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ABSTRACT

It's fascinating how researchers are constantly improving regression analysis methods to deal
with issues like heteroscedasticity. The robust MM estimator seems like a smart choice to
enhance the wild bootstrap process for more accurate results in regression analysis.
Researchers are debating the best bootstrap technique for dealing with outliers and
heteroscedasticity in linear regression. There is a push for a more efficient and accurate
method, considering the drawbacks of the Minimum Volume Ellipsoid approach. The proposal
to replace MVE with ISE in the modified method is a promising step towards better speed,
accuracy, and efficiency in robust bootstrapping. The specific objective of this paper is to
modify the existing robust bootstrap technique (WBootMM-GM6-Liu). The methodology
understudied the existing models and compared four existing bootstrap techniques with the
modified version of the WBootMM-GM6-Liu to ascertain the impact of the modification. The
numerical test results revealed that the modified version of the technique has the least standard
errors, bias, and root mean square errors (RSME) and therefore outperforms the existing
models taking into account the presence of heteroscedasticity, outliers, and high leverage
points (HLPs). In the case of further research, this model can possibly be improved upon based
on assessing fixed and random effects with other variables apart from those considered in this
paper.
Keywords: heteroscedasticity, outliers, high leverage points, minimum volume ellipsoid,
index set equality, robust bootstrap

INTRODUCTION
In multiple regression, ordinary least squares
(OLS) estimation is used if assumptions are
met to obtain regression weights when
analyzing data, OLS assumes that residual
errors should be normally distributed, have
equal variance at all levels of the
explanatory variables, and be uncorrelated
with both the independent variables and each
other (Yan and Su, 2009). In practice, the
assumption that residual errors should be
normally distributed may not hold because
of the possibility of skewness or the
presence of outliers in data. In theory, when
this assumption is not met, the OLS

estimation for the regression coefficients β
will be biased and/or non-efficient.
Homoscedasticity refers to the situation
when the variance of the error terms is
constant. Heteroscedasticity is a common
problem in a linear regression model, which
occurs when the variance of the error terms
is not constant (Lukman et al., 2016). In this
situation, the OLS estimator is no longer
efficient. There are several methods to
rectify the problem of heteroscedasticity
(Habshah et al., 2011). A weighted bootstrap
method proposed by Wu (1986) is one of the
alternative methods to rectify this problem.
Liu (1988) suggested a wild bootstrap
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approach that, under both homoscedastic and
heteroscedastic models, is slightly different
from the weighted bootstrap method and
works better. Rana et al., (2012) suggested
that there is evidence that the presence of
outliers due to the use of ordinary least
squares (OLS) in their algorithm causes such
wild bootstrap estimators to suffer a huge
setback. So, in the construction of the robust
wild bootstrap process, they implemented
the robust MM estimator. The MM estimator,
however, does not have limited impact
properties. Hence, in this study, we attempt
to improve on the WBootMM-GM6 (Liu)
introduced by Osama and Paul (2021) by
incorporating the Index Set Equality (ISE)
robust estimator in coming up with a
Modified Wild Bootstrap.
The motivation to introduce the bootstrap
method is the infeasibility of drawing many
samples from the population to create a
sampling distribution. The bootstrap
procedure approximates the sampling
distribution by repeatedly drawing samples
and calculating the statistics from one
original sample.

MATERIALS AND METHODS
Robust Regression
Robust regression is an alternative to
Ordinary Least Squares OLS that can be
appropriately used when there is evidence
that the distribution of the error term is non-
normal (heavy-tailed) and/or there are
outliers that affect the regression equation
(Ryan, 1993). A least squares method
weights each observation equally in getting
parameter estimates, whereas robust
methods enable the observations to be
weighted unequally (Draper and Smith,
1998). In matrix notation, the linear
regression model is given by:
Y = Xβ + e
Where, for a sample of size n, y is the (n ×1)
vector containing the values for the response
variable, X is the (n × p) matrix containing

the values for the P explanatory variables,
and e is the (n ×1) vector containing the
error terms. The (p ×1) vector β contains the
unknown regression parameters. The vector
of parameters estimated by OLS is then:

i=1,2, …, n

Where is the vector of residuals

Robust Wild Bootstrap Technique
(WBootMM-GM6-Liu)
Wu (1986) noted that the objective of wild
bootstrap is to estimate the standard errors of
estimates that under heteroscedasticity are
asymptotically correct. The drawback of the
wild bootstrap is that the estimates of the
standard errors become high in the presence
of outliers. The wild bootstrap based on the
MM estimator denoted as WBootMM-Liu is
therefore adopted by Rana et al., (2012)
further into a wild bootstrap algorithm.
However, this estimator cannot adequately
handle high leverage points (HLPS) because
the MM estimator is robust to outliers in the
y coordinate (Yohai, 1987). It is now evident
that the GM6 is robust to high leverage
points Ayinde et al., (2015). Osama and
Dallatu (2021) incorporated the MM-GM6
estimator denoted as WBootMM-GM6-Liu
in the wild bootstrap algorithm to
downweight outliers in and directions.
The algorithm of MM-GM6 wild bootstrap
can be summarized as follows:

Step 1. Fit a model by using
the MM estimator to the real data to obtain

the robust MM parameters and then the

fitted model is
Step 2. The residuals of the MM estimate

are obtained as . Then, assign
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the weight of GM6 to each residual to
get new weighted residual

where MVE is the
minimum-volume ellipsoid.
Step 3. The MM estimate’s final weighted

residuals denoted as can be calculated
by multiplying the new weight obtained in

Step 2 with the value of to get

Step 4. A bootstrap sample is then

constructed, where and

is randomly selected following Liu (1988)
procedure.
Step 5. The MM method is then applied to

the bootstrap sample and the
resulting estimate can be written as

Step 6. Steps 3 to 5 were repeated for R
times, where R is the bootstrap replications.
Proposed Modified Robust Bootstrap
Technique (MWBootMM-GM6-Liu)
In the proposed modified robust bootstrap
technique, we begin by highlighting the
major alteration in the existing robust
bootstrap technique so as to ascertain the
magnitude of the changes in comes with. It
has been stated in so many literatures that
the Minimum Volume Ellipsoid robust
estimator has a number of setbacks which
includes longer running time, inability to
completely do away with outliers and so on.
Due to the masking and swamping effects,
the Diagnostic Robust Generalized Potential
based on Index Set Equality, DRGP (ISE)
takes off from Diagnostic Robust
Generalized Potential based on Minimum

Volume Ellipsoid, DRGP(MVE) and
because the running time of ISE is much
faster than MVE, Hock and Habshah (2016).
Monte Carlo simulation study and numerical
data indicate that DRGP (ISE) works
excellently to detect the actual high leverage
points and reduce masking and swamping
effects in a linear model. The algorithm of
the proposed modified MM-GM6 wild
bootstrap is as follows:

Step 1. Fit a model by using
the MM estimator to the real data to obtain

the robust MM parameters and then the

fitted model is
Step 2. The residuals of the MM estimate

are obtained as . Then, assign

the weight of GM6 to each residual to
get new weighted residual

where ISE is the
Index Set Equality.
Step 3. The MM estimate’s final weighted

residuals denoted as can be calculated
by multiplying the new weight obtained in

Step 2 with the value of to get

Step 4. A bootstrap sample is then

constructed, where and

is randomly selected following Liu (1988)
procedure.
Step 5. The MM method is then applied to

the bootstrap sample and the
resulting estimate can be written as
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Step 6. Steps 3 to 5 were repeated for R
times, where R is the bootstrap replications.
Minimum Volume Ellipsoid
The Diagnostic Robust Generalized Potential
is a traditionally used measure for detecting
high leverage points. The minimum volume
ellipsoid (MVE), introduced by (Rousseeuw,
1985) was the first high-breakdown robust
estimator of multivariate location and scatter
that has come to be regularly used in practice.
The MVE became popular thanks to its high
resistance to outliers, which makes it a
reliable tool for outlier detection, and the
widely available, user-friendly
implementations of its computational
algorithm. However, the calculation of MVE
involves a lot of computational effort. Due to
this, the calculation of DRGP based on
RMD-MVE takes too much computing time.
Midi, Ramli and Imon (2009) proposed
Diagnostic Robust Generalized Potential
based on Minimum Volume Ellipsoid
(DRGP(MVE)) for detecting HLPs.
Index Set Equality
The Index Set Equality (ISE) which is
another new technique from fast MCD
(Salleh 2013) is used as an alternative to
MVE or MCD. ISEs’ running time is very
fast because the algorithm of ISE only takes
into account a comparison of two index set.
The following steps illustrate the
computation of ISE.

Step 1: Choose arbitrarily observations
from a dataset to be included in the

subsample donated as where

and p is the number of
independent variables (Rousseeuw andamp;
Driessen, 1999).

Let be the index

set for

Step 2: Compute the p-dimensional mean

vector and the (pxp) covariance

matrix of from the subset .
Step 3: Compute the squared Mahalanobis
Distance for each observation, as

for 1,2,..,n.

Step 4: Arrange in increasing order,

Where π is a permutation equal to
{1,2,…,n}.

Step 5: The first items that correspond to

the smallest will be placed in set

. Then list
new index set, as

The DRGP(ISE) consists of two steps,
whereby in the first step:
Step I: The suspected HLPs are determined
using RMD based on ISE.
Step II: The suspected HLPs will be placed
in the ‘D’ set and the remaining in the ‘R’
set. The generalized potential (pi) is
employed in the second step to check all the
suspected HLPs; those possessing a low
leverage point will be put back to the ‘R’
group. This technique is continued until all
points of the ‘D’ group have been checked to
confirm whether they can be referred to as
HLPs. The generalized potential is defined
as follows:
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The Cut-off point for DRGP is given by

, a pairwise order statistic for all distance
proposed by (Rousseeuw and Croux, 1993),
is employed to improve the accuracy of the
identification of HLPs and is given

by , where

and .
They make use of c = 2.2219, as this value
will provide a consistent estimator for

Gaussian data. If some identified did not

exceed cdi then the case with the least
will be returned to the estimation subset for

re-computation of . The values of
generalized potential based on the final ‘D’

set is the DRGP(ISE) represented by and
the ‘D’ points will be declared as HLPs.
Simulation Study
In this section, a simulation study is carried
out based on the Monte Carlo procedure to
investigate the performance of the proposed
method denoted as MWBootMM-GM6-Liu
in the presence of both heteroscedasticity
and high leverage points. In this paper, we
consider a multiple linear regression model
with two explanatory variables and different

sample sizes of 50, 100, and 150. According
to Liu (1988), the design of a heteroscedastic
model can be written as:

Where and are generated from U (0,1)
for all the sample sizes. The

parameters , and are set equal to
one as the true parameters of this model, and
the generation function of heteroscedasticity

is , where is to be
0.4. In this paper, the heteroscedasticity’s

level where the error
term generated from (0,1) for the clean data.
For 5% and 10% HLPS, the 95% and 90% of

were generated from (0,1) and the 5%
and 10% were generated from (0,20). The
simulation for each sample size involves a
total of 500000 replications with 1000
replications and 500 bootstrap samples each.
This simulation was performed based on the
procedure of Cribari-Neto and Zarkos (1999)
and Furno (1997). The five estimation
methods such as WBootOLS, WBootLiu,
WBootMM-Liu, WBootMM-GM6-Liu and
MWBootMM-GM6-Liu were then applied to
the simulated data. The outcomes of
simulation study are summarized in
following tables.



DOI: 10.56892/bima.v8i2B.737

Bima Journal of Science and Technology, Vol. 8(2B) July, 2024 ISSN: 2536-6041

358

Table 1: Standard Errors of the WBootOLS, WBootLiu, WBootMM-Liu, WBootMM-GM6-
Liu, and MWBootMM-GM6-Liu Estimates

% outliers Coeff WBootOLS WBootLiu WBootMM-
Liu

WBootMM-
GM6-Liu

MWBootMM-
GM6-Liu

Sample Size n= 50

0%
1.7601 1.8706 2.2742 1.6005 1.2834

2.1034 2.0324 2.2074 1.9803 1.9001

2.4202 2.3059 2.1093 2.0989 1.9201

5%
7.3955 5.6802 6.1054 1.8219 1.2039

8.4640 7.0022 7.0215 1.0934 0.9345

6.9984 4.3024 5.0238 1.8309 1.03845

10%
8.1034 5.9031 5.2948 1.0294 1.9573

9.4596 7.4946 6.9832 1.0586 0.9583

9.4750 5.8920 5.4013 1.6747 0.9868

Sample Size n= 100

0%
1.3840 1.4033 1.1984 0.9855 0.8792

1.1938 1.3059 1.3895 0.9430 0.4976

1.3019 1.5015 1.4903 1.0856 1.0096

5%
4.9585 5.0034 3.9850 1.4384 1.0348

5.6982 5.9658 4.8591 1.8475 1.3049

3.9985 4.3059 3.9485 1.4112 1.1012

10%
5.3295 5.5956 3.5736 1.2049 0.8874

5.3958 5.7464 4.0193 1.9482 1.3048

4.9358 5.3029 4.1298 1.7593 1.1093

Sample Size n= 150

0%
0.5492 0.5829 0.4559 0.3304 0.2310

0.7349 0.7294 0.6639 0.3989 0.3039
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0.5856 0.5832 0.4723 0.2934 0.2094

5%
3.5039 3.4948 3.6029 1.5938 0.9485

3.7039 3.4923 3.3829 1.9485 0.8437

2.9094 3.0011 3.2039 1.0293 0.9934

10%
3.0958 2.8450 2.9938 1.5730 1.0394

4.0112 3.8576 3.4923 1.3928 1.0103

3.2335 2.9859 2.7450 1.7394 1.4019

The following figures shows the effect of
High Leverage Points HLPs on the standard
errors of the parameter estimates. It is
obvious from the plots that the standard
errors of the parameter estimates of the
proposed MWBootMM-GM6-Liu

outperforms other methods across all
percentages of HLPs because it has the
smallest standard errors from the results
obtained from the analysis of the simulated
data.
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Table 2: Bias of the WBootOLS, WBootLiu, WBootMM-Liu, WBootMM-GM6-Liu, and
MWBootMM-GM6-Liu Estimates

% outliers Coeff WBooOLS WBootLiu WBootMM-
Liu

WBootMM-
GM6-Liu

MWBootMM-
GM6-Liu

Sample Size n= 50

0%
0.2849 0.2578 0.1178 0.0957 0.0248

0.2930 0.3067 0.1015 0.0829 0.0492

0.3011 0.2856 0.0894 0.0583 0.0094

5%
1.2740 0.3560 0.1029 0.0830 0.0175

0.1924 0.2032 0.1102 0.0928 0.0303

0.2169 0.2265 0.0932 0.0753 0.0156

10%
3.1092 0.2767 0.1304 0.0793 0.0184

0.3216 0.1796 0.1394 0.0674 0.0062

0.3401 0.2340 0.1491 0.0923 0.0316

Sample Size n= 100

0%
0.3012 0.2749 0.2019 0.0592 0.0193

0.2948 0.3002 0.1649 0.0481 0.0201

0.4293 0.4029 0.2049 0.0182 0.0095

5%
1.5859 0.6928 0.3012 0.0239 0.0102

0.2940 0.2702 0.2015 0.0604 0.0203

0.2954 0.2270 0.1938 0.0490 0.0192

10%
2.9650 0.8363 0.3029 0.0485 0.0194

0.2948 0.3049 0.2384 0.0183 0.0059

0.3954 0.3592 0.1928 0.0119 0.0045

Sample Size n= 150
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0%
0.4968 0.3950 0.3001 0.1039 0.0449

0.2847 0.2592 0.1849 0.0939 0.0149

0.3844 0.3982 0.2914 0.1039 0.0392

5%
1.1923 0.5920 0.2938 0.1495 0.0394

0.3825 0.3602 0.2948 0.1384 0.0283

0.2948 0.3003 0.1734 0.1283 0.0730

10%
3.4920 0.7393 0.4029 0.1938 0.0293

0.2845 0.2843 0.2004 0.0945 0.0085

0.4965 0.3849 0.2741 0.1380 0.0394

Figure 3: The Effects of 0%, 5%, 10% HLPs on the Standard Errors of the Parameter
Estimates when Sample Size n = 150.
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Figure 4: The Effects of 0%, 5%, 10% HLPs on the Bias of the Parameter Estimates when
Sample Size n = 5.

The following figures shows the effect of
High Leverage Points HLPs on the bias
errors of the parameter estimates. It is
obvious from the plots that the bias errors of
the parameter estimates of the proposed

MWBootMM-GM6-Liu outperforms other
methods across all percentages of HLPs
because it has the smallest bias errors from
the results obtained from the analysis of the
simulated data.

Figure 5: The Effects of 0%, 5%, 10% HLPs on the Bias of the Parameter Estimates when
Sample Size n = 100.
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Figure 6: The Effects of 0%, 5%, 10% HLPs on the Bias of the Parameter Estimates when
Sample Size n = 150.

Figure 7: The Effects of 0%, 5%, 10% HLPs on the RMSE of the Parameter Estimates when
Sample Size n = 50.
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Table 3: RMSE of the WBootOLS, WBootLiu, WBootMM-Liu, WBootMM-GM6-Liu, and
MWBootMM-GM6-Liu Estimates

% outliers Coeff WBooOLS WBootLiu WBootMM-
Liu

WBootMM-
GM6-Liu

MWBootMM-
GM6-Liu

Sample Size n= 50

0%
1.7032 2.3202 2.9475 1.1039 0.9487

3.0295 3.3029 4.0196 2.0293 1.5853

3.1002 3.2093 3.9965 1.9384 1.2049

5%
6.1293 2.9485 2.0395 1.3938 1.0291

5.2934 3.4985 2.9548 1.8491 1.2029

8.9234 4.0293 3.0395 2.0324 1.0293

10%
7.9284 3.8394 2.5850 1.9485 1.4023

9.5876 3.9585 2.3049 1.4039 0.9384

9.3845 5.0394 3.5494 1.9484 1.0239

Sample Size n= 100

0%
1.0383 1.2029 1.0029 0.8329 0.6921

1.4039 1.5029 1.2019 0.9384 0.8405

2.130 1.9903 1.8802 1.0482 0.9406

5%
4.0193 5.2030 2.2039 1.2039 0.9248

2.4094 2.6029 1.8370 0.9482 0.5056

3.1039 2.9948 1.7491 0.8913 0.4958

10%
2.8239 3.1039 1.9384 1.0003 0.1049

3.1103 3.2034 1.3928 0.6938 0.3394

3.4029 3.9384 2.3029 1.2495 0.7390

Sample Size n= 150
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0%
0.9371 0.9659 0.7928 0.4029 0.1093

0.9475 0.9530 0.8840 0.5019 0.2938

0.8374 0.8723 0.7292 0.4102 0.1928

5%
2.5920 2.1038 1.2039 0.6039 0.2019

3.0029 2.4029 1.6919 0.7039 0.2120

1.9284 1.6390 1.0024 0.5948 0.1029

10%
1.7793 1.7392 1.1039 0.4029 0.0928

2.3045 1.3921 1.0293 0.9001 0.3019

4.0010 2.3032 1.4038 0.9034 0.3837

Figure 8: The Effects of 0%, 5%, 10% HLPs on the RMSE of the Parameter Estimates when
Sample Size n = 100.
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Figure 9: The Effects of 0%, 5%, 10% HLPs on the RMSE of the Parameter Estimates when
Sample Size n = 150.

The following figures shows the effect of
High Leverage Points HLPs on the Root
Mean Square Errors RMSEs of the
parameter estimates. It is obvious from the
plots that the RMSEs of the parameter
estimates of the proposed MWBootMM-
GM6-Liu outperforms other methods across
all percentages of HLPs because it has the
smallest RMSEs from the results obtained
from the analysis of the simulated data.

CONCLUSION
In this paper, we modified the Wild Robust
Bootstrap technique model by replacing the
existing estimator i.e Minimum Volume
Ellipsoid with a faster and more efficient
estimator i.e the Index Set Equality. The
modified model was then compared with the
existing Wild Robust Bootstrap model and
other existing models and it was discovered
that the modified Wild Robust Bootstrap
technique model gave a more accurate
estimates under different conditions as well
as different sample sizes. The Wild Robust
Bootstrap technique model was fit to handle
linear regression problems in the presence of
high leverage points, outliers and
heteroscedeisca. Root Mean Square Error

(RSME) level was studied across multiple
datasets and models and it is found to be
least in the case of the modified robust
bootstrap model. Bias test also shows that
the modified robust bootstrap technique is
more accurate because it has less bias when
tested on three different levels of outliers.
It is concluded in the results of the analysis
that the modified wild robust bootstrap
technique (MWBoot-MM-GM6-Liu) is the
most accurate and has an added advantage of
low running time.
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