ChemSearch Journal 10(2): 104 – 111, December, 2019 Publication of Chemical Society of Nigeria, Kano Chapter Received: 29/10/2019 Accepted: 06/12/2019 http://www.ajol.info/index.php/csj # Synthesis and Characterization of BiVO₄nanoparticles and its Photocatalytic Activity on Levofloxacin Antibiotics ## Usman Saidu Department of Chemistry, SuleLamido University Kafin Hausa, P.M.B 048 Jigawa State, Nigeria. *Correspondence Email:usmaniyya2000@gmail.com # **ABSTRACT** In this research, BiVO₄photocatalyst was successfully synthesized through a facile chemical precipitation method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscope accompanied with an energy-dispersive X-ray spectroscopy (SEM/EDS) and UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS). The photocatalytic activity of the as-synthesized photocatalyst was tested on the degradation of levofloxacin as a model pollutant. 85% degradation of 20 ppm levofloxacin was achieved within 90 min of visible light irradiation as compared with 18% using commercial photocatalyst P25, under the same experimental conditions. Such enhanced activity was attributed to higher absorption of visible light by the as-synthesized BiVO₄ that led to formation of a large number of reactive species. The kinetics of the photodegradation process was explained in terms of the Langmuir Hinshelwood model. The values of the kinetic rate constant (*k*) of the photodegradation were 2.52 x 10⁻³min⁻¹, and 22.35 x 10⁻³ min⁻¹ for commercial P25 and the as-synthesized BiVO₄photocatalysts, respectively. The investigation of the total organic carbon (TOC) indicated high mineralization of levofloxacin was achieved. Finally, the as-synthesized BiVO₄photocatalyst was found to retain its high degradation efficiency even after 5 cycles, indicating its stability for repeated applications. Keywords: Antibiotics, BiVO₄, Levofloxacin, Photocatalyst, Photodegradation #### INTRODUCTION Recent trends in environmental science have focused on the removal of pharmaceuticals and their metabolites in water bodies. The presence of pharmaceuticals in the environment can result in exposure to non-target organisms with wide ranging impacts. Extensive use of antibiotics and antimicrobial products has led to antibioticresistance in bacteria (Zaman, 2017). Moreover, a variety of aquatic organisms have shown accumulated levels of prescription hormones, antimicrobials, and antidepressants (Ferreet al., 2008). These drugs, which are up to 90 % excreted in its original form, after human consumption, can seep into surface and ground water from domestic wastewater besides some effluents (Daughton, 2010; William, 2005). Levofloxacin is a widely used second-generation fluoroquinolone antibiotic and is known for its broad-spectrum activity against gram positive and gram-negative bacteria (Lee et al., 2017; Sturini, et al., 2012). In addition to this, it has an excellent tissue penetration and is available in both oral and intravenous formulations. However, it may produce serious and lifethreatening adverse reactions. According to the U.S and Drug Administration levofloxacin may cause worsening of myasthenia gravis symptoms, including muscle weakness and breathing problems as well as spontaneous tendon ruptures (Kansal *et al.*, 2014). After consumption, as much as 87% of levofloxacin was discharged in urine within 2 days (Lu *et al.*, 2019). Therefore, levofloxacin is considered as a pollutant which needs to be removed from water bodies. Conventional wastewater treatment methods are ineffective in removing antibiotics such as levofloxacin at trace levels (Safari et al., 2015). Hence, there is a considerable need for the efficient degradation of this harmful substance by exploring other potential technologies. Photocatalysis is one of the leading advanced oxidation processes (AOPs) that degrades various organic compounds and has been used extensively for the degradation of pharmaceutical compounds in aqueous solution (Lofrano et al., 2017; Kaur &Kansal, 2016; Aga, 2007). These compounds in the presence of this process are eventually converted to smaller moieties which are of less harmful in nature to the environment. Attempt by various researchers have been made to develop various heterogeneous catalysts withincreased oxidative power. These mostly include metal and non-metal doped catalysts (Qiao et al., 2017). Bismuth-based metal oxides such as BiVO₄, Bi₂WO₆ etc. have been reported as novel compounds which show enhanced photocatalytic efficiency and improved charge transfer (Pàlmai et al., 2017; Chen et al., 2016). Bismuth vanadate (BiVO₄) has exceptional properties, including narrow band gap (~2.4 eV), resistance to corrosion, non-toxicity and good dispersibility. It also shows good chemical and photostability in visible-light induced degradation of pollutants (Lv *et al.*, 2017; Hu *et al.*, 2017; Guo *et al.*, 2015). In this study BiVO₄ was synthesized via facile precipitation method. The as-synthesized BiVO₄ photocatalyst was characterized through various techniques, and its photocatalytic efficiency was evaluated based on the degradation of levofloxacin under visible light irradiation. # MATERIALSANDMETHODS Materials All chemicals and reagents used for the synthesis were of analytical grade and were used without further purification. Levofloxacin ($C_{18}H_{20}FN_3O_4$, $\geq 98\%$) Bismuth nitrate pentahydrate (Bi(NO₃)₃.5H₂O, $\geq 98\%$), Ammonium monovanadate (NH₄VO₃, $\geq 99\%$), acetic acid (CH₃COOH, $\geq 99.99\%$) and nitric acid (98%, HNO₃), Degussa P25 TiO₂ were purchased from Sigma Aldrich. Solutions were prepared with deionized water throughout the experiments. # **Catalyst preparation** BiVO₄ was prepared by co-precipitation method with Bi(NO₃)₃.5H₂O and NH₄VO₃ with a stoichiometric proportion of (1:1, Bi:V) based on the method used by Intaphong *et al.* (2016), with some modifications. In a typical synthesis, 5 g of (Bi(NO₃)₃.5H₂O) was dissolved in 150 mL acetic acid (4 M), whereas, NH₄VO₃ was dissolved in 300 mL deionized water. The two solutions were mixed and stirred at room temperature. A given amount of concentrated nitric acid was added to adjust the pH to 2. The resulting yellow colloidal solution was left under constant stirring for 2 days followed by evaporating the excess solvent. Finally, the obtained powder was calcinated at 600 °C for 6 h. #### Characterization XRD analysis was conducted on a Shimadzu-6100 powder XRD diffractometer (40 kV-40 mA), Cu-K α radiation, (λ k α = 1.542 Å) with a OneSight new wide-range high-speed detector. Diffractogram was recorded in the 2 θ range of 2 θ -80 θ with a at a rate of 2 θ per min. Scanning electron microscope (SEM) images and Energy-dispersive X-ray spectroscopy (EDS) were obtained using JEOL JSM-6010LA at accelerating voltage of 20 kV. UV-Vis DRS measurement was conducted on Shimadzu UV-3600 UV-Vis spectrophotometer using BaSO₄ as a reference standard. Total organic carbon (TOC) was measured with Shimadzu 5000 TOC Analyzer equipped with an autosampler. #### Photocatalytic degradation of Levofloxacin The degradation experiment was carried out using 0.025 g BiVO₄ in 100 mL of 20ppm Levofloxacin solution. The drug solution was stirred in the dark for 30 min before exposing to the light source using a photoreactor (Luzchem, Canada) that contains 12 visible lamps (cool white light, LZC-420 (45 mW/cm²) with stirring. An aliquot was then taken from this irradiated mixture at a certain time interval. The latter was centrifuged, and the clear solution was transferred to a 1 cm quartz cell for absorbance measurements at 290 nm using a Specord 210 plus UV/Vis spectrophotometer (AnalyticJena, Germany). The percentage degradation of the levofloxacin was then calculated using equation 1 (Eslami, 2016). $$R(\%) = \frac{C_0 - C}{C_0} \times 100 \tag{1}$$ Where, C_0 represent the initial concentration before visible light irradiation, C is the concentration at time interval and R is the percentage degradation of the levofloxacin. Similarly, the kinetics of the reaction for the degradation of levofloxacinas defined by Gaya & Abdullah, (2008) was calculated using the modified Langmuir–Hinshelwood equation (2). $$ln\left(\frac{c}{c_0}\right) = -kt \tag{2}$$ Where, k is the reaction rate (min^{-1}) , t is the irradiation time, C_0 and C is the initial and final concentrations of the levofloxacin respectively. For the reusability study, the used photocatalyst was washed twice with distilled water followed by absolute ethanol. It was then dried at 60 °C overnight and then used again for the photocatalytic degradation of fresh levofloxacin solution while maintaining the same conditions as described earlier. # RESULTS AND DISCUSSION The XRD pattern of the as-synthesized $BiVO_4photocatalyst$ is presented in Fig. 1. It can be seen that all the diffraction peaks can be indexed to the monoclinic scheelite structure of bismuth vanadate (m-BiVO₄) (JCPD file no: 14-0688). No peaks of any other phases were detected, indicating the purity of the sample. The crystallite size of the prepared samples as calculated using the Scherrer's equation (3) (Du *et al.*, 2016) is presented in Table 1. $$D = \frac{k\lambda}{\beta \cos\theta} \tag{3}$$ Where D is the crystal size, λ is the wavelength equal to 0.154 nm, k is a constant taken as 0.94, β is the peak full widths at half-maximum intensity (FWHM) and θ is the Bragg angle of the actual peak. The surface morphology of the assynthesized $BiVO_4photocatalyst$ was examined using a scanning electron microscope (SEM), and the images are as shown in Fig. 2. It can be seen from the images that the as-synthesized m-BiVO₄photocatalyst shows irregular sphere like morphology. Bi, V, and O were the only elements which appeared in the EDS trace, which further confirmed the purity of the sample. Fig. 1XRD pattern of the as-synthesized BiVO₄ **Fig. 2** SEM images at **a**) x400 **b**) x5000 magnification and **c**) EDS pattern of the assynthesized BiVO₄ Fig. 3 presents the UV-vis spectra of the as-synthesize BiVO₄photocatalyst. The sample show strong absorption in the visible light region in addition to that in the UV light zone. The band gap energy of photocatalysts can be calculated using Tauc's equation (eq. 4) based on the DRS results (Tang *et al.*, 2015). ISSN: 2276 - 707X Saidu $$\alpha h \nu = A(h \nu - Eg)^{n/2}$$ $\alpha h \nu = A(h \nu - Eg)^{n/2}$ (4) where α is the absorption coefficient, h is the Planck's constant, v is the light frequency, A is the proportionality constant and Eg is the band gap. The value of n depends on the type of optical transition in the semiconductor, whether direct (n = 1) or indirect (n = 4) transition (Pirzada et al., 2015). The band gap energy of the as-synthesized BiVO₄photocatalyst was found to be 2.44 eV as estimated from the plot of $(\alpha h v)^2$ versus hv as shown in Fig. 3 (inset). The result indicated that the as-synthesized BiVO₄photocatalyst has appropriate band gap energy which is favorable for the decomposition photocatalytic of organic contaminants under visible light irradiation. Fig. 3 UV-Vis absorption spectrum and Tauc plot (inset) for the as-synthesized BiVO₄ Table 1 crystallite size, surface area, pore volume and band gap energy of BiVO₄photocatalyst | Catalyst | Crystallite size (nm) | Surface area (m²/g) | Pore size (nm) | Pore volume (cm ³ /g) | Band gap (eV) | |-------------------|-----------------------|---------------------|----------------|----------------------------------|---------------| | BiVO ₄ | 26.88 | 0.9856 | 8.413 | 0.00142 | 2.44 | # Photocatalytic degradation of levofloxacin The catalytic activity of the as-synthesized BiVO₄ photocatalysts was evaluated in the degradation of levofloxacin visible illumination. Figure 4a is the plot of degradation efficiency of levofloxacin by the as-synthesized BiVO₄photocatalysts, where Co is the initial concentration of levofloxacin and C is the concentration during irradiation time (t). Before the introduction of the photocatalysts, blank studies were conducted, and the results revealed that the concentration of levofloxacin remains constant in the absence of catalyst, thus further indicating the stability of levofloxacin under visible light irradiation. As shown from figure 4a, about 85% of levofloxacin degradation was achieved after 90 min of visible light irradiation in the presence of the assynthesized BiVO₄photocatalysts. However, in the presence of commercial TiO2 Degussa P25, under the same experimental conditions, only about 18% of levofloxacin degradation was achieved. The result is higher than that obtained by Li et al. (2011), who achieved only 55% of methylene blue degradation in the presence of BiVO₄ nanoparticles after 300 min of visible light irradiation. Furthermore, in order to quantitatively compare the photocatalytic performance of the assynthesized BiVO₄ photocatalyst, the rate of levofloxacin degradation was calculated and presented in Fig. 4b. The calculated rate constant (k) for the P25 and the as-synthesized BiVO₄ photocatalyst are 2.52 x 10⁻³ min⁻¹ and 22.35 x 10⁻³ min⁻¹ respectively. The as-synthesized BiVO₄ photocatalyst has a higher rate constant, which is almost 9 folds higher than that of commercial TiO₂ Degussa P25. Moreover, from the high values of correlation coefficients (R²), it could be deduced that the degradation process follows pseudo-firstorder kinetic model. The milestone recorded in this work has been compared to other works in the literature as shown in Table 2 **Fig. 4a)** Visible light-induced photocatalytic degradation of levofloxacin and **b)** the rate constants based on the Langmuir–Hinshelwood kinetic model #### **Mineralization studies** The extent of mineralization was determined with respect to decrease in total organic carbon content (TOC) in the levofloxacin solution. Fig 5 show that the as-synthesized $BiVO_4$ photocatalystpossess higher mineralization than Degussa P25, which is due to higher absorption of visible light that led to formation of a large number of reactive species such as hydroxyl radicals. However, TOC removal rate was much lower than the degradation process under the same experimental condition. This may be due to formation of stable and recalcitrant intermediates in the mineralization process. Fig. 5 Photocatalytic mineralization of levofloxacin in the presence of P25 and the as-synthesized BiVO₄photocatalysts #### Reusability The reusability studies for the assynthesized $BiVO_4$ photocatalyst were conducted by collecting the used photocatalyst sample after photocatalytic reactions. The used photocatalyst was then dried at 60 °C for 12 h. The dried photocatalyst was then used under the same conditions as described earlier. Fig. 6 shows the remarkable performance of the as-synthesized BiVO₄photocatalyst, with little decrease in catalytic activity after five cycles. This gives a clear indication that the as-synthesized BiVO₄ photocatalyst is highly stable and may be used for other practical applications. Fig. 6 Reusability of the as-synthesized BiVO₄photocatalyst on the degradation of levofloxacin **Table 2** Comparison of the photodegradation efficiency of levofloxacin with reported literature | Catalyst | Dosage (g/L) | [TC]
(ppm) | Light source | Efficiency (%) | Time
(min) | Literature | |---|--------------|---------------|--|----------------|---------------|---------------------------------| | Ag ₂ CO ₃ /CeO ₂ /AgBr | 0.5 | 10 | 300 W Xe lamp | 87.63 | 40 | (Wen et al., 2018) | | Ag ₂ O/TiO ₂ QDs | 0.25 | 10 | 85 W CFL bulbs (4150 lumens) | 81 | 90 | (Kaur et al., 2017) | | BiVO ₄ /CeVO ₄ | 0.5 | 50 | 150 W Xe lamp | 95.7 | 300 | (Lu et al., 2019) | | CdS/g-C ₃ N ₄ | 0.4 | 5 | 455 nm light | 64.42 | 210 | (Rengaraj <i>et al.</i> , 2019) | | BiVO ₄ | 0.25 | 20 | Visible light (45 mW/cm ²) | 85 | 90 | present study | # Proposed mechanism of the photocatalysis When a semiconductor photocatalyst such as BiVO₄ is illuminated by photon energy which is greater or equal to its band gap energy, it excites electron (e) from its valence band (VB) to the conduction band (CB). Simultaneously, it causes the formation of an electron vacancy, a positive charge called hole (h⁺), in the valence band (VB). The energy differences between the valence band (VB) and the conduction band (CB) is known as band gap (E_g) . The photo-generated positive holes react with water to produce hydroxyl radical (OH), while the photo-generated electrons react with oxygen to produce superoxide radicals (O⁻2). Both of these primary products (OH, O2 and h+) are strong oxidizing species that attacks organic pollutants such as levofloxacin and degrade them to CO₂ and H₂O. The proposed mechanism of this process can be illustrated in equations 5 - 8. $$BiVO_4 + hv \longrightarrow BiVO_4 (e^- + h^+)$$ $$e^- + O_2 \longrightarrow O_2^-$$ (6) $$h^+ + H_2O \longrightarrow OH$$ (7) $$^{\bullet}OH + O_2^{\bullet -} + h^+ + levofloxacin \longrightarrow CO_2 + H_2O$$ (8) ## CONCLUSION BiVO₄photocatalysts have been successfully synthesized using a facile chemical precipitation method. The as-synthesized photocatalyst was characterized using XRD, SEM and UV-vis DRS analyses. Its efficiency as a photocatalyst was evaluated using levofloxacin as a model pollutant under visible light irradiation. Compared to commercial photocatalyst P25 Degussa, the as-synthesized BiVO₄photocatalysts demonstrated remarkable enhancement in the photocatalytic activity towards levofloxacin degradation. Such improved performance has been attributed to the higher absorption of visible light that led to formation of a large number of reactive species such as h+and OH. Reusability studies show that the as-synthesized BiVO₄photocatalyst retained its high-level degradation efficiency even after 5 cycles. ## RECOMMENDATION It is recommended that analytical method such as LCMS should be conducted on the irradiated mixture of levofloxacin to know the actual end products after the degradation. #### REFERENCES - Aga, D. S. (2007): Fate of pharmaceuticals in the environment and in water treatment systems: CRC Press217-228. - Chen, L., Meng, D., Wu, X., Wang, A., Wang, J., Yu, M., & Liang, Y. (2016): Enhanced visible light photocatalytic performances of self-assembled hierarchically structured BiVO₄/Bi₂ WO₆ heterojunction composites with different morphologies. *RSC Advances*, 6(57), 52300-52309. - Daughton, C. G. (2010): Pharmaceutical ingredients in drinking water: overview of occurrence and significance of human exposure. Contaminants of emerging concern in the environment: ecological and human health considerations, 1048, 9-68. - Du, F., Zuo, X., Yang, Q., Yang, B., Li, G., Ding, Z., . . . Zhu, K. (2016): Facile assembly of TiO₂ nanospheres/SnO₂ quantum dots composites with excellent photocatalyst activity for the degradation of methyl orange. *Ceramics International*, 42(11), 12778-12782. - Eslami, A., Amini, M. M., Yazdanbakhsh, A. R., Mohseni Bandpei, A., Safari, A. A., & Asadi, A. (2016): N, S coloped TiO 2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of norsteroidal anti-inflammatory drugs in water: a comparative study. *Journal of Chemical Technology & Biotechnology*, 91(10), 2693-2704. - Gaya, U. I., & Abdullah, A. H. (2008): Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. - Guo, M., Wang, Y., He, Q., Wang, W., Wang, W., Fu, Z., & Wang, H. (2015): Enhanced photocatalytic activity of S-doped BiVO₄ photocatalysts. *RSC Advances*, 5(72), 58633-58639. - Hu, Y., Fan, J., Pu, C., Li, H., Liu, E., & Hu, X. (2017): Facile synthesis of double coneshaped Ag₄V₂O₇/BiVO₄ nanocomposites with enhanced visible light photocatalytic activity for environmental purification. *Journal of Photochemistry and Photobiology A: Chemistry, 337*, 172-183. - Intaphong, P., Phuruangrat, A., & Pookmanee, P. (2016): Synthesis and characterization of BiVO₄ photocatalyst by microwave method. *Integrated Ferroelectrics*, 175(1), 51-58. - Kansal, S. K., Kundu, P., Sood, S., Lamba, R., Umar, A., & Mehta, S. (2014): Photocatalytic degradation of the antibiotic levofloxacin using highly - crystalline TiO₂ nanoparticles. *New Journal of Chemistry*, 38(7), 3220-3226. - Kaur, A., & Kansal, S. K. (2016): Bi₂WO₆ nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. *Chemical Engineering Journal*, 302, 194-203. - Kaur, A., Salunke, D. B., Umar, A., Mehta, S. K., Sinha, A., & Kansal, S. K. (2017): Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag₂O/TiO₂ quantum dots: a mechanistic study and degradation pathway. *New Journal of Chemistry*, *41*(20), 12079-12090. - La Farre, M., Pérez, S., Kantiani, L., & Barceló, D. (2008): Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. *TrAC Trends in Analytical Chemistry*, 27(11), 991-1007. - Lee, H. K., DeVito, V., Vercelli, C., Tramuta, C., Nebbia, P., Re, G., . . . Giorgi, M. (2017): Ex vivo antibacterial activity of levofloxacin against Escherichia coli and its pharmacokinetic profile following intravenous and oral administrations in broilers. *Research in veterinary science*, 112, 26-33. - Li, H., Liu, G., Chen, S., Liu, Q., & Lu, W. (2011): Synthesis and characterization of monoclinic BiVO₄ nanorods and nanoplates via microemulsion-mediated hydrothermal method. *Physica E: Low-dimensional Systems and Nanostructures*, 43(7), 1323-1328. - Lofrano, G., Libralato, G., Sharma, S. K., & Carotenuto, M. (2017): Nano Based Photocatalytic Degradation of Pharmaceuticals *Nanotechnologies for Environmental Remediation* (pp. 221-238): Springer. - Lu, G., Lun, Z., Liang, H., Wang, H., Li, Z., & Ma, W. (2019): In situ fabrication of BiVO₄-CeVO₄ heterojunction for excellent visible light photocatalytic degradation of levofloxacin. *Journal of Alloys and Compounds*, 772, 122-131. - Lv, D., Zhang, D., Pu, X., Kong, D., Lu, Z., Shao, X., . . . Dou, J. (2017): One-pot combustion synthesis of BiVO₄/BiOCl composites with enhanced visible-light photocatalytic properties. *Separation and Purification Technology*, 174, 97-103. - Pálmai, M., Zahran, E. M., Angaramo, S., Bálint, S., Pászti, Z., Knecht, M. R., & Bachas, L. G. (2017): Pd-decorated m-BiVO₄/BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity. *Journal of Materials Chemistry A*, *5*(2), 529-534. - Pirzada, B. M., Mir, N. A., Qutub, N., Mehraj, O., Sabir, S., & Muneer, M. (2015): Synthesis, characterization and optimization of photocatalytic activity of TiO₂/ZrO₂ nanocomposite heterostructures. *Materials Science and Engineering: B, 193*, 137-145. - Qiao, Z., Yan, T., Li, W., & Huang, B. (2017): In situ anion exchange synthesis of In₂S₃/In(OH)₃ heterostructures for efficient photocatalytic degradation of MO under solar light. *New Journal of Chemistry*, 41(8), 3134-3142. - Rengaraj, S., Al Marzouqi, F., & Kim, Y. (2019): Shifting of band edge and investigation of charge carrier pathways in CdS/g-C₃N₄ heterostructure for enhanced photocatalytic degradation of Levofloxacin. *New Journal of Chemistry*. - Safari, G. H., Nasseri, S., Mahvi, A. H., Yaghmaeian, K., Nabizadeh, R., & Alimohammadi, M. (2015): Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. *Journal of Environmental Health Science and Engineering*, 13(1), 76. - Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Irastorza, E. A., . . . Albini, A. (2012): Photolytic and photocatalytic - degradation of fluoroquinolones in untreated river water under natural sunlight. *Applied Catalysis B: Environmental*, 119, 32-39. - Tang, Y., Liu, X., Ma, C., Zhou, M., Huo, P., Yu, L., . . . Yan, Y. (2015): Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide—CdS/ZnS heterostructure photocatalysts. *New Journal of Chemistry*, 39(7), 5150-5160. - Wen, X.-J., Niu, C.-G., Guo, H., Zhang, L., Liang, C., & Zeng, G.-M. (2018): Photocatalytic degradation of levofloxacin by ternary Ag₂CO₃/CeO₂/AgBr photocatalyst under visible-light irradiation: Degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study. *Journal of catalysis*, 358, 211-223. - Williams, R. T. (2005): Human pharmaceuticals: assessing the impacts on aquatic ecosystems: Allen Press/ACG Publishing. - Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017): A review on antibiotic resistance: alarm bells are ringing. *Cureus*, *9*(6) 1403.