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Abstract 

In the field of geometric function theory, generalized distributions have revealed novel insights and 

applications, particularly in understanding the behaviour of various complex functions. This paper focuses 

on estimating bounds for bi-univalent functions within probability distribution series defined by error and 

Poisson distributions, particularly in relation to the Bell numbers. These distributions are utilized to 

establish coefficient bounds, which hold significance for both the structural properties of bi-univalent 

functions and their applications in probability theory. By extending these methods, the study contributes 

to the broader framework of geometric function theory, where probability distributions offer new tools to 

analyze and interpret functional bounds. The findings have potential implications in areas requiring 

complex function estimation, including mathematical physics and statistical modeling. 
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Introduction 

Let   represents the class of analytic 

functions of the form 

( )  ( )1||:,...4

4

3

3

2

2 =++++= zCzzzazazazzf

            (1) 

and H  denote the subclass of  , which are 

normalized by the condition 

( ) 00 =f  and ( ) 010 =−f . 

Recall the quantities 

( )
( )








 

zf

zfz
Re    and   

( )
( )













+

zf

zfz
1Re  

which are two familiar subclasses of 

univalent functions denoted by S and are 

known as starlike function of order 

( )10   and convex function of order   

respectively. 

Historically, Babalola (2013) was the first 

person to define a new subclass of  -

pseudostarlike function of order   satisfying 

the analytic condition 

( )
( )

















 

zf

zfz
Re  

In fact, ever since the publication by 

Babalola (2013), a huge flood of publications 

has appeared and still appearing in the 

literature dealing with various subclasses of 

 -pseudo starlike function (see, for details 

Awolere and Oladipo (2019), Awolere and 

Ibrahim-Tiamiyu (2017)). 

Let the functions f and h be analytic in  , 

then f is said to be subordinate to h written 

as ( ) ( )( )zzhzf   if there exist a 

Schwarz function vw  of the form

( ) ...4

4

3

3

2

21 ++++= zwzwzwzwzw         (2) 

And ( ) ( ) == zzwwwv ,1,00:  

such that 
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( ) ( )( ) ( )= zzwhzf . 

To be specific, if h is univalent in  , the 

conditions ( ) ( ) ( ) ( )= hfhf ,00  will be 

identical to the above stated subordination 

condition. 

A function f  is bi-univalent in   if 
1−f  

exists and it is univalent in . The concept 

of bi-univalent was introduced in Lewin 

(1967) and coefficient bounds was 

estimated. Other researchers, the likes of 

Netanyahu (1969), Strivastava et al. (2010), 

Strivastava et al. (2013), Frasin et. al. (2011), 

Murusundamorthy (2015, 2017), 

Murusundamorthy et. al. (2015). Shuhai et. 

al. (2015) further the work on bi-univalency 

and they obtained very useful results, (see 

also Altınkaya and Yalçın (2017), Awolere 

and Oladipo (2019), Awolere and Ibrahim-

Tiamiyu (2017), Baricz (2006,2008), Bulut 

and Magesh (2016), Gbolagade et. al. (2024), 

Hayami and Owa (2012), Laxmi and Sharma 

(2017), Strivastava et. al. (2010)) and 

literature therein. Furthermore, we note that 

for f  there exists 
1−f  (inverse) 

satisfying 

( )( ) ( )=− zzzff ,1
 

( )( ) ( ) ( ) 







=−

4

1
,, 00

1 frfrwwwff  

and 

( ) ( ) ( ) ( ) 4

432

3

2

3

3

2

2

2

2

1 552 waaaawaawawwfwg +−−−+−== −

     (3) 

Here we denote by  the class of bi-

univalent function. 

Generalized distribution which was 

introduced by Porwal (2018) are objects 

extending the notions of function, useful in 

making discontinuous functions more like 

smooth functions, describing discrete 

physical phenomena such as points charges 

and have applications in physics and 

engineering. He also investigated its 

geometric properties in relation to univalent 

functions and he denotes by T the sum of 

convergent series of the form 




=

=
0k

kaT  

where 0ka  for all Nk . The generalized 

discrete probability mass function is given 

as 

( ) ...,2,1,0, == k
T

a
kp k  

( )kp  is the probability mass function 

because ( ) 0kp  and .1=k kp  

Next, let  

( ) 


=

=
0k

k

k xax  

then from 


=
=

0k kaT series   is a 

convergent for 1x  and 1=x . 

Porwal (2018) provided information on 

various definitions and derivations for 

illustration: 

1. If X is a discrete random variable that 

takes values 21, xx , ... associated with 

probabilities ...,, 21 pp  then the expected 

X denoted by ( )XE  is defined by 

( ) 


=

=
0k

kk xpXE  

2. The moment of a discrete probability 

distribution rth about 0=x  is defined by 

( )r

r XE=  

where r  is the mean of the distribution and 

the variance is given as ( )212  −  

3. Moment about origin is given as 

Mean 
T

r


==   

Variance

( ) ( ) ( )
( )( )

.
1
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2
2

12 






 
−+ =−=
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The moment generating function of a 

random variable X is denoted by ( )tM x  and 

defined by 

( ) ( )xt

x eEtM =  

and the moment generating function of 

generalized discrete probability is given as 

( )
( )
T

e
tM

t

x


= . 

For the special value of ka , various well 

known discrete probability distributions can 
be obtained. Presently, we are focusing on 

the polynomial whose coefficients are 

probabilities of the generalized distribution 

introduced and investigated in Porwal (2018) 

which has the form 

( ) 


=

−+=
2

1

k

kk z
T

a
zzK            (4) 

where  0,
0

=


= kk k aaT  for all Nk . 

A variable X is said to be Poisson distributed 

if it takes the values 0, 1, 2, 3, 4, ... with the 

probabilities 

...
!4

,
!3

,
!2

,
432 mmm

m ememem
e

−−−
−

 

respectively, where m is called the 

parameter. Thus 

( ) ...,4,3,2,1,0,
!

===
−

r
r

em
rXp

mr

 

Very recent, Murugusundaramoorthy 

(2017), Porwal (2014, 2016), Porwal et. al. 

(2016) introduced a power series whose 
coefficients are probabilities of Poisson 

distribution

( )
( )


−

+= 


=

−−

zz
k

em
zzmK k

k

mk

,
!1

,
2

1

            (5) 

where 0m , which is also reported by 

Frazin (2019). 

In real life situations, (5) has many 

applications as appear in literature. It’s 

useful for the control of software defects, 

modelling of distribution of overlapping word 

occurrences, modelling of DNA substitution 

and has application in traffic accident data 

in Anwar and Ahmad (2014). 

Special functions such as activation, error 

and Bessel functions defined by ℧ have been 

studied to establish certain geometric 

properties like univalency, starlikeness and 

convexity in several publications [see 

Altınkaya and Olatunji (2019), Baricz (2006, 

2008)]. But concern of this paper is that of 

error function which was normalized by 

Ramanchandran et. al (2017) as 

( ) ( ) ( )
( )( )



=

−

−−

−
+==

2

1

!112

1

2 k

k

k

z
kk

zzerf
z

zfEr


                      (6) 

Originally before normalization the error 

function is written by Abramowitz and 

Stegun (1965) as 

( ) ( ) ( )
( )



=

+−

+

−
=−=

2

121

0

2

!12

12
exp

2

k

kk
z

kk

z
dttzerf



                      (7) 

The function defined in (7) also is important 

in estimating the probability of observing a 

particle in a specified region by Abramowitz 

and Stegun (1965). The error function, 

which appears frequently in heat conduction 

and diffusion is a part of transport 

phenomena that deal with the flow of 

physical quantity in a medium. This has 

significance applications in many disciplines 

like physics, chemistry, biology, thermo 

mechanics and mass flow. See Alzer (2010) 

for properties and inequalities of error 

function and Elbert and Laforgia (2008) for 

the properties of complementary error 

functions. 

The motivation of this work is to define a new 

subclass of bi-univalent functions in terms 

of error and Poisson distribution functions 

associated with Bell numbers based on 

subordination principle and the coefficient 

bound would be estimated. Varying the 

parameters, corollary will be established 

Method and Tools of Estimation 

For ( ) zh , given by 

( ) ,...3

2

2

1 +++= zhzhzzh  the Hadarmard 
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product (or convolution) of ( )zf  and ( )zh  is 

defined 

( )( ) ( )( )


=

=+=
2k

kk zfhhazzhf        (8) 

Furthermore, the application of concept of 

convolution defined in (8) to (7) and using 

the functions of the forms (4) and (5) yields 

( )
( )
( )( )
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k

k
mkk

z
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a
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em
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1
,

 

                               (9) 

For a fixed non-negative integer k, the Bell 

numbers kB count the possible disjoint 

partitions of a set with n elements into non-

empty subsets or, equivalently, the number 

of equivalence relations on it. The Bell 

numbers nB  satisfy a recurrence relation 

involving binomial coefficients 

.
01  =+ =

k

n knk BCB  Obviously,

.203,52,15,5,2,1 6543210 ======= BBBBBBB  

For details (see Bell (1934, 1938), Canifield 

(1995), Najafzadeh et. al. (2022), Oyekan et. 

al. (2023), Qi (2017)). Kumar et al. (2019) 

investigated the function 

( ) ...
8

5

6

5
1

!

432

0

1 +++++=== 
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− zzzz
k

z
BezQ

k

k

k

ez

 

                                        (10) 

which is starlike with respect to unity and 

having Bell number as its coefficients. In this 

investigation, we employ the concept of 

subordination principle to define our class of 

analytic functions motivated largely by 

recent work of Altinkaya and Olatunji 

(2019), Oladipo (2019) and previous works of 

Babalola (2013), and that of Awolere et. al. 

(2019). Hence, the present work investigates 

bounds for bi-univalent function for 

generalized distribution associated with 

error function and Poisson distribution via 

Bell number. 

Lemma 1 [Jahangiri et. al. (2018)]: Let 

( ) ++++= ...4

4

3

3

2

21 zwzwzwzwzw  be 

so that ( ) 1zw  in  . If t  is a complex 

number, then ( )ttww ,1max2

1\2 + . 

The inequality is sharp for the function 

( ) zzw =  and ( ) 2zzw = . 

Thus, we will obtain the coefficients bounds 

H

a1
 and 

H

a2  for class ( )QbmEPo ,,,


 

which defined in definition 1. 

 

Definition 1: For real numbers 

0,0,1,10  bm  and ( )zQ  as 

defined by (1) one may say that fKEr  

is in the class ( )QbmEPo ,,,


 if 

( )( )

( )
( )zQ

mzKErf

mzzKErf

b




















−




 

−
+ 1

,

,
1

1
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and 

( )( )

( )
( )wQ

mwKErf

mwKErfw

b
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1
,

,
1

1
1

1






      (12) 

we note that by varying different values of 

,,m  and b  in the above definition, we 

can obtain the following subclasses. 

i. ( ) ( )QbmEQbmE r

I

r ,,,,,, =  

( )( )
( )

( )zQ
mzKErf
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b
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+ 1
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1
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Results 

Theorem 1: Let 0b  and 

( ) ...
8

5

6

5
1 432 +++++= zzzzzQ  If 

KErf  given by (9) belongs to the class 

( )QbmEPo ,,,


, then we get 

( )( ) ( )( ) 
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                               (14) 

where 

( ) ( ) ( )( )

( )( )

2 2

6 5

20 1 2 4 1 1 4 4 1

9 1 3 1

m

m

b e
A

b
m

b e

   



=
 − − + − − − + +
 

− −

 

( ) ( ) ( )( ) ( )( )

( )( )

2 2

2 2

2

180

20 1 2 4 1 1 4 4 1 9 1 3 1

20

1 3 1

m

m

m

b e
B

b b e

b e

m

    



=
 − − + − − − + + − −
 

+
− −

 

Proof: Let ( )QbmEPKErf o ,,, 


  then 

there exist two Schwarz functions vu,  of 

the form (2) such that 

( )( )

( )
( )( )zuQ

mzKErf

mzKErfz

b
=



















−




 

−
+ 1

,
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1
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    (15) 

and 
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( )
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mwKErf

mwKErfw

b
=
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−
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−

1
,
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1

1
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      (16) 

By (15) and (16) we observe that 

( )( ) ,121 1
1

2 bu
H

a
E =−−         (17) 

( )( ) ( )( ) 2

122

2

12

2

22
3 1421131 bubu

H

a
E

H

a
E +=+−−+−− 

          (18) 

( )( ) 1
1

2121 bv
H

a
E =−−−         (19) 

( )( ) ( )( )

( )( )

2
2 2 1

2 3 2

22
3 2 1

1 2 4 1 2 1 3 1

1 3 1

a
E E

H

a
E bv bv

H

  



 − − + + − − −
 

− − = +

          (20)  

where 

( )
( )( ) 2

11

!112

1

−−

−
=

−−−

kk

em
A

mkk

k              (21) 

From (17) and (19) we get 

11 vu −=                   (22) 

And 

( ) ( ) ( )2

1

2

1

2

2

2

12

2

22
1212 vub

H

a
E +=−−        (23) 

Also by (18) and (20) we establish that 

( )( ) ( )( ) 

( ) ( )

2
2 2 1

2 3 2

2 2

2 2 1 1

2 1 2 4 1 2 1 3 1 ,
a

E E
H

b u v b u v

  − − + + − −

= + + +

 

          (24) 

Therefore by (17), (22). (23) and (24) we find 

out that 
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     (27) 

Since 1iu  and 1iv  from Lemma 1 and 

(21), it follows from (25), (26) and (27) that 
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which gives us the desired estimate on 
H

a1  

as asserted by (13). 

Next, by (18), (20), (22) and (23) we have 
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Also, from (18), (20), (22) and (27) we obtain 
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Once again, since 1iu  and 1iv  from 

Lemma 1 and using (21), it infers from (28) 

and (29) that 
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Corollary 1: Let 0b  and 
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Theorem 2: Let 0b  and 
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6
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given by (9) belongs to the class 
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Proof:  From Theorem 1, we have 
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Conclusion 

Our study introduces a novel application of 

bi-univalent analytic functions, 

incorporating convoluted error and Poisson 

distribution functions to investigate the 

establishment of coefficient bounds. 

Notably, our findings align with previous 

researches by Oyekan et. al. (2023) and 

Najafzadeh et. al. (2022), demonstrating the 

robustness of the Bell number framework in 

unifying these distinct approaches. 
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