
 
CONCLUSION 
Second order complex differential equation was considered in this paper, where the solution 
to such type of problems are not easily solved for. But with the derivation of the solution 
form of the complex differential equation using the Laplace Transform technique and then 
implementing it on the examples presented, the solution to the examples were easily arrived 
at as shown in equations (33) and (38) which is the general form of the solution giving the 
real and imaginary part of the complex differential equation.       
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