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Abstract 
 
During metastasis, tumour cells must become migratory and travel towards a capillary within the 
tumour.  They then degrade the matrix surrounding the pericytes and endothelial cells, insert 
themselves between endothelial cells, transverse the capillary wall, to then enter the blood stream. This 
process depends on the motile behaviour of the tumour cells as well as the role of endothelial cell-cell 
junctions, both including adherens junctions and tight junctions. Circulating tumour cells must next, 
adhere to the walls of the capillary at the site of secondary tumour formation.  Here, they again traverse 
the capillary wall to enter tissues distant from the primary tumour. This review aim to discuss the basic 
architecture of the endothelial junctional complex as well as the role played by these components 
towards the transendothelial migration of cancer cells from the primary site to the secondary site.  
Proper understanding of the role played by each of these components could invariably lead to the 
development of novel adjuvant cancer chemotherapy.  
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INTRODUCTION 
Endothelium refers to the monolayer single sheet of  endothelial cells lining the inner aspect 
of the vascular lumen acting to separate the underlying tissues from the circulating blood 
(Chistiakov, Revin, et al., 2015; Curry & Adamson, 2010), thereby forming a form of barrier for 
the passage of both macromolecules as well as blood cells from the circulation into the 
underlying tissues (Dejana et al., 1995; Dejana & Vestweber, 2013). These barriers are made up 
by the endothelial cells through the interactions of various junctional structures, which acts to 
tightly regulate the endothelial barrier (Razakandrainibe et al., 2013). Two major types of 
intercellular junctions found to be associated with the ECs are the tight and adherens junctions 
(Bazzoni & Dejana, 2004; Hirase & Node, 2012). Dysfunctions or distortion  of endothelial cell-
cell junctions by the tumours cells results in opening of these junctions leading to 
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transendothelial migration of the tumour cells at a far distant sites. which now becomes the 
secondary site. This review focus on describing the role played by each of these intercellular 
junctional complexes components during the process of transendothelial migration of the 
cancer cells. 
 
An overview of general architecture of vascular system 
The vascular system, also known as the cardiovascular system is a system that is concerned 
with the distribution/circulation of blood as well as nutrients to and from the cells of the body. 
The vascular system is generally made up of the blood and lymphatics. The vascular wall is 
made up of three distinct layers known also as tunics. Inside out are the  tunicaintima, tunica 
media and tunica adventitia.  
The tunica intima has an endothelial cell layer lining the luminal cavity of the vessel and just 
beneath the Endothelial cells (EC) is the basal lamina onto which the EC lies. Next to the basal 
lamina is the sub-endothelial layer which is made up of elastic fibres hence referred to as the 
internal elastic membrane. Tunica media which is the middle vascular layer is made up of 
vascular smooth muscle cells as well as some interspersed elastic fibres i.e. depending on the 
type and size of vessel. Next to the smooth muscle layer is the external elastic membrane 
demarcating the tunica media from the tunica adventitia. The tunica adventitia is the most 
external coat and by and large, it is composed of connective tissue. (Figure 1). 
 

 
Figure 1. A cartoon diagram illustrating the three basic parts of a blood vessels. From the luminal aspect is the 
tunica intima followed by tunica media lying in between the tunica media and tunica adventitia. The outermost 
layer is the tunica adventitia. 

 
Endothelial cell architecture 
The vascular endothelium is made up of a single thin sheet layer of endothelial cells, which 
are flattened, elongated and polygonal in shape (simple squamous). The EC lines the entire 
inner aspect of the vascular system as earlier stated, as such forming a continuous inner layer. 
This layer of the endothelium in man has a surface area of 350 m2 and a total mass of 110 g 
(Pries & Kuebler, 2006; Pries et al., 2000). The endothelium via the EC is actively involved in 
several important functions including, maintenance of selective permeability barrier, 
haemostasis and coagulation, inflammatory responses, fluid and solute exchange among 
others (Pries & Kuebler, 2006; Pries et al., 2000). All the EC lie on the basal lamina. The EC 
along with tumour cells and most other cell types possess three forms of cytoskeletal 
components which are always in constant and close interaction with one another, through 
which they establish as well as regulate the endothelial barrier functions. These EC 
cytoskeletons are the actin microfilaments, intermediate filaments and microtubules (Chang 
& Goldman, 2004; Dudek & Garcia, 2001; Revenu et al., 2004). 
 
The actin microfilaments on average are about 7 nm in diameter with intermediate filaments 
measuring about 10 nm and microtubules being about 25 nm in diameter (Ishikawa et al., 
1968). Inside the EC actin constitutes about  5–15% of the total proteins (Patterson & Lum, 
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2001). Actin cytoskeleton exhibits a dynamic nature of polymerization and depolymerization. 
Polymerization of β-actin and γ-actin globular (G) subunits results in the formation of 
filamentous (F) actin. The G-actin and F-actin are found to be in an equal amount within the 
cell (Stossel et al., 1985). However, the F actin is the main structural unit for the formation of 
actin-based cytoskeletal structures. The F actin cytoskeleton is composed of three distinct 
subtypes, comprising of cortical actin rim, outer membrane skeleton, with cross-linking of 
spectrin and the cytosolic actomyosin-based stress fibres (Prasain & Stevens, 2009). The F-
actin filaments of the cortical actin are longer than the filaments of the membrane skeleton 
and stress fibres (De Matteis & Morrow, 2000; Heimann et al., 1999). In cultured endothelial 
cells, the actin stress fibres generate centripetal tension in addition to the reorganization of 
adhesion complex architecture, which eventually results to retraction of cell-cell borders into 
apparent gaps (Dudek & Garcia, 2001; Phillips et al., 1989). The cortical actin rim subsequently 
generates an outwards centrifugal tension to counteract the tension generated by stress fibres 
so as to prevent the collapse of the cultured motile cells. The cytosolic actomyosin-based stress 
fibres are necessary for cell contraction (Hotulainen & Lappalainen, 2006) during which they 
determine the rate and size of the inter-endothelial cell gaps (Dudek & Garcia, 2001; Patterson 
& Lum, 2001). Therefore, the endothelial contractile machinery consists of actin and non-
muscle myosin, which requires ATP, calcium and calmodulin in order to generate contractile 
force for centripetal tension (Dudek & Garcia, 2001; Surapisitchat & Beavo, 2011). The 
endothelial cell contraction is generated sequel to process of phosphorylation of myosin light 
chain (MLC) by MLC-kinase (MLCK), which occur either as mono-phosphorylation on Ser19 
or di-phosphorylation on both Ser19 and Thr18 (Goeckeler & Wysolmerski, 1995; Prasain & 
Stevens, 2009). MLCK, a calcium / calmodulin- dependent enzyme (Mehta & Malik, 2006), in 
the human endothelial cell is a protein with a molecular weight of 214 kDa, and present on 
chromosome 3 (Dudek & Garcia, 2001). Attenuation of MLC kinase activity results in 
distortion of endothelial barrier function (Garcia et al., 1995). Wainwright and colleagues 
reported increased protection in lung vascular permeability following the injection of 
lipopolysaccharide in endothelial  cell MLCK  -/-  mice (Wainwright et al., 2003). 
 
The intermediate-sized filaments have an average diameter of about 10nm (Ishikawa et al., 
1968). The intermediate filaments of the EC are constituted by the polymers of cytokeratin and 
also vimentin(Patton et al., 1990). The filaments possess the ability to extend their length from 
both of the ends (Mehta & Malik, 2006). The intermediate filaments in epithelial cells play an 
important role in cell-cell junctions and cell-ECM junctions at the desmosomes and 
hemidesmosomes through the interactions of transmembrane desmoglein and desmocollin 
proteins. Desmoglein and desmocollin are members belonging to the cadherin family (Garrod 
& Chidgey, 2008; Mechanic et al., 1991). Unlike epithelial cells, ECs do not possess 
desmosomes (Lampugnani & Dejana, 1997; Rubin, 1992) rather, the EC vimentin is usually 
linked to the adheren junction structure which is similar to the desmosomes, thereby forming 
an adherens complex (complexus adherens) (Kowalczyk et al., 1998; Schmelz & Franke, 1993; 
Schmelz et al., 1994; Valiron et al., 1996). In addition, vimentin through desmoplakin, an 
intermediate filament-binding protein is able to form a link between the adheren junction and 
intermediate filaments of the EC (Shasby et al., 2002). Also, an alternative link between AJ and 
intermediate filaments could be established through the desmoplakin binding to the AJ 
armadillo protein p0071 (Calkins et al., 2003; Valiron et al., 1996). During inflammation, 
mediators are capable of disrupting the normal interaction between intermediate filament, γ-
catenin as well as the VE-cadherin (Shasby et al., 2002). However, vimentin knock-out mice 
lacking endothelial cell intermediate filaments did not exhibit any structural abnormality in 
their EC (Colucci-Guyon et al., 1994). 
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Microtubules are rigid hollow polymer tubes of tubulin formed through the organisation and 
assembly of the α and β tubulins heterodimers, which originates from  the microtubule-
organizing center (MTOC) close to the cell nucleus to then spread  up to the periphery of the 
cell (Prasain & Stevens, 2009; Wade & Hyman, 1997). Each of the tubulins is about  55 
kDa(Chretien & Wade, 1991). As the microtubules extend throughout the cytosol it utilizes 
the motor proteins dynein and kinesin thereby providing a good platform which allows 
intracellular transport of proteins throughout the cell (Krylyshkina et al., 2002; Lambert et al., 
1997; Wade & Hyman, 1997). Microtubule has an outer diameter of 25 nm while its inner 
diameter is 12 nm (Wade & Hyman, 1997). The α and β tubulins subunits polymerize in a 
head-to-tail fashion thereby forming protofilaments which is subsequently aligned lengthwise 
along the microtubule.  The protofilaments formed associate laterally to form a single 
microtubule having a hollow space measuring 12 nm in diameter at the inner aspect (Kikkawa 
et al., 1994). The wall of a single microtubule, therefore, is made from approximately 13-14 
parallel protofilaments (Chretien et al., 1992; Kikkawa et al., 1994). Thus these rigid hollow 
rods assists EC in resisting compression through opposing actin-myosin contractility (Mehta 
& Malik, 2006). The microtubule, unlike the intermediate filaments, displays a distinct polarity 
at their ends. These are the plus (+) and minus (-) ends.  The plus end have the β  tubulins 
subunit exposed. It is the faster-growing end, found to be attached to the cortical actin layer 
on the inner face of the plasma membrane, and elongation is faster at this end compared to 
the minus end which has α tubulin subunit exposed (Grego et al., 2001; WatermanStorer & 
Salmon, 1997). The exposed β tubulin at the plus end binds to and hydrolyses GTP to GDP, 
thereby allowing dynamic treadmilling of the microtubule, while the exposed α tubulin does 
not hydrolyse its attached GTP (Grego et al., 2001; WatermanStorer & Salmon, 1997). It is 
important to note that though microtubules do not extend to the plasma membrane (Conacci-
Sorrell et al., 2002; Dejana, 2004; Dudek & Garcia, 2001; Lampugnani et al., 2002) and also do 
not directly interact with cellular junctions (Vincent et al., 2004), they are capable of delivering  
cell  junction  components  to the cell surface through the vesicular trafficking of p120  catenin, 
a component of AJ as well as the delivery of connexin hemi-channels  for the  gap  junction  
channels (Chen et al., 2003; Lauf et al., 2002; Shaw et al., 2007; Yanagisawa et al., 2004). 
Microtubules are always in a dynamic state of assembly and disassembly and initially, 
microtubules and actin filaments were regarded as individual entities. However several 
studies have revealed an intricate association between microtubule and actin (Fuchs & Yang, 
1999; Goode et al., 2000; Klymkowsky, 1999; Prasain & Stevens, 2009). The interaction between 
microtubule and actin could be direct via the microtubule-associated proteins or indirectly via 
the intermediate linker or scaffolding proteins (Goode et al., 2000; Lee & Gotlieb, 2002; Lee & 
Gotlieb, 2003), including  coronin (Goode et al., 1999), centractin (Clark & Meyer, 1992)  and 
IQGAP1 (Brunner, 2002; Fukata et al., 2002) which bind to both microtubules and actin. The 
mechanism of IQGAP1 is well understood. The IQGAP1 cross-links via its amino terminus 
with F actin and then provides a carboxyl terminus as the binding site for microtubule-binding 
proteins CLIP-170 and EB1 (Brunner, 2002; Fukata et al., 2002; Watanabe et al., 2004). Both 
CLIP-170 and EB1 are microtubule plus end protein (Gundersen, 2002; Schuyler & Pellman, 
2001). Also, EB1 has dual binding sites at its C-terminus for p150, is a component of the dynein 
/ kinesin complex (Askham et al., 2002; Berrueta et al., 1999). In addition β-catenin, which is 
a component of AJs, could also  bind  to dynein  thereby indirectly linking the AJ to the plus 
end of microtubule and  therefore  is  suggested  to  link  the  microtubule  plus-end  to  AJs 
(Chausovsky et al., 2000; Komarova et al., 2000; Ligon et al., 2001). Furthermore, disruption of 
microtubule like the disruption of the cortical actin network has been reported to impair the 
endothelial cell barrier function. Microtubule disruption activates Rho guanine exchange 
factors (RhoGEFs), from tubulin, resulting in Rho A activation and subsequent stress fiber 
formation (Krendel et al., 2002; van Horck et al., 2001), while polymerisation of microtubule 
sequesters LIM kinase 1 thereby, restricting  its access to the actin cytoskeleton and preventing 
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the formation of stress fibres (Gorovoy et al., 2005; Maekawa et al., 1999). Interestingly 
chemotherapeutic agents such as vinca alkaloids were reported to cause pulmonary oedema 
secondary to microtubule disruption (Cattan & Oberg, 1999). Also, inhibition of the motor 
protein activity of  kinesin-1 or treatment using a depolymerising agent such as nocodazole 
has been shown to cause increased endothelial permeability (Verin et al., 2001). Thus, 
microtubule proves to be critical for the maintenance of cell shape as well as barrier integrity 
of the endothelium. 
 
Endothelial cell-cell contacts and junctions 
The ECs along the vascular tree maintain contact with each other through intercellular 
junctions. The barrier function of the ECs is known to be highly mediated by these junctions, 
in addition to keeping the ECs together. The architecture of the junctions along the vascular 
system is highly heterogeneous and depends on specific requirements of a particular organ 
(Engelhardt & Wolburg, 2004; Wolburg & Lippoldt, 2002). The intercellular junctions are 
highly dynamic and as such play an important role in the maintenance of vascular 
homeostasis as well as in inflammation during the transendothelial migration of leukocytes. 
Disruption of these junctions in disease conditions including cancers often leads to the 
breakdown of the EC barrier, increasing the permeability (Engelhardt & Wolburg, 2004; 
Goswami & Vestweber, 2016). At least three main types of intercellular junctions have been 
described in endothelial cells: Tight junctions (TJ), Adherens junctions (AJ) and Gap junctions 
(GJ) as illustrated in the Figure 2. These junctions are briefly described below. 
 

 
 
Figure 2. Endothelial cells junctions.  The figure illustrates the main types of junctions present in vascular 
endothelial cells, tight junctions, adherens junctions and gap junctions. Tight junctions are usually the most apical 
in epithelial cells and less restricted in endothelial cells. TJ components include occludin (blue), claudin (yellow) 
and junctional adhesion molecules (JAMs) (red). Adherens junctions in endothelial cells are formed mainly by VE-
cadherin. Also, N-cadherin is found to be expressed by ECs. Gap junctions in endothelial cells are formed from 
connexin proteins, mainly connexins 37, 40 and 43. These junctions are paracellular channels responsible for the 
intercellular exchange of ions as well as small molecules.  

 
 
 
Tight junctions 
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Tight junctions (TJ) are found to be present in both epithelial and endothelial cells. TJ was 
identified as a specialization of the plasma membrane via electron microscopy in 1963 
(Farquhar & Palade, 1963). Freeze fracture study shows the TJ  to be composed of a network 
of linear fibrils intersected by short transversal fibrils (Anderson et al., 1993; Gumbiner, 1993). 
The TJ in ECs, unlike those in epithelial cells, is less structured and more intermixed with the 
adherens junctions. They are found to be the most apical amongst all the junctional complexes 
in both epithelial and endothelial cells (Bazzoni & Dejana, 2004; Chistiakov, Orekhov, et al., 
2015). They provide both barrier or gate function through regulation of entry and exit  of ions, 
water, and macromolecules between cells (paracellulary),  as well as fence function thereby 
establishing  and maintaining the  polarity of the cell (Bazzoni & Dejana, 2004; Chistiakov, 
Orekhov, et al., 2015; Dejana, 2004; Tsukita et al., 2001). The distribution of TJ varies along the 
vascular network and depends largely on the requirement for endothelial permeability 
(Simionescu & Simionescu, 1991). The endothelium of large arteries tends to have a well-
developed tight junction system while TJs are absent in post capillary venules (Aird, 2007; 
Simionescu & Simionescu, 1991; Wallez & Huber, 2008). Additionally, TJs are found to be well 
developed in brain and retina where they form the blood-brain barrier and blood-retinal 
barrier, respectively (Simionescu et al., 1975; Wallez & Huber, 2008). Finally, recently the loss 
of TJ barrier function have been described to play a role in cancer metastasis (Martin, 2014; 
Martin & Jiang, 2009). In ECs as well as epithelial cells the TJs are formed by the homophilic 
interaction of cell-cell adhesion molecules, which are membrane-associated proteins. These 
include claudins, occludins, and junction adhesion molecules (JAMs) (Balda & Matter, 2016; 
Ebnet, 2008; Radeva & Waschke, 2018). 
 
Claudins, a family of proteins are the major barrier-forming proteins in TJs (Tsukita & Furuse, 
1999; Tsukita et al., 2019). They comprise of more than 20 members, with a low molecular mass 
of 20–27 kDa. Claudin members are capable of establishing both homophilic binding and 
heterophilic binding (Furuse & Tsukita, 2006; Runkle & Mu, 2013; Tsukita & Furuse, 1999). 
Claudin, like occludin, possesses four membrane-spanning regions, thus referred to as a 
tetraspan protein, with two extracellular loops and two cytoplasmic termini (N- and C-
termini) (Bazzoni & Dejana, 2004; Chiba et al., 2008; Van Itallie & Anderson, 2014). The 
cytoplasmic C-terminus of claudin bears a PDZ motif through which it recruits PDZ 
scaffolding proteins (Hamazaki et al., 2002; Itoh et al., 1999; Roh et al., 2002).  ECs in humans 
have been reported to express claudin-1, −3, −5, −12, and −15 (Chistiakov, Orekhov, et al., 
2015; Kiuchi-Saishin et al., 2002; Morita et al., 1999; Witt et al., 2003). Recent studies have 
reported an increase in TJ permeability following knockdown of claudin-1 in human ECs 
(Asaka et al., 2011). Additionally, Claudin-5-knockout mice often have developed severe brain 
haemorrhage due to selective impairment in BBB function for molecules smaller than 800 Da 
(Nitta et al., 2003; Runkle & Mu, 2013). Taken together the above evidence points to the key 
role of claudin-1 and claudin-5 in the regulation of endothelial TJ permeability. 
 
Occludin was the first transmembrane protein to be discovered in tight junctions (Furuse et 
al., 1993). It has a molecular mass of 65-kDa. It is also a tetraspan protein, with two 
extracellular loops and two cytoplasmic termini (N- and C-termini) (Furuse et al., 1993). 
Occludin through its C- terminus binds several proteins within the cytoplasm including zona 
occludens (ZO), in this manner mediating the interaction between the adhesion molecules and 
actin filaments (Balda & Matter, 2016; Balda et al., 1996). Additionally, ZO also binds to the 
adherens junction proteins afadin and α-catenin (Itoh et al., 1997; Ooshio et al., 2010; 
Rajasekaran et al., 1996). Although claudins are essential for TJ formation, in contrast, occludin 
is not essential, but rather serves as a major component for the formation of TJ complexes in 
the presence of claudins (Furuse et al., 1998). Occludin plays an important role in maintaining 
the stability and barrier function of the tight junctions (Furuse et al., 1993; Schneeberger & 
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Lynch, 2004). Occludin is known to be entirely localized to the tight Junctions of both 
epithelial and endothelial cells and its expression in the endothelium largely correlates with 
the permeability function along the vascular network (Anderson et al., 1993; Chiba et al., 2008). 
Additionally, occludin is found to be highly expressed brain endothelial as well as in retinal 
endothelial cells where they form BBB and BRB respectively (Hirase et al., 1997).  Down-
regulation of occludin has been reported to be associated with disease conditions affecting 
BBB and BRB (Brown & Davis, 2002). The TJ of ECs in occludin-null mice were intact and 
devoid of any gross alterations (Saitou et al., 2000), however these mice demonstrated several 
abnormal phenotypes including postnatal growth retardation, thinning of compact bone, 
calcification in the brain, testicular atrophy, male infertility, loss of cytoplasmic granules in 
salivary epithelial cells, females not suckling their young, and gastric inflammation and 
hyperplasia (Saitou et al., 2000). These suggest the complexity associated with occludin 
functions and also its role in stabilisation of the tight junctions.  
 
Junctional adhesion molecules (JAMs), unlike the previous two proteins already described,  
are a family of single membrane-spanning proteins with an extracellular domain of two IgG-
like folds, a transmembrane domain, and a cytoplasmic tail (Martin-Padura et al., 1998). The 
JAMs are  subdivided into two subgroups, with JAM-A, JAM-B and JAM-C belonging to the 
first subgroup (Ebnet et al., 2003; Ebnet et al., 2001; Itoh et al., 2001) and coxsackie and 
adenovirus receptor (CAR), endothelial cell-selective adhesion molecule (ESAM) and JAM4  
as the members of the second group (Kansaku et al., 2006; Sollerbrant et al., 2003). The first 
subgroup has a class II PDZ domain-binding motif at their C-terminal ends, through which 
directly interacts with ZO-1 and PAR-3 (Ebnet et al., 2003; Ebnet et al., 2001; Itoh et al., 2001), 
whereas the second subgroup bears class I PDZ domain-binding motif at their C-terminus 
(Bazzoni, 2003; Chiba et al., 2008; Ebnet et al., 2004; Kansaku et al., 2006). JAMs are capable of 
establishing both homophilic and heterophilic adhesion through their extracellular domains 
(Bazzoni, 2003; Ebnet et al., 2004). In addition to being present in TJ of  EC cells, JAMs are also 
found in other cells including leucocytes where they play an important role in their 
transendothelial migration (Ebnet et al., 2004).  JAM-A is to be found in intercellular junctions 
between epithelial and endothelial cells, as well as on the membranes of platelets and 
leukocytes (Martin-Padura et al., 1998; Williams et al., 1999), JAM-B expression is, however, 
restricted to inter-endothelial junctions, mainly in post capillary endothelial cells and 
lymphatic vessels (Palmeri et al., 2000). Though JAM-C is expressed in endothelial cells, its 
tissue distribution, by and large, varies between mouse and human (Morris et al., 2006). In 
JAM-A −/− mice, antibody treatment using anti-JAM-A antibody was shown to have no effect 
on the transendothelial migration of neutrophils (Corada et al., 2005; Khandoga et al., 2005). 
Recently Seung-Eon and colleagues reported a reduction in the transendothelial migration of 
bone marrow-derived dendritic cells following treatment with a junctional adhesion molecule 
(JAM)-Like (JAML) antibody (anti-JAML) (Roh et al., 2018). The above evidence demonstrates 
the important role played by JAMs in TEM, thus taken together JAMs could serve as a 
therapeutic target for metastasis control in neuroblastoma patients. 
 
Gap junctions 
Gap junctions (GJs) are composed of clusters of intercellular channels largely formed through 
the hexameric assemblies of connexins, which are located between adjacent cells 
(Goodenough et al., 1996). Two hexameric connexins from adjacent cells interact with each 
other through the narrow extracellular gap of about ~2 nm,  from which the junction derives 
its name (Yeager & Nicholson, 1996). The GJs in addition to providing direct cell-cell 
communications also allows the exchange of ions as well as small signalling molecules (∼< 1 
kDa) between adjacent cells (Carter & Ogden, 1994; Evans et al., 2006; Hsiao et al., 2010; Laird, 
2006). In chordates, the connexins are made up of 21 family members (Alexopoulos et al., 2004; 
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Cruciani & Mikalsen, 2007).  Amongst the 21 known connexins,   Cx37, Cx40, and Cx43 are 
the main connexins identified to be expressed by the endothelial cells within the human 
vascular network (Evans & Martin, 2002; vanRijen et al., 1997; Yeh et al., 1998). In the 
beginning, the channel function of gap junctions was mainly ascribed to the functional activity 
described as gap junction intercellular communication (GJIC) (Kotini & Mayor, 2015; Simon 
& Goodenough, 1998). Apart from their channel function, gap junctions additionally play a 
role in cell-cell adhesion through an association with the tight junctions (Evans & Martin, 2002; 
Severs et al., 2001). This function is largely carried out by the cysteine residues of the 
extracellular loops. Previous studies reported an increase in the adhesive ability of glioma 
cells due to an exogenous expression of connexin (Lin et al., 2002). Similarly, a reduction in 
cell-cell adhesion was observed following a point mutation in a cysteine residue of the 
extracellular loop (Lin et al., 2002). Additionally, in cancers, high expression of Cx26 was 
detected on the plasma membranes of mouse skin cancer cells invading the lymph node 
(Kamibayashi et al., 1995), and a similar finding was reported in the prostate as well as in 
breast cancer (Kanczuga-Koda et al., 2006). Recently, in the light of a possible role in cancer 
metastasis, Zhang and colleagues showed that inhibition of the highly expressed Cx43 in 
multiple myeloma cells using  18 a-glycyrrhetinic acid, a blocker for  Cx43, markedly 
decreased adhesion and migratory capabilities of multiple myeloma cells (Zhang et al., 2015). 
Another study demonstrated an up-regulation of Cx43 in the region of contact between the 
tumour cell and endothelial cell (Elzarrad et al., 2008). Finally, pieces of evidence are beginning 
to emerge for the role of Cx43 in facilitating cancer cell intravasation and extravasation as 
revealed by the experiment using 4T-1 mouse breast cancer cell lines that eventually 
metastasises to the brain. In this study, up-regulation of connexin-43 was shown to be 
associated at the regions of tumour cell-endothelial cell contact both in vitro and in vivo, as 
well as in regions of intra-tumour blood vessels and micro-metastatic foci (Elzarrad et al., 2008; 
Stoletov et al., 2013). By and large, the preceding evidence points to the roles of gap junctions 
in adhesion as well as in metastasis suggesting that gap junction could serve as a therapeutic 
means for metastasis. 
 
Adherens junctions (AJs) 
AJs are found to be widely distributed along the vascular network. These junctions are made 
up of transmembrane spanning proteins which are found to be expressed by the endothelial 
cells of both blood and lymphatic vessels (Bazzoni & Dejana, 2004; Dejana et al., 1995). The 
transmembrane spanning adhesion proteins in AJs are known to be of the cadherin family 
(Aberle et al., 1996; Angst et al., 2001a, 2001b; Gumbiner, 2000; Yagi & Takeichi, 2000). Of the 
>20 members of the cadherin superfamily, the endothelial cells specifically express vascular 
endothelial (VE)-cadherin (Dejana et al., 1995). Additionally, during embryonic development, 
(VE)-cadherin was also found to be expressed in cytotrophoblastic cells as well as in the cells 
committed to the endothelial lineage (Breier et al., 1996; Fraser et al., 2003; Kim et al., 2005). 
 
Cadherins were primarily identified within AJs through immunoelectron microscopic study 
in 1984 (Volk & Geiger, 1984). These cell-cell adhesion molecules are of 120-140 kDa molecular 
mass (Geiger & Ayalon, 1992) and they mediate their function in a Ca2+ dependent manner 
(Volk & Geiger, 1984, 1986). Cadherins, a single transmembrane glycoprotein, act through the 
formation of homotypic adhesive complexes with neighbouring EC(Steinberg & McNutt, 
1999). Structurally, classical cadherins are characterized by the presence of a long extracellular 
domain, a transmembrane domain and a short cytoplasmic domain (Figure 3). The 
extracellular region consists of the N-terminus and 5 extracellular repeats, EC1-EC5 
(Lampugnani et al., 1992; Liaw et al., 1990). These 5 extracellular repeats (EC) are further 
subdivided into two groups; EC1-3 are inter-homologous ectodomains, each approximately 
110 amino acids long, while EC4 and EC5 are less homologous repeats (Takeichi, 1990). The 
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extracellular domains are highly important in determining the specificity of the cadherin 
interactions (Ivanov et al., 2001; Lampugnani et al., 1992; Liaw et al., 1990). Each EC repeat 
expresses two putative calcium-binding sites (Ozawa et al., 1990; Ringwald et al., 1987), and 
modification in form of a single amino acid substitution at the calcium-binding site is adequate 
to eliminate the adhesive function of the molecule (Ozawa et al., 1990). The cytoplasmic 
domain of cadherins interacts with the cytoplasmic proteins including catenins, which, 
function as an intermediate linker between the cadherins and actin filaments (Ozawa et al., 
1990; Rimm et al., 1995; Takeichi, 1995). Functionally, the cytoplasmic domain comprises of 
the juxtamembrane domain, which is responsible for cadherin-p120 catenin and cadherin-
p0071 interactions, and the COOH-terminal domain which interacts with either β-catenin or 
γ-catenin in a discordant manner (Bazzoni & Dejana, 2004; Zhurinsky et al., 2000). As 
mentioned earlier, vascular endothelial (VE)-cadherin (also known as cadherin-5 and CD144) 
is the main cadherin expressed in endothelial adherens junctions (Lampugnani et al., 1992) 
and is structurally similar to the classical cadherin as described above. Thus the (VE)-cadherin 
acts to modulate the permeability of the endothelial barrier via the activity of AJ complex 
(Barry et al., 2015; Corada et al., 2001; Corada et al., 1999; Mehta & Malik, 2006). In as much as 
the AJ modulates the EC barrier a range of molecules and even cells,  ions and solutes may 
perhaps move across ECs via either a paracellular or transcellular manner (Mehta et al., 2014). 
Increase in permeability of EC barrier is encountered during inflammation and also in 
vascular pathologies including oedema, tumour angiogenesis as well as sepsis which often 
results from the disruption of integrity of the VE-cadherin adhesion complex (Aragon-
Sanabria et al., 2017; Corada et al., 2001; Crosby et al., 2005; Frye et al., 2015). During 
inflammation, leukocytes were found to largely pass between the ECs while transmigrating 
across the endothelial layer (Tsukita et al., 2001; Vestweber, 2012; Vestweber et al., 2014). 
Several studies have characterised the various events leading to the breakdown endothelial 
barrier (Allport et al., 2000; Muller, 2014; Shaw et al., 2001; Tinsley et al., 1999; Vestweber, 
2008, 2015).  Evelyn and colleagues observed the loss of VE-cadherin from the retracting 
endothelial junction at the contact region between the ECs and melanoma cells, which led to 
a further redistribution of VE-cadherin (Voura et al., 1998). Furthermore, recently Virginia and 
colleagues observed activation of SRC, a non-receptor tyrosine kinase, to mediate the 
disassembly of  VE-cadherin in ECs during the process of TEM of metastatic melanoma cells 
(Aragon-Sanabria et al., 2017). 
 
Taken together, these results suggest that ECs  VE-cadherin plays an important role during 
the TEM events in cancers and thus adequate understanding of signalling events modulating 
the VE-cadherin at the endothelial junctions might identify novel therapeutic targets towards 
treatment of cancer metastasis. 
 
(VE)-cadherin also interacts with nectins, a cell-cell adhesion molecule, thereby forming a 
junctional complex, through which they likely mediate the formation of a mature AJ (Noda et 
al., 2010; Wallez & Huber, 2008). The nectin cell adhesion molecules are an immunoglobulin 
family with four members (nectins 1-4), together with five of the nectin like molecules (Necl 
1-5) (Takai et al., 2003). Two of the nectin members, nectin 2 and nectin 3 are found to be 
expressed in endothelial cells (Lopez et al., 2001; Takai et al., 2003). Like cadherins, nectin 
interaction leads to the formation of cis and trans dimers across the cell junctions (Takahashi 
et al., 1999). The nectins interact either homophilically and heterophilically via a calcium-
independent manner to establish proper cell-cell adhesion (Dong et al., 2006; Takai et al., 2003). 
The C-terminus of nectins, bears   the postsynaptic density protein-95/ discs large/ ZO-1 
(PDZ) binding motif, through which it binds to an actin-binding filament afadin which gets 
anchored to the actin cytoskeleton of the AJ as well as the TJ (Takahashi et al., 1999; Takai et 
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al., 2003). Thus nectin-afadin interaction is crucial for the establishment of strong adherens 
junctions (Sato et al., 2006). 
 

 
Figure 3. Structure of classical cadherin. The cartoon illustrates the structure of a classical cadherin depicting all 
the three domains. 5 extracellular domains (EC1-5) (pink) form the extracellular region, with the N-terminus. The 
EC region expresses two calcium-binding sites.  The transmembrane domain (T.D) (light blue).The cytoplasmic 
domain (C.D, blue) which comprises of two parts thus juxtamembrane domain which serves a  region for the 
binding of armadillo proteins p120 and p0071 bind (light green), and a COOH-terminal domain where either β-
catenin or γ-catenin bind (green). α-actinin (green) can bind to either β-catenin or γ-catenin, which can then bind 
to α-actinin (gray). Finally, α-actinin can bind to the actin cytoskeleton (yellow) to establish the cadherin / catenin 
complex. 

 
CONCLUSION 
It is highly important to note that cancer metastasis is a highly complex event involving both 
cancer cells and the endothelial junctional complexes. Adequate and proper knowledge of the 
interactions as well as the role individual role played by these junctions could serve as a target 
point for the treatment of metastasis which often times is the cause of high mortality. Recently 
pharmacological agents in form of small molecules which modulates the integrity and 
function of endothelial junctions are being developed. Further exploration of the role of these 
junctions will eventually have a great impact towards  the management of metastasis in 
numerous cancers. 
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