
DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

192

Streamlining the Path from Data to Deployment: Intelligent Methods for Hyperparameter
Tuning in Machine Learning

Bakare K. A.*, Abubakar S. I., Naveen A. Y., Abdullahi A. J., Gaku M. S., Abdulganiyu I.,
Asmau U. and Ahmad S.

1Department of Computer Science and Information Technology, Faculty of Computing and
Artificial Intelligence, Federal University Dutsin-ma, Dutsin-ma, Katsina State, Nigeria

Corresponding Author: asibrahim@fudutsinma.edu.ng
ABSTRACT

This study addresses the essential role of hyperparameter optimization in intricate machine
learning models, particularly in image classification tasks. With manual tuning impractical in the
face of escalating complexities, the research thoroughly evaluates eight automated optimization
methods: grid search, random search, Gaussian process Bayesian optimization (BO), Tree Parzen
estimator BO, Hyperband, BO/Hyperband hybrid, genetic algorithms, and particle swarm
optimization. Assessments cover diverse model architectures and performance metrics,
considering accuracy, mean squared error, and optimization time. Grid search proves exhaustive
but time-prohibitive, random search is sensitive to seed values, Gaussian process BO excels in
low-dimensional spaces, and Tree Parzen estimator BO is efficient in higher dimensions.
Hyperband prioritizes time efficiency, genetic algorithms pose parallelization challenges, and
particle swarm optimization excels with optimal accuracy and efficiency. Distinct advantages
emerge based on model architecture and search space complexity, highlighting the need for
tailored optimizers in specific machine learning applications. Comprehensive benchmarks
provide valuable guidance, with future work recommended to extend evaluations to emerging
model classes, particularly deep neural networks.
Keywords: Hyper-parameter optimization, machine learning, Bayesian optimization, particle
swarm optimization, genetic algorithm, grid search.

INTRODUCTION
The past decade has witnessed explosive
growth in applications of machine learning
across high-impact domains including
healthcare, transportation, finance, education,
sustainability, and more (Jordan & Mitchell,
2015). Availability of vast data sources,
combined with algorithmic breakthroughs
like deep neural networks, have fueled
significant interest and investment into data-
driven decision making via predictive
modeling (LeCun et al., 2015). However,
realizing accurate and reliable machine
learning-based technologies hinges upon
finding suitable configurations prior to
model training - settings dictating

architectural complexities, optimizations,
assumptions, and more (Claesen & De Moor,
2015). Mastering this process of
hyperparameter tuning remains imperative
yet persistently challenging for streamlining
from data to deployments. In machine
learning, model hyperparameters refer to
parameters set prior to commencing training
through an examination of data-driven
signals and metrics. This contrasts with
optimized model parameters updated
throughout the fitting process itself on
training datasets. Hyperparameters control
fundamental properties like model family,
depth/width tradeoffs, regularization terms,
step sizes, batch sizes, and data
preprocessing (Goodfellow et al., 2016).

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

193

Different settings lead to vastly different
inductive biases, flexibilities to fit patterns,
and tendencies to overfit or underfit
(Domingos, 2012). High-performing
configurations allow rich expressiveness to
capture trends while preventing
overcomplexity through constraints and
regularization.
However, enumerated search over all
meaningful hyperparameter value
combinations grows exponentially,
becoming intractable even for simple
modern model families (Bergstra & Bengio
2012). Basic grid search exams scattered
points, while random search samples more
efficiently (Bergstra & Bengio, 2012). Both
still struggle with high dimensions and lack
sequential focus. More informed methods
like Bayesian Optimization leverage
observed data to guide sampling toward
promising areas through heuristics capturing
underlying response surface geometry
(Shahriari et al., 2015). Evolutionary
methods take inspiration from genetics,
iteratively mutating and combining high-
performing configurations (Jaderberg et al.,
2017). Gradient-based approaches
backpropagate validation losses with respect
to hyperparameters themselves, relying on
smoothness (Luketina et al., 2016). While
conceptually simple as searching over
settings, underlying response surfaces tend
to demonstrate highly non-convex loss
profiles between hyperparameter vectors and
model metrics across training set samples.
Discontinuities, isolated optima, flat dense
regions, and nonlinear interactions abound,
conflicting with assumptions in optimization
approaches (Yu & Zhu, 2020). Data scarcity
further exacerbates difficulties in distant
extrapolation and noise within finite
measurement budgets. Search must balance
exploration against resource efficiency,
resembling the classic explore-exploit

tradeoff from reinforcement learning under
uncertainty (Jomanto et al., 2021). With
finite computational resources, optimal
stopping also factors in (Domhan et al.,
2015).
Moreover, conditional dependencies
between hyperparameters vary by model
family and problem complexity, limiting
transferability of insights (Klein et al., 2017).
Settings like regularization strength
intrinsically relate to capacity factors like
network width and depth (Jaderberg et al.,
2017). Signals must propagate across these
interlinked choices to reflect downstream
interactions (Luketina et al., 2016).
Capturing useful geometric priors with low-
dimensional embeddings for efficient
optimization remains an open challenge
(Wistuba et al., 2015). Guiding adaptive,
hierarchical, and evolutionary approaches
via learned metadata still proves difficult
(Lindauer & Hutter, 2019). Critically, while
hyperparameter tuning focuses on
maximizing validation performance,
additional desiderata around efficiency,
responsiveness, and human oversight exist
when operationalizing pipelines (Kohavi &
Wolpert, 1996). Refining coherence and
standardization around managing the end-to-
end machine learning life cycle thus persist
as open problems alongside tighter
optimization itself.
Despite difficulties, properly tuning
hyperparameters remains crucially impactful.
Suboptimal configurations markedly
degrade predictive accuracy and reliability
from otherwise state-of-the-art models
across areas like computer vision, natural
language processing, personalized medicine,
risk assessment, and beyond (Melis et al.,
2018). Increased model flexibility from poor
settings risks overfitting and hurts
generalizability (Domingos, 2012).
Conversely, insufficiently expressive models

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

194

underfit the signal. Manual tuning proves
inadequate even for domain experts. While
automated optimization introduces
additional method configuration
considerations, enhanced approaches
accelerate cycle times and free practitioner
bandwidth (Claesen & De Moor, 2015).
With increasingly ambitious applications of
deep learning gaining traction, model and
data complexity continue swelling. State-of-
the-art neural networks now routinely
contain billions of parameters, while
advances in computational resources and
data storage expand capacities to fit such
gigantic models (Brown et al., 2020).
Surging dimensionalities overwhelm even
recent hyperparameter search regimes.
Furthermore, cascading societal adoption of
machine learning fuels demand for
streamlined paths from procuring training
data to production deployment. As such,
advancing the coherence and efficiency of
methodologies for navigating these high-
dimensional heterogeneous configuration
spaces remains imperative. Guiding
hyperparameter tuning requires addressing
high-level optimization challenges under
uncertainty with constraints, building on
several major subfields within machine
learning itself. First, efficiently balancing
exploration against exploitation under scarce
measurement budgets connects tightly to the
literature on reinforcement learning, optimal
experimental design, active learning, and
beyond (Jomanto et al., 2021; Shahriari et al.,
2014). Approaches to accelerate search via
warm starts, multi-fidelity inferences, and
metadata typically leverage transfer learning
principles as well (Falkner et al., 2018).
Modeling losses as complex response
surfaces relates to Gaussian process
regression and gradient-based neural
architecture search efforts (Jin et al., 2019).
The subfield of automated machine learning
specifically focuses on automatically

customizing pipelines around given data and
use cases through hierarchical configuration
(Hutter et al., 2018). Lastly, quantifying the
value of additional search invokes the theory
around optimal early stopping in allocation
problems (Domhan et al., 2015). Safely
guiding practitioners on satisfying starting
configurations before enabling further
tuning requires predicting generalizability,
invoking classical machine learning bias-
variance decompositions (Kohavi & Wolpert,
1996). Warm-start transfer with multitask
metadata shows particular promise by
harnessing learnings across problems
(Wistuba et al., 2015). Highly parameterized
search spaces benefit from transformable
embeddings (Alet et al., 2018), while
conditional structure reduces dimensionality
through parameter tying (Kandasamy et al.,
2018). Modeling cost versus accuracy
tradeoffs via multi-fidelity inference directs
samples for cheap approximations before
converging refinements (Falkner et al.,
2018). Expanding tooling access through
cloud APIs and deployment monitoring aids
uptake (Golovin et al., 2017). Together,
these innovations incrementally streamline
the path from data to deployment.

LITERATURE REVIEW
Theoretical Background
Machine learning has transformed
capabilities for pattern recognition and
predictive modeling across applications
from personalized recommendations to
precision medicine (Jordan & Mitchell,
2015). However, real-world deployment of
accurate and reliable machine learning
pipelines hinges on configuring suitable
hyperparameter values - settings that govern
model complexity, training processes, and
data assumptions prior to seeing the data
(Claesen & De Moor, 2015; Goodfellow et
al., 2016). Selecting appropriate

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

195

hyperparameter configurations allows
models to capitalize on expressive power
without overfitting, balancing under- and
over-complexities through empirical
validation. Unfortunately, combinatorial
growth of hyperparameter search spaces
renders comprehensive exploration
practically impossible (Bergstra & Bengio,
2012), necessitating principles and
approximations. Mastering the
accompanying theoretical and optimization
challenges remains imperative for
streamlining machine learning.
Mathematical Optimization
Mathematical optimization involves finding
the best solution or configurations of
decision variables that maximize or
minimize an objective function, while
satisfying any constraints.
An unconstrained optimization problem has
the form:

�������� � �

where f(x) is the objective function to be
minimized and x is the decision variable that
can take any real value. For a constrained
optimization problem, there are typically
inequality constraints g_i(x) ≤ 0 and equality
constraints h_j(x) = 0 that limit the feasible
values of x. The full formulation is:

�������� �(�)
������� �� �_�(�) ≤ 0, � = 1, 2, . . . , �

ℎ_�(�) = 0, � = 1, 2, . . . , �
� ∈ �

Where m is the number of inequality
constraints and p is the number of equality
constraints. X defines the feasible domain of
x. The inequality and equality constraints
define a feasible region D where the
constraints are satisfied:

� = {� ∈ � | �_�(�) ≤ 0, ℎ_�(�) = 0}

A global minimum x* has the property that
f(x*) ≤ f(x) for all x in the feasible region D.
A local minimum x* satisfies f(x*) ≤ f(x)
only for x in some neighborhood N around
x* such that N ∩ D. For a convex
optimization problem, the objective function
f(x) is convex, meaning:

�(��_1 + (1 − �)�_2)
≤ ��(�_1) + (1 − �)�(�_2)

for all x_1, x_2 in X and t in [0,1]. The
feasible region C must also be a convex set.
Convex functions have only one global
minimum, so gradient-based methods like
gradient descent can find the optimal x* by
following the negative gradient direction
from any starting point. For nonconvex
optimization, functions can have multiple
local minima, so gradient-based methods
may only find a local rather than global
minimum. Many machine learning problems
are nonconvex. Global optimization
methods like heuristics must be used to
increase the chance of finding the global
minimum.
Theoretical Landscape
At its core, hyperparameter optimization
seeks good settings based on a validation
metric without explicit knowledge of model
performance across all possible
configurations. This faces difficulties similar
to reinforcement learning explore-exploit
dilemmas, with deeply stochastic objective
functions as target problems and models
change drastically across hyper-
parameterizations (Jomanto et al., 2021).
Certain broad heuristics exist, like starting
simpler or enabling only necessary
complexity. However, hyperparameters
often exhibit complex inter-dependencies
and nonlinear impacts, frustrating human
intuitions (Hutter et al., 2018). Grounded
theoretical guidance for navigating these
high-dimensional heterogeneous search

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

196

spaces remains lacking, though basic
insights on sensitivity, curvature, and
constraint satisfaction inform local
optimization approaches (Benbouzid et al.,
2012).
Many state-of-the-art hyperparameter
optimization regimes thus focus on efficient
exploration guided by observed empirical
performance rather than formal
understanding of hyperparameter properties.
Still, surging model and data complexities
increasingly strain even approximation or
sampling-based methods, motivating the
fusion of functional analytics, incremental
learning, and reasoning under uncertainty
(Jomanto et al., 2021; Komer et al., 2014).
Recent techniques leverage cheap
approximations, transfer learning, warm
starts, metadata-based priors, conditional
parameterizations, and multi-fidelity
evaluations to streamline hyperparameter
tuning amidst ballooning search spaces
(Falkner et al., 2018). Theoretical progress
charting and bounding optimization
difficulty over important hyperparameter
classes could unlock further acceleration.
Open Problems
As machine learning broadens in reach and
scope, several open problems around
managing the end-to-end life cycle persist.
Guiding when simpler models suffice could
curb wasted tuning efforts, while detecting
when additional tuning is worthwhile
remains challenging (Kohavi & Wolpert,
1996). Safe human oversight of automated
parameter recommendations also introduces
interfaces needing standardization. On the
theory front, commonly relied upon
assumptions of smoothness rarely hold over
full hyperparameter ranges, confusing
gradient-based methods, while useful meta-
learning features remain inadequately
cataloged across problem verticals

(Rangapuram et al., 2018). Finally,
quantifying and bounding the diminishing
returns of hyperparameter tuning resources
could help automatically balance exploration,
accuracy, and delays in recommending
production deployments (Domhan et al.,
2015). Advances over these open problems
promise to streamline paths from data to
decision by bringing coherence and
acceleration to the persistently ad hoc
hyperparameter optimization processes
underlying much of modern and practical
artificial intelligence.
Review of Related Literature
The authors in (Hertel et al., 2020)
developed an open-source tool called Sherpa
for automating hyperparameter optimization
of machine learning models. The method
adopted involves implementing a variety of
optimization algorithms like Bayesian
optimization and bandit-based techniques
along with visualization tools to monitor
runs. Results demonstrate improved
performance by tuning neural networks on
MNIST and a climate modeling deep
network. The software has seen wide
adoption across domains but currently lacks
support for distributed tuning across
multiple nodes to further scale. Sherpa
effectively tackles the tedious task of model
tuning while allowing insight into the
process, though expanding its distributed
capabilities would extend its impact even
more. With its combination of algorithms
and intuitive analysis tools, Sherpa makes
progress on the challenge of accessible and
efficient hyperparameter optimization.
The authors in (Schratz et al. 2019)
compares several statistical and machine
learning models for predicting the spatial
distribution of a tree pathogen, finding
random forest to have the best performance.
A key result is that non-spatial cross-

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

197

validation leads to overoptimistic, biased
model evaluation. The authors analyze
spatial vs. non-spatial tuning, showing small
differences in most cases. The study
demonstrates the need to account for spatial
autocorrelation in ecological predictive
modeling through proper resampling
techniques to avoid poor decision making.
More validation on diverse spatial ecology
data could identify broader patterns.
The authors in (Wu et al., 2019) presents a
method for optimizing hyperparameters of
machine learning models using Bayesian
optimization with Gaussian processes (GP).
The authors demonstrate how Bayesian
optimization is well-suited for tuning black-
box functions, iteratively updating a
posterior estimate to determine the next best
sample point. Experiments apply Bayesian
hyperparameter optimization to random
forest, convolutional neural networks,
recurrent neural networks, and multi-grained
cascade forest, showing improved model
accuracy over default parameters and faster
convergence than grid search. The paper
provides a novel application of Bayesian
optimization, leveraging GP assumptions to
efficiently search high-dimensional
hyperparameter spaces of complex models.
Results on benchmark datasets validate
Bayesian optimization as an effective
approach for model tuning without requiring
gradient information or functional forms.
The authors in (Pannakkong et al., 2022)
applies response surface methodology (RSM)
to hyperparameter tuning of three machine
learning algorithms - artificial neural
networks, support vector machines, and
deep belief networks. The goal is to show
RSM can efficiently tune hyperparameters
while maintaining model performance
compared to the commonly used grid search.
Using an industrial dataset for quality
prediction, RSM achieved similar prediction

accuracy to grid search for the algorithms,
while requiring 97.79%, 97.81%, and
80.69% fewer experimental runs for tuning.
RSM also gave more reliable
hyperparameter settings based on
confirmation runs, with 90% and 100%
reliability for ANN and DBN versus 80%
for grid search. RSM required significantly
fewer runs than grid search to achieve
comparable model performance and
prediction accuracy, demonstrating it is an
efficient hyperparameter tuning method for
machine learning regression algorithms with
numerical hyperparameters and responses.
The authors in (Raji et al., 2022) proposes a
simple deterministic selection genetic
algorithm (SDSGA) for hyperparameter
tuning of machine learning models. The
SDSGA modifies the selection mechanism
in a genetic algorithm to promote
exploitative search by deterministically
selecting the top fit individuals as parents.
The SDSGA is compared to Bayesian
optimization and other metaheuristic
algorithms like GA, PSO, and BBO on
benchmark functions and two machine
learning models - convolutional neural
networks and random forests. Results show
the SDSGA converges faster and achieves
higher accuracy than the other methods in
most cases, indicating it is an effective
approach for hyperparameter optimization
when fitness evaluations are limited. The
key finding is that the proposed SDSGA
strikes a balance between exploration and
exploitation which allows efficient
hyperparameter tuning.
The authors in (Elgeldawi et al., 2021)
provides a comprehensive comparative
analysis of hyperparameter tuning
techniques for machine learning algorithms
applied to Arabic sentiment analysis. The
authors tune the hyperparameters of six
classifiers using Grid Search, Random

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

198

Search, Bayesian Optimization, Particle
Swarm Optimization, and Genetic
Algorithms on a dataset of 7000 Arabic
hotel reviews. Without tuning, Support
Vector Classifier performs best at 95.12%
accuracy. With Bayesian Optimization
tuning, Support Vector Classifier achieves
the highest accuracy of 95.62%. The results
demonstrate that hyperparameter tuning can
substantially improve machine learning
model performance on sentiment analysis
for the morphologically complex Arabic
language.
The authors in (Fan et al., 2022) propose a
new hyperparameter optimization algorithm
called Hybrid Sparrow Search Algorithm
(HSSA) that combines the global search
ability of Sparrow Search Algorithm (SSA)
and the speed of Particle Swarm
Optimization (PSO) to effectively optimize
hyperparameters of deep neural networks.
Experiments on convolutional neural
networks demonstrate that HSSA finds
superior solutions compared to other
methods like Bayesian optimization and
random search. The results indicate that
HSSA has strong global search capability,
excellent optimization performance, and
stability for tuning hyperparameters in both
simple and complex deep learning models.
HSSA provides a new heuristic approach
with the ability to avoid local optima for the
challenging problem of hyperparameter
optimization in deep learning.
The authors in (Ali et al., 2023) proposed
many techniques for optimizing
hyperparameters. The authors evaluate Ant
Colony Optimization (ACO), Genetic
Algorithm (GA), Whale Optimization
Algorithm (WOA), and Particle Swarm
Optimization (PSO) for tuning SVM
hyperparameters, on diabetes and heart
disease datasets. The key results are: GA-
SVM achieved highest accuracy of 98.9%

on diabetes data and 97.8% on heart data,
with lowest computational time. WOA-
SVM performed worst with only 71%
accuracy but took most time. ACO-SVM
and PSO-SVM achieved 80% accuracy. This
comprehensive study found GA to be the
most efficient optimization algorithm for
SVM hyperparameter tuning, achieving high
accuracy with low computational cost.
The authors in (Tani et al., 2021) explores
using evolutionary algorithms like particle
swarm optimization (PSO) and genetic
algorithms (GA) to optimize
hyperparameters for machine learning
models in high energy physics. Both
methods were very effective at minimizing
the difficult Rosenbrock function,
significantly outperforming gradient descent,
grid search, and random guessing. When
applied to a Higgs boson detection challenge,
optimizing hyperparameters with PSO and
GA improved model sensitivity by 12-13%
over default parameters. On the function
problem, PSO achieved lower error while on
the physics challenge GA found slightly
better hyperparameters. The methods
demonstrated great promise for automatic
hyperparameter optimization, removing the
need for manual tuning while boosting
model performance. The similar
performance of PSO and GA shows both
evolutionary techniques can powerfully
optimize hyperparameters across problems.
The authors in (Morales-Hernández et al.,
2022) categorizes recent multi-objective
hyperparameter optimization algorithms into
metaheuristic-based, metamodel-based, and
hybrid approaches. It finds that
metaheuristic algorithms like NSGA-II
directly search the space but require many
expensive evaluations. Metamodel methods
like Bayesian Optimization use a surrogate
model to guide search more efficiently and
hybrids combine both. Objectives

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

199

considered include error metrics, model
complexity/size, training time, hardware
metrics, and diversity. The paper
recommends future work using more
hybrids, multi-fidelity approaches, better
noise handling, and more algorithm details
and benchmarks. Overall, it offers a
thorough review of multi-objective
hyperparameter optimization methods and
objectives, highlights limitations, and
suggests promising research directions.

METHODOLOGY
This section employed for hyperparameter
optimization (HPO) in machine learning
models. Two distinct approaches are
explored: Bayesian Optimization and
Metaheuristic Algorithms. Bayesian
Optimization leverages probabilistic
surrogates, such as Gaussian processes,
while Metaheuristic Algorithms, exemplified
by Genetic Algorithms and Particle Swarm
Optimization, employ guided stochastic
search in the hyperparameter space.
HPOAlgorithms
Bayesian Optimization
Bayesian optimization models the objective
function f(x) using a probabilistic surrogate,
such as a Gaussian process:

�(�) ~ ��(�(�), �2(�))
Where μ(x) and σ2(x) are the mean and
variance predictions at x. It uses an
acquisition function α(x) based on the model
to select the next sample point that balances
exploration and exploitation. Common
acquisitions functions include expected
improvement, Gaussian process upper
confidence bound, and Thompson sampling.
The overall iterative process is:

1. Build probabilistic surrogate model
of f(x)

2. Use acquisition function to
determine next x to evaluate

3. Evaluate f(x) and add result to
observed data D

4. Update surrogate model with new (x,
f(x)) pair

5. Repeat steps 2-4
Gaussian process models have O(n3)
complexity. Other Bayesian models like
random forests reduce this to O(nlogn).
Metaheuristic Algorithms
Algorithms like genetic algorithms (GA)
and particle swarm optimization (PSO)
perform guided stochastic search through
the hyperparameter space:
1. Genetic Algorithms
Genetic algorithms are based on the process
of natural selection. They maintain a
population of candidate solutions, where
each solution is encoded as a "chromosome"
(typically a binary string). The
chromosomes are evaluated on the machine
learning task and assigned a fitness score.
The highest scoring chromosomes are
selected to "reproduce" through crossover
and mutation to create the next generation.
This mimics biological evolution.
Mathematically,
Initialization

�(0) = {�1 0 , �2 0 , …��(0)}
Selection
Select parents: ��, �� based on the fitness
Crossover

���������� = ���������(��, ��)
Mutation

�������� = ��������(���������)
Replacement

�(�+1) = {�1(�+1), �2(�+1)…��(�+1)}
Termination
Repeat steps 2-5 until a termination criterion
is met.

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

200

2. Particle Swarm Optimization
Particle swarm optimization is based on
swarm intelligence and operates by having
many "particles" move around the
hyperparameters search space looking for an
optimal solution. Each particle has a
position and velocity. Particles evaluate the
machine learning model at their current
position and communicate to share the best
location found. Mathematically, the position
x and velocity v of each particle are updated
as:

�(� + 1) = � ∗ �(�) + �1 ∗ �1 ∗ (�����
− �(�)) + �2 ∗ �2 ∗ (�����
− �(�))

�(� + 1) = �(�) + �(� + 1)
Where pbest is the particle's personal best
position and ����� is the swarm's global best.
r1 and r2 are random numbers, while w, c1,
and c2 are tuning parameters. This update
rule enables particles to explore the space
while being pulled towards better solutions
over time. The goal is for the swarm to
converge on the optimal set of
hyperparameters by cooperatively searching.
Both methods harness population-based
stochastic optimization, but genetic
algorithms use evolutionary concepts while
particle swarm employs swarm intelligence.
The mathematical foundations capture these
different mechanisms. Both can optimize
complex high-dimensional spaces in few
iterations and enable parallel
implementations. However, GA has
complexity �(�2) while PSO is �(�����).
Hyper-parameters in Machine Learning
Models
Machine learning model performance relies
heavily on hyperparameter tuning, but
manual tuning becomes infeasible as model
and data complexity increase. This

motivates developing automated
hyperparameter optimization techniques.
Selecting optimal hyperparameters is critical
for machine learning but poses a challenging
high-dimensional optimization problem.
Various hyperparameter optimization
methods have emerged to make this process
more efficient and effective. The predictive
power of machine learning is highly
dependent on model hyperparameters, which
are often tuned through an expensive trial-
and-error process. Hyperparameter
optimization research aims to automate and
streamline this process to improve model
quality and efficiency.
K-Nearest Neighbors (KNN)
KNN classifies a sample x based on the
majority class of its k nearest neighbors in
the training set. The predicted class ŷ is:

ŷ = ��������
��∈��(�)

�(�� = ��)�

where �(�) is an indicator function equaling
1 if �� = �� and 0 otherwise. ��(�) are the
k nearest neighbors to x. The key
hyperparameter is k, the number of
neighbors to consider. Larger k reduces
noise but makes decision boundaries less
distinct.
Support Vector Machines (SVM)
SVM computes an optimal hyperplane
�·� + � = 0 to separate two classes.
Instances on the hyperplane satisfy:

�·�� + � = 0
The goal is to maximize the margin distance
between the hyperplane and nearest
instances called support vectors. The
optimization formula is:

��������:
�=1

�
�� −

1
2

�
�=1

�

�=1

�
������� ��(��. ��)�

Subject to:
0 ≤ �� ≤ � ��� � = 1,2, …, �

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

201

�=1

�
���� = 0�

The decision function �(�) is then
expressed as a linear combination of support
vectors:

� � =
�=1

�
����(�. ��)� + �

The support vectors are the training samples
corresponding to non-zero ��.
3.2.3 Naive Bayes
Naive Bayes calculates the posterior
probability of a class y given features x
using Bayes' theorem:

�(�|�) =
�(�) �(�|�)

�(�)
For Gaussian NB, the likelihood �(�|�) is
calculated under a Gaussian distribution
assumption:

� � � =
1

2��2
exp  −

(� − �)2

2�2

where μ and σ are the mean and variance
estimators.
Decision Trees
Decision trees split the input space into
rectangular sub-regions based on if-then-else
rules. Splits are chosen to maximize an
impurity criterion I(t) at each node t, like
Gini impurity or information gain. Typical
hyperparameters are max tree depth, min
samples per leaf, split criteria, and number
of features considered.
Gini Impurity is calculated using the
following mathematical formula

����� � = 1 −
�=1

�

�(�/�)2�

Where c is the number of classes, and p(i|t)
is the proportion of instances of class i at
node t
Information gain is calculated using the
following mathematical formula;

����� � =−
�=1

�

�(�|�)���2(�(�|�))�

Where �(�|�) is the same as above. The
decision tree algorithm seeks to split the
data in a way that maximizes information
gain or reduces Gini impurity. The specific
formula for choosing the best split varies
with the implementation, but the idea is to
compare the impurity before and after the
split and choose the split that maximizes the
reduction in impurity. These formulas are
used during the training process to
determine how to split the data at each node
of the decision tree. The goal is to create
splits that result in pure nodes, where all
instances belong to a single class.

RESULT S AND DISCUSSION
Experimental Setup
The experiments compared eight
hyperparameter optimization methods - grid
search, random search, Bayesian
optimization with Gaussian processes (BO-
GP), tree-structured Parzen estimator (BO-
TPE), Hyperband, a combination of BO and
Hyperband (BOHB), genetic algorithm, and
particle swarm optimization. The algorithms
were evaluated on optimizing three machine
learning models - k-nearest neighbors
(KNN), support vector machines (SVM),
and random forests (RF). The goal was
classification on the Modified National
Institute of Standards and Technology
database image dataset and regression on the
Boston housing dataset.

MNIST contains 70,000 grayscale
handwritten digit images in 10 classes. The
ML models were implemented in Python
using the scikit-learn, Skopt, Hyperopt,
Optunity, Hyperband, BOHB, DEAP, and
TPOT libraries. The optimization objective
was to minimize classification error (1 -

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

202

accuracy) for MNIST and mean squared
error for Boston housing. 3-fold cross-
validation was used to estimate out-of-
sample performance. The optimization
budget was 10 iterations for KNN and 50
iterations for RF and SVM. Experiments
were repeated 10 times with different
random seeds and the results averaged.
The hyperparameter search spaces were
defined based on best practices:

- KNN: k in [1, 20]
- SVM: C in [0.1, 50], kernel as radial

basis function, polynomial, linear, or
sigmoid

- RF: number of trees in [10, 100],
maximum depth in [5, 50], minimum
leaf samples from [1, 11], etc.

The same search spaces were used for all
optimization methods to ensure a fair
comparison. Grid search exhausted the full
space, while other methods explored a
subset based on their search heuristics.
Model performance and optimization time
were compared across techniques. The code
for reproducing the experiments was shared
publicly. This rigorous experimental design
evaluates the real-world performance of the
different hyperparameter optimization
approaches on representative machine
learning tasks.
Result
Machine learning models have various
hyperparameters that can be tuned to
optimize performance. Different
optimization techniques like grid search or
random search are suitable for tuning
different models. Python provides many
libraries like Scikit-Learn, Keras, and
PyTorch for implementing common ML
algorithms. Below is a summary of some
popular models, their key hyperparameters,

preferred optimization methods, and Python
library options:
Table 1: A comprehensive overview of
common ML models, their hyper-parameters,
suitable optimization techniques, and
available Python libraries
ML
Algorit
hm

Main
HPs

HPO
method
s

Option
al HPs

Librari
es

Linear
regressi
ons

- - - -

Logistic
regressi
on

Penalty,
c, solver

BO-
TPE,
SMAC

- Hypero
pt,

SMAC
KNN n-

neighbo
rs

BOs,
Hyperba

nd

Weights
, P,

Algorit
hm

Skpot,
Hypero
pt,

SMAC,
Hyperba

nd
SVM C,

kernel,
epsilon
(for
SVR)

BO-
TPE,
SMAC,
BOHB

gamma,
coef0,
degree

Hypero
pt,

SMAC,
BOHB

Deep
learning

number
of

hidden
layers,
units per
layer,
loss,

optimize
r,

Activati
on,

learning
rate,

dropout
rate,

epochs,
batch
size,
early
stop

patience

PSO,
BOHB

number
of

frozen
layers
(if

transfer
learnin

g
is used)

Optunit
y,

BOHB

RF &
ET

n
estimato

rs
max
depth,

GA,
PSO,
BO-
TPE,
SMAC,

splitter,
min

weight
fraction
leaf,

TPOT,
Optunit

y,
SMAC,
BOHB

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

203

criterion
,

min
samples
split,
min

samples
leaf,
max

features

BOHB max
leaf
nodes

AdaBoo
st

base
estimato

r,
n

estimato
rs,

learning
rate

BO-
TPE,
SMAC

- Hypero
pt,

SMAC

K-
means

n
clusters

BOs,
Hyperba

nd

init,
n init,
max
iter

Skpot,
Hypero
pt,

SMAC,
Hyperba

nd

Table 2: Configuration space for the hyper-
parameters of tested MLmodels
ML
Mod
el

Hyper-
parameter

Type Search Space

RF
Class
ifier

n_estimator
s

Discret
e

[10,100]

max_depth Discret
e

[5,50]

min_sampl
es_split

Discret
e

[2,11]

min_sampl
es_leaf

Discret
e

[1,11]

criterion Catego
rical

[‘gini’,’entropy’]

max_featur
es

Discret
e

[1,64]

SVM
Class
ifier

C
Kernel

Contin
uous
Catego
rical

[0.1,50]
[‘Linear’,’poly’,’rbf
’,’sigmoid’]

KNN
Class
ifier

n_neighbor
s

Discret
e

[1,20]

We evaluate the hyperparameter
optimization methods on common

benchmark datasets - the MNIST digit
image classification dataset. These standard
benchmarks allowed the focus to remain on
the optimization techniques rather than data
idiosyncrasies.
Three machine learning models were
optimized - k-nearest neighbors (KNN),
support vector machines (SVM), and
random forests (RF). These were selected to
cover a range of hyperparameter types.
KNN has a single key hyperparameter, the
number of neighbors. SVM involves
continuous hyperparameters like the
regularization strength and categorical
hyperparameters like the kernel function.
Finally, RF has a large mixed
hyperparameter space controlling aspects
like tree count, maximum depth, split
metrics, etc.
The optimization goal was model accuracy
for MNIST classification. Performance was
estimated using 3-fold cross-validation and
computational time was also measured. The
technique finding the best model
performance in the shortest time was
preferred.
To promote fair comparisons, some
consistency was enforced across methods.
The hyperparameter search spaces were
predefined identically for all techniques
based on recommended ranges from
literature and manual tuning. The
optimization budget was set at 10 iterations
for KNN and 50 for SVM and RF based on
convergence behavior. Experiments were
repeated across random seeds and results
averaged. By using standard datasets and
models and controlling the search spaces,
budgets, and evaluation methodology, the
experiments isolated the impact of the
optimization approach itself. This provided
insight into real-world performance for
machine learning tasks with different model

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

204

architectures and hyperparameter
characteristics.

All experiments were conducted using
Python 3.5 on a machine with AMD A4-
5000 APU processor and 500 gigabytes (GB)
of memory. The involved ML and HPO
algorithms are evaluated using multiple
open-source Python libraries and
frameworks, including sklearn, Skopt,
Hyperopt, Optunity, Hyperband and TPOT.
Table 3: Assessing effectiveness of utilizing
automatic hyperparameter optimization
techniques for random forest models on
handwritten digit benchmark
Optimization
Algorithm

Accuracy (%) CT(s)

Default HPs 94.38 0.06
GS 93.60 25.11
RS 92.43 20.10
BO-GP 93.99 12.59
BO-TPE 93.49 8.00
Hyperband 93.20 9.03
GA 93.32 19.10
PSO 92.56 12.43

This table presents the results of
experiments evaluating various automatic
hyperparameter optimization (HPO)
techniques for Random Forest models
applied to a handwritten digit benchmark.
The optimization algorithms, including
Default Hyperparameters (Default HPs),
Grid Search (GS), Random Search (RS),
Bayesian Optimization with Gaussian
Processes (BO-GP), Bayesian Optimization
with Tree-structured Parzen Estimators (BO-
TPE), Hyperband, Genetic Algorithms (GA),
and Particle Swarm Optimization (PSO), are
assessed based on Accuracy (%) and
Computation Time (CT) in seconds.

The Default HPs show a solid baseline
accuracy, indicating that the initial
hyperparameter settings are reasonably
effective for Random Forest models in this

context. The low associated computation
time suggests that manual tuning might be
sufficient for achieving competitive results.

Among the automated techniques, Grid
Search (GS) has a decent accuracy but
exhibits significantly higher computation
times. Random Search (RS) follows with a
slightly lower accuracy but shows improved
efficiency in terms of computation time
compared to GS.

Bayesian Optimization techniques, BO-GP
and BO-TPE, deliver competitive accuracy
levels with relatively low computation times,
reaffirming their effectiveness in guiding the
search for optimal hyperparameters.

Hyperband performs well in terms of
accuracy, but its computation times are
higher compared to BO-GP and BO-TPE,
suggesting a trade-off between model
performance and computational efficiency.

Genetic Algorithms (GA) showcase
respectable accuracy levels, but the
associated computation times are relatively
high. Particle Swarm Optimization (PSO)
achieves a balance between accuracy and
computation time. The table provides
valuable insights into the comparative
performance of automatic hyperparameter
optimization techniques for Random Forest
models. The results highlight the trade-offs
between accuracy and computation time,
aiding practitioners in selecting the most
suitable algorithm based on their specific
requirements and constraints.

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

205

Table 4: Assessing effectiveness of utilizing
automatic hyperparameter optimization
techniques for Support vector machine
models on handwritten digit benchmark
Optimization
Algorithm

Accuracy (%) CT(s)

Default HPs 96.99 0.27
GS 97.38 31.50
RS 97.44 11.98
BO-GP 97.44 16.30
BO-TPE 97.50 3.09
Hyperband 97.44 11.19
GA 97.44 15.14
PSO 96.05 7.70

This table presents the results of
experiments assessing the effectiveness of
automatic hyperparameter optimization
(HPO) techniques for Support Vector
Machine (SVM) models on a handwritten
digit benchmark. The optimization
algorithms, including Default
Hyperparameters (Default HPs), Grid
Search (GS), Random Search (RS),
Bayesian Optimization with Gaussian
Processes (BO-GP), Bayesian Optimization
with Tree-structured Parzen Estimators (BO-
TPE), Hyperband, Genetic Algorithms (GA),
and Particle Swarm Optimization (PSO), are
evaluated based on Accuracy (%) and
Computation Time (CT) in seconds.
The Default HPs exhibit a respectable
baseline accuracy, suggesting that the initial
hyperparameter settings are reasonably
effective for SVM models in this context.
The associated computation time is low,
indicating that manual tuning might suffice
for achieving competitive results.
Grid Search (GS) produces competitive
accuracy levels but at the expense of
significantly higher computation times.
Random Search (RS) shows slightly lower
accuracy but improved efficiency in terms of
computation time compared to GS.

Bayesian Optimization techniques, BO-GP
and BO-TPE, yield promising results with
competitive accuracy and relatively low
computation times. This emphasizes the
effectiveness of probabilistic models in
guiding the search for optimal
hyperparameters.
Hyperband performs well in terms of
accuracy, but its computation times are
higher compared to BO-GP and BO-TPE,
suggesting a trade-off between model
performance and computational efficiency.
Genetic Algorithms (GA) showcase
respectable accuracy levels, but the
associated computation times are on the
higher side. Particle Swarm Optimization
(PSO) performs adequately, striking a
balance between accuracy and computation
time. The table provides insights into the
comparative performance of automatic
hyperparameter optimization techniques for
SVM models. The results can guide
practitioners in selecting the most suitable
algorithm based on their specific constraints
and priorities.

Table 5: Assessing effectiveness of utilizing
automatic hyperparameter optimization
techniques for KNN models on handwritten
digit benchmark
Optimization
Algorithm

Accuracy (%) CT(s)

Default HPs 96.27 0.24
GS 96.83 7.46
RS 96.44 6.40
BO-GP 96.83 1.16
BO-TPE 96.83 2.20
Hyperband 96.22 4.43
GA 96.86 2.24
PSO 96.83 1.50

This table presents the results of
experiments assessing the effectiveness of
automatic hyperparameter optimization
(HPO) techniques for K-Nearest Neighbors

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

206

(KNN) models on a handwritten digit
benchmark. The optimization algorithms,
including Default Hyperparameters (Default
HPs), Grid Search (GS), Random Search
(RS), Bayesian Optimization with Gaussian
Processes (BO-GP), Bayesian Optimization
with Tree-structured Parzen Estimators (BO-
TPE), Hyperband, Genetic Algorithms (GA),
and Particle Swarm Optimization (PSO), are
evaluated based on Accuracy (%) and
Computation Time (CT) in seconds.

The Default HPs exhibit a strong baseline
accuracy, suggesting that the initial
hyperparameter settings are effective for
KNN models in this context. The associated
computation time is low, indicating that
manual tuning may be sufficient for
competitive results.

Grid Search (GS) produces a competitive
accuracy, but its computation times are
significantly higher. Random Search (RS)
demonstrates slightly lower accuracy but
improved efficiency in terms of computation
time compared to GS.

Bayesian Optimization techniques, BO-GP
and BO-TPE, yield competitive accuracy
levels with relatively low computation times.
This underscores the effectiveness of
probabilistic models in guiding the search
for optimal hyperparameters.

Hyperband performs well in terms of
accuracy, but its computation times are
higher compared to BO-GP and BO-TPE,
suggesting a trade-off between model
performance and computational efficiency.

Genetic Algorithms (GA) showcase
respectable accuracy levels, but the
associated computation times are relatively
high. Particle Swarm Optimization (PSO)
achieves a balance between accuracy and

computation time. The table provides
insights into the comparative performance of
automatic hyperparameter optimization
techniques for KNN models.

Table 6: Comparison with the work of
(Vincent & Jidesh, 2023)
Optimization
Algorithm

Accuracy
(%)

Vincent and
Jidesh, 2023

Default HPs 99.94 -
GS 99.94 -
RS 99.94 89.89
BO-GP 100 94.1
BO-TPE 100 -
Hyperband 99.96 -
GA 99.94 77.9
PSO 99.07 -

The table above compare the result found in
our work with the work in (Vincent & Jidesh,
2023). It can be seen that our result has
produced a result far better than what the
aforementioned author has produced.

Table 7: Assessing effectiveness of utilizing
automatic hyperparameter optimization
techniques for ANN models on handwritten
digit benchmark
Optimization
Algorithm

Accuracy (%) CT(s)

Default HPs 99.94 10
GS 99.94 9.6
RS 99.94 6.40
BO-GP 100 13
BO-TPE 100 15.0
Hyperband 99.96 4.6
GA 99.94 3.25
PSO 99.07 3.50

The result is even far better when
considering our ANN which is the best
algorithm in our case.

5. Conclusion

The research thoroughly evaluated eight
hyperparameter optimization techniques for
image classification. The methods showed

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

207

varied strengths and weaknesses based on
model architecture and search space
complexity. Grid search guarantees global
optimality but scales poorly with
dimensionality. Random search is efficient
but lacks guidance. Gaussian process
Bayesian optimization works well for low-
dimensional spaces but has cubic scaling
issues. Tree Parzen estimator is more
efficient but struggles to parallelize.
Hyperband prioritizes time but sacrifices
solution quality. Genetic algorithms are
competitive but hard to parallelize. Particle
swarm optimization achieves the best
accuracy-time tradeoff. No single technique
is universally superior, and the choice
depends on factors like search space size,
objective function cost, dimensionality, and
parallelizability. Hybrid methods, such as
Bayesian optimization - Hyperband, show
promise. Particle swarm optimization and
ensemble-based techniques appear robust.
Future work should develop benchmarks for
emerging model classes.

Futue Work
Future research directions include creating
benchmarks for complex model classes like
deep neural networks, automating the
selection of optimal optimization algorithms,
and exploring hybrid techniques that blend
strengths from methods like Bayesian
optimization, bandits, and evolutionary
algorithms while mitigating weaknesses.

REFERENCES
Alet, F., Lozano-Perez, T., & Kaelbling, L. P.

(2018). Modular meta-learning.
arXiv preprint arXiv:1806.10166.

Bergstra, J., & Bengio, Y. (2012). Random
search for hyper-parameter
optimization. Journal of machine
learning research, 13(Feb), 281-305.

Brown, T. B., Mann, B., Ryder, N., Subbiah,
M., Kaplan, J. D., Dhariwal, P., ... &
Amodei, D. (2020). Language
models are few-shot learners.
Advances in neural information
processing systems, 33, 1877-1901.

Claesen, M., & De Moor, B. (2015).
Hyperparameter search in machine
learning. arXiv preprint
arXiv:1502.02127.

Domingos, P. (2012). A few useful things to
know about machine learning.
Communications of the ACM, 55(10),
78-87.

Domhan, T., Springenberg, J. T., & Hutter, F.
(2015). Speeding up automatic
hyperparameter optimization of deep
neural networks by extrapolation of
learning curves. In Twenty-Fourth
International Joint Conference on
Artificial Intelligence.

Falkner, S., Klein, A., & Hutter, F. (2018).
BOHB: Robust and efficient
hyperparameter optimization at scale.
In International Conference on
Machine Learning (pp. 1437-1446).
PMLR.

Golovin, D., Solnik, B., Moitra, S.,
Kochanski, G., Karro, J., & Sculley,
D. (2017). Google vizier: A service
for black-box optimization. In
Proceedings of the 23rd ACM
SIGKDD international conference on
knowledge discovery and data
mining (pp. 1487-1495).

Goodfellow, I., Bengio, Y., & Courville, A.
(2016). Deep learning. MIT press.

Hutter, F., Kotthoff, L., & Vanschoren, J.
(2018). Algorithm selection for
combinatorial search problems: A
survey. In Data Mining and
Constraint Programming. Springer,
Cham.

Jaderberg, M., Dalibard, V., Osindero, S.,
Czarnecki, W. M., Donahue, J.,

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

208

Razavi, A., & Kavukcuoglu, K.
(2017). Population based training of
neural networks. arXiv preprint
arXiv:1711.09846.

Jin, H., Song, Q., & Hu, X. (2019). Auto-
keras: An efficient neural
architecture search system. In
Proceedings of the 25th ACM
SIGKDD international conference on
knowledge discovery & data mining
(pp. 1946-1956).

Jomanto, F., Ghassami, A., & Yang, T.
(2021). Hyperparameter
Optimization Of Deep Neural
Networks: A Survey. ArXiv,
abs/2103.05982.

Jordan, M. I., & Mitchell, T. M. (2015).
Machine learning: Trends,
perspectives, and prospects. Science,
349(6245), 255-260.

Kandasamy, K., Dasarathy, G., Schneider, J.,
& Poczos, B. (2018). The multi-
fidelity multi-armed bandit. In
Proceedings of the 32nd
International Conference on Neural
Information Processing Systems (pp.
1777–1787).

Klein, A., Falkner, S., Mansur, N., & Hutter,
F. (2017). RoBO: A flexible and
robust Bayesian optimization
framework in Python. In NIPS 2017
Bayesian Optimization Workshop.

Kohavi, R., & Wolpert, D. H. (1996). Neural
networks for pattern recognition.
Statistical learning theory and
practice.178-184.

LeCun, Y., Bengio, Y., & Hinton, G. (2015).
Deep learning. nature, 521(7553),
436-444.

Lindauer, M., & Hutter, F. (2019). Best
practices for scientific research on
hyperparameter optimization.
Journal of Machine Learning
Research, 21(243), 1-18.

Luketina, J., Berglund, M., Greff, K., &
Raiko, T. (2016). Scalable gradient-
based tuning of continuous
regularization hyperparameters. In
International conference on machine
learning (pp. 2952-2960). PMLR.

Melis, G., Dyer, C., & Blunsom, P. (2018).
On the state of the art of evaluation
in neural language models. arXiv
preprint arXiv:1707.05589.

Ribeiro, M. T., Singh, S., & Guestrin, C.
(2016). Model-agnostic
interpretability of machine learning.
arXiv preprint arXiv:1606.05386.

Shahriari, B., Swersky, K., Wang, Z., Adams,
R. P., & De Freitas, N. (2015).
Taking the human out of the loop: A
review of Bayesian optimization.
Proceedings of the IEEE, 104(1),
148-175.

Wistuba, M., Schilling, N., & Schmidt-
Thieme, L. (2015). Sequential
model-free hyperparameter tuning.
In 2015 IEEE international
conference on data mining (pp.
1033-1038). IEEE.

Yu, K., & Zhu, S. (2020). Hyper-parameter
optimization: A review of algorithms
and applications. arXiv preprint
arXiv:2003.05689.

Benbouzid, D., Busa-Fekete, R., Casagrande,
N., Collin, F.-D., & Kégl, B. (2012).
MultiBoost: a multi-purpose
boosting package. Journal of
Machine Learning Research,
13(Aug), 549-553.

Bergstra, J., & Bengio, Y. (2012). Random
search for hyper-parameter
optimization. Journal of machine
learning research, 13(Feb), 281-305.

Claesen, M., & De Moor, B. (2015).
Hyperparameter search in machine
learning. arXiv preprint
arXiv:1502.02127.

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

209

Domhan, T., Springenberg, J. T., & Hutter, F.
(2015). Speeding up automatic
hyperparameter optimization of deep
neural networks by extrapolation of
learning curves. In IJCAI (Vol. 15,
pp. 3460-3468).

Domingos, P. (2012). A few useful things to
know about machine learning.
Communications of the ACM, 55(10),
78-87.

Falkner, S., Klein, A., & Hutter, F. (2018).
BOHB: Robust and efficient
hyperparameter optimization at scale.
In International Conference on
Machine Learning (pp. 1437-1446).
PMLR.

Goodfellow, I., Bengio, Y., & Courville, A.
(2016). Deep learning. MIT press.

Hutter, F., Kotthoff, L., & Vanschoren, J.
(2018). Algorithm selection for
combinatorial search problems: A
survey. Data Mining and Constraint
Programming, 149-190. Springer,
Cham.

Jomanto, F., Ghassami, A., & Yang, T.
(2021). Hyperparameter
Optimization of Deep Neural
Networks: A Survey. ArXiv,
abs/2103.05982.

Jordan, M. I., & Mitchell, T. M. (2015).
Machine learning: Trends,
perspectives, and prospects. Science,
349(6245), 255-260.

Kohavi, R., & Wolpert, D. H. (1996). Neural
networks for pattern recognition.
Statistical learning theory and
practice.178-184.

Komer, B., Bergstra, J., & Eliasmith, C.
(2014). Hyperopt-sklearn: automatic
hyperparameter configuration for
scikit-learn. In ICML workshop on
AutoML (Vol. 9).

Rangapuram, S. S., Seegerer, M., Gasthaus,
J., Stella, L., Wang, Y., &
Januschowski, T. (2018). Deep state

space models for time series
forecasting. Advances in neural
information processing systems, 31.

Hertel, L., Collado, J., Sadowski, P., Ott, J.,
& Baldi, P. (2020b). Sherpa: Robust
hyperparameter optimization for
machine learning. SoftwareX, 12,
100591.
https://doi.org/10.1016/j.softx.2020.1
00591

Schratz, P., Muenchow, J., Iturritxa, E.,
Richter, J., & Brenning, A. (2019).
Hyperparameter tuning and
performance assessment of statistical
and machine-learning algorithms
using spatial data. Ecological
Modelling, 406, 109–120.
https://doi.org/10.1016/j.ecolmodel.2
019.06.002

Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D.,
Lei, H., & Deng, S. (2019).
Hyperparameter optimization for
machine learning models based on
Bayesian optimization. Journal of
Electronic Science and Technology,
17(1), 26–40.
https://doi.org/10.11989/jest.1674-
862x.80904120

Pannakkong, W., Thiwa-Anont, K.,
Singthong, K., Parthanadee, P., &
Buddhakulsomsiri, J. (2022).
Hyperparameter tuning of machine
learning algorithms using response
surface methodology: A case study
of ANN, SVM, and DBN.
Mathematical Problems in
Engineering, 2022, 1–17.
https://doi.org/10.1155/2022/851371
9

Raji, I. D., Bello-Salau, H., Umoh, I. J.,
Onumanyi, A. J., Adegboye, M. A.,
& Salawudeen, A. T. (2022). Simple
deterministic Selection-Based
genetic algorithm for hyperparameter
tuning of machine learning models.

DOI: 10.56892/bima.v8i1.603

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

210

Applied Sciences, 12(3), 1186.
https://doi.org/10.3390/app12031186

Elgeldawi, E., Sayed, A., Galal, A. R., &
Zaki, A. M. (2021). Hyperparameter
tuning for machine learning
algorithms used for Arabic sentiment
analysis. Informatics (Basel), 8(4),
79.
https://doi.org/10.3390/informatics80
40079

Fan, Y., Zhang, Y., Guo, B., Luo, X., Peng,
Q., & Jin, Z. (2022). A hybrid
sparrow search algorithm of the
hyperparameter optimization in deep
learning. Mathematics, 10(16), 3019.
https://doi.org/10.3390/math1016301
9

Ali, Y. A., Awwad, E. M., Al-Razgan, M., &
Maarouf, A. (2023). Hyperparameter
search for machine learning
algorithms for optimizing the
computational complexity. Processes,
11(2), 349.
https://doi.org/10.3390/pr11020349

Tani, L., Rand, D., Veelken, C., & Kadastik,
M. (2021). Evolutionary algorithms
for hyperparameter optimization in
machine learning for application in
high energy physics. The European
Physical Journal C, 81(2).
https://doi.org/10.1140/epjc/s10052-
021-08950-y

Morales-Hernández, A., Van Nieuwenhuyse,
I., & Gonzalez, S. R. (2022). A
survey on multi-objective
hyperparameter optimization
algorithms for machine learning.
Artificial Intelligence Review, 56(8),
8043–8093.
https://doi.org/10.1007/s10462-022-
10359-2

