
DOI: 10.56892/bima.v8i1.601

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

169

On the Hybrid of Arima and Garch Model in Modelling Volatilities in Nigeria Stock
Exchange

Adewole Ayoade I.
Department of Mathematics, Tai Solarin University of Education Ijagun Ogun State, P.M.B 2118

Ijebu Ode, Ogun State, Nigeria
Corresponding Author: hayorhade2005@gmail.com

ABSTRACT
This work examined the implementation of combination of the most effective univariate time
series model, ARIMA models with the superior volatility models GARCH, in examining the
daily stocks returns of 2910 observations. Augmented dickey Fuller and Phillips Perron test
were used to check the stationarity of the series. The series were confirmed stationary after the
first difference. Comparison of forecasting accuracy of the hybridization between ARIMA
Model and Generalized Autoregressive Conditional Heteroscedastic (GARCH) processes was
done using the secondary data of All share Index of Nigeria Stock Exchange series obtained
from National Bureau of Statistics and World Bank Statistics Database dated, from January 2012
to October 2023.The empirical results of 2910 daily series monthly revealed that the ARIMA
(1,1,1)-GARCH (1,1) model gives the optimum results in modelling the Nigeria Stock exchange
returns compared to conditional mean model ARIMA (1,1,1).
Keywords: ARIMA GARCH, Hybrid, Stock Exchange, Forecasting and Volatilities.

INTRODUCTION
The ARIMA-GARCH model combines the
application of ARIMA and GARCH models
in modeling times series data. ARIMA is a
model that studies the mean behavior of a
time series and GARCH is a variance model
that employ the residual series from the fitted
ARIMA to model the variance behavior
(Yaziz et al., 2013). ARIMA model
introduced by Box and Jerkins (1976) is
known to be among the utmost statistical
procedures broadly used for model
forecasting, it has the characteristics of
applying simple applications for forecasting
exactness and accordingly entails only the
endogenous variables without necessarily
requires other exogenous variables (Xiajuan
Zhang etal. 2007, Adewole (2023)).
Autoregressive Integrated Moving Average
(ARIMA), efficiently considered serial linear
correlation amongst observations, the concept
of ARIMA model is highly relevant in

volatility modeling which give room for the
generalized autoregressive conditional
heteroskedaticity (GARCH) model to be
regarded as ARIMA model. Tsay (2002). The
generalized autoregressive conditional
heteroskedasticity (GARCH) introduced by
Bollerslev (1986) was designed to capture the
dynamic pattern of conditional variance.
The square volatility modelling was assumed
to relate to its past values and errors in
estimating the parameters involved. Several
studies had been conducted on modelling and
forecasting times series model applying the
outline of ARIMA and ARIMA- GARCH.
Qasim et al (2021) erected a suitable model
for the conditional mean and conditional
variance for forecasting the rate of inflation in
Pakistan by reviewing the properties of the
series. GARCH (2,2) model was selected as
the best variance model for the series, their
results revealed that the asymmetric effect
invariance is not so essential for the rate of
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inflation in Pakistan.
Uwilingiyimana (2015) developed empirical
ARIMA-GARCH models for forecasting
rates of inflation Kenya inflation using the
historical monthly data ranging from 2000 to
2014. The research employs time series
analysis, ordinary least square and auto-
regressive conditional heteroscedastic to
detect the estimators. They concluded that
combination between ARIMA(1,1,12)-
GARCH(1,2) model yields the optimum
results and effectively improved estimating
and prediction accuracy when compared to
the other preceding methods of forecasting.
Also, Ghani and Rahim (2019) worked on
detecting the best ARMA-GARCH model in
modeling and forecasting of volatility of
Malaysia natural rubber prices by using
different specifications structures of times
series models and to forecast the daily price
for 20 days ahead. 20 models were produced
from different specifications in ARMA(r,m)
and GARCH(p,q) models in their work. Their
results shows that ARMA(1,0)-GARCH(1,2)
model is the best volatility modeling in S.M.R
20 rubber price.
Isenah et al (2013) employed ARMA
GARCH models to predict future values of
Nigerian Stock Market’s percentage nominal
returns and volatility. They used times series
data of monthly All share Index from the
interval of January 1990 to December 2012.
Results from their study shows that the
asymmetry of the stock market returns is
characterized with kurtosis exceeding that of
normal distribution. Their results yield an
ARMA (1,2) GARCH (1,1) model
characterized with skewed normal error
distributions.
Jokosenumi and Adesete (2018) employed
panel ARDL estimation approach to examine
the long run and short run effects of stock
market volatility on FDI in using a secondary

data ranging from 1990 to 2016. ARCH/
GARCH methods was used to estimate the
exchange rate volatility and GARCH(1,1) was
employed to estimate stock market volatility.
Stock market volatility is the degree of
variation in the prices of stocks overtime. It
reflects the uncertainty and risk associated
with investing in stock market.
Masoud (2013) defined stock market is
defined as a very sophisticated market state
where the traded commodities are stocks and
shares Stock market is paramount in making
decisions on business investment, since
financing investment spending is impacted by
share prices. According to Bodie et al (1998),
stock market indexes give guidance regarding
the performance of the overall stock market.
Stock market volatility measures the variation
of price of a financial asset over time at the
same time, it is central to the creation and
development of a strong and competitive
economy. Information on stock market
provides investors with the status of the
market value of their assets, and this serve as
guide to businessmen on their investments.
Ibrahim (2017) ascertain the record of market
capitalization is declining regarding the
performance of the Nigeria Stock Exchange
(NSE). It is therefore of high priority to
postulate ideas based on research to investors
and policy makers with adequate prediction
on stock market index in order to avert risk of
acquiring unnecessary loss in their imminent
investments and safe guiding them in trading
in the Nigeria stock market.
The All Share Index (ASI) on the Nigeria
Stock Exchange (NSE) is used as proxy for
stock market prices in order to assess
volatility by measuring the trends and thereby
examining the forecasting performance of the
Nigeria Stock Exchange
Researchers have extensively developed
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various times series model in literatures to
enhance the efficiency of modelling and
forecasting returns of stock exchange trade.
(Wang etal (2012) Adebiyi et al (2014),
Badge (2013), Kuhe & Chiawa (2017),
Ibrahim (2019)) among others,
The Nigeria stock exchange (NSE) has
experienced periods of high volatility in
recent years, due to various contributing
factors such as oil, price stocks, political
wavering, security disputes, instability in
exchange rate and COVID-19 pandemic.
Understanding the dynamics and impact of
stock market volatility on economic growth is
crucial for formulating effective financial and
economic policies.
However, in existing literature, there have
not been consistency in the results of
techniques for modeling and forecasting
volatility in the Nigeria stock market prices
that is superior. Therefore, this research
contributes to existing knowledge by
investigating the application of ARMA-
GARCH models for estimating and predicting
both conditional means as well as conditional
variance of the returns. and hence selecting
the most efficient model for volatility forecast
of the Nigerian stock market prices.
The objective of this research focus mainly
on reexamining and proposing a hybrid model

that depict the temporal behavior in forms of
serial dependence and time varying volatility
in daily returns of NSE All Share Index.
Three different criteria that includes Root
Mean Squared Error (RMSE), Mean Absolute
Error (MAE) and the Mean Absolute
Percentage Error (MAPE) respectively was
employed to evaluate the performance of the
models.

MATERIAL AND METHODS
ARIMA Modelling.
The ARIMA modelling constitute three main
parts which include; autoregressive,
integrated (I) and moving-average. The
autoregressive part represents the
autocorrelation between current and previous
data, In contrast, the MA narrate the
autocorrelation framework of the residuals in
the model. The integrated (I) part indicates the
number of differences needed to achieve a
stationarity series from a non-stationarity data
Hasmida (2009).
The ARIMA model usually takes the form (p,
d, q) where the p signifies AR fragment of the
model which is represents no. of lag
observations in the model (known as the lag
order), d signify the level of appropriate
differencing and q describes the size of
moving average section. the MA operator in
ARIMA model is expressed as;

∅ � = 1 − ∅1� − ∅2�2 − …, − ∅��� (1)
q is the size of the MA operator ∅�, � = 1, 2, …, � is the Moving Average parameters and M is
the backward shift operator in such a way that
��� = ��−1 (2)
The Autoregressive operator is expressed in form of;
� � = 1 − �1� − �2�2 − …, − ∅��� (3)
p denotes the order of Autoregressive operators and �� is the non- seasonal AR parameters, � =
1, 2, …, �
ARIMA model defined for an average data size can be defined in form of
� = (�1, �2, …, ��)
written as;
� � 1 − � � �� = �(�)�� (4)
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d represent the level of modifications; t denotes the definite time and �� denotes the residual.
The general form of Autoregressive Integrated Moving Average with the order p, d, q (notated
as ARIMA(p,d,q)) is stated as follows
�� = �1��−1 + �2��−2 + , …, ����−� + �� − ∅1��−1 − ∅2��−2 − , …, ∅���−� (5)
��= �� − ��−� (6)
�� is the autoregressive parameter; �� denotes the white noise or residual while ∅� is the
moving average parameter and �� is the dependent variable; �� is the dth difference of the
dependable variable. ARIMA modeling is in stages.
The process is illustrated in the flow chart below as designed by Box and Jerkins(1976)

Figure 1: Flow chart of the ARIMA modeling.
GARCHModel
The variance equation of GARCH(u,v) model can expressed as;

��
2 = � + �=1

� ����−1
2� + �=1

� ����−�
2� (7)

The model parameter to be estimated according to GARCH(u,v) models are ��
2 which represent

the volatility at day t-j, � > 0, for i= 1…,u and �� ≥ 0, for j = 1,…,v.

represent the parameter determining the effect of previous residual��−1
2 while measures the

effect of change in its lagged value ��−�
2 ..
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From equation (7), it can be deduced that the conditional variance, ��.
2 �� at time t� dependent on

the occurrence of the lagged squared errors in the preceding past periods and also on the
conditional variance over the past periods.

In general, Bolerslev (1986) has established that the GARCH (u, v) process is stationary if there
is satisfactory of the following conditions,
� �� = 0 (8)
��� �� = �

(1−� 1 −� 1 )
(9)

��� ��, �� , � ≠ �, �������� � 1 + �(1) is less than 1
The GARCH models applies the assumption of conditional mean of the time series equal to zero.
The conditional variance structure of GARCH can be augmented by a conditional mean that is
modeled by some ARMA model. GARCH models can further be extended as;
Considering {��} be a time series of the returns in ARIMA (p,q) format:
�� = ∅1��−1 + , …, + ∅���−��0 + �� + �1��−1 + , …, + ����−�
(10)
�� = ��|�−1�� (11)
��

2|�−1 = ω + �1��−1
2 |�−1+,…,+�1��−�

2 |�−� + �1��−1
2 +,…,����−�

2 (12)
The identification of ARMA order depends on the given time series, while GARCH orders
depends on the squared residuals from the fitted ARMA model. After identifying the order, full
maximum likelihood estimation for the ARMA + GARCH model can be implemented by
maximizing the log-likelihood function numerically which is similar to maximizing GARCH
function
� �, �, � =− �

2
���2� − 1

2 �=1
� log ��−1

2 |�−2 + ��−1
2

��−1
2  � (13)

GARCH models are sufficient are sufficient tools in establishing a suitable model for financial
times data.

The ARIMA-GARCH Model
The ARIMA-GARCH model is employed to examine trend and volatility of a time series
concurrently. ARIMA (p,d,q) and GARCH(u,v) is generally defined as
∅ � 1 − � ��� = ∅ � �� (14)
��⃒��−1~ �(�, ��

2) (15)
The ARIMA-GARCH method has been established to handle the serial correlated residuals
encountered in ARIMA models. ARIMA-GARCH model permits concurrent modeling of both
the conditional means and the volatility of the series. Moreover, this method of modelling times
series yields more precise estimate values and higher forecast performance compared to ARIMA
models.
The estimation of the ARIMA-GARCH model parameters is done by first creating the GARCH
model for the series. Parameters of mean and conditional variance is estimated by estimating the
parameters �, �� ��� �� employing the regression model
�� = ∅0 + ∅1�� + �� t = 1,…,T
��= �� ℎ� (16)
ℎ� = � + ∅���−1

2 + ��ℎ�−1 (17)
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Simplifying the hybrid of ARIMA and GARCH model, we have,
�� ∅0, ∅1, �, ��, ��

'
= ∅�', �' (18)

Where the vectors of the parameter �� is

�� =
�
��
��

��� ∅� = ∅0
∅1

(19)

The estimates of the parameters are obtained
by maximizing likelihood method.
Stationarity Test and Volatility Presence
In estimating ARIMA GARCH models, it is
necessary to check whether the data exhibit
the presence of ARCH effect and also to test
for stationarity of the data. This is to certify
appropriate choice of the estimation method
for the data. A series is assumed to be
stationary if the mean and variance remain
constant over time and a non-stationary series
is characterized by features of a unit root.
Stationarity test was conducted using
Augmented Dickey Fuller (ADF) and Philipp

Pherron methods were used to ascertain the
stationarity of the NSE All Share Index. The
Autoregressive Conditional Heteroscedastic-
Lagrange Multiplier (ARCH –LM) Test was
employed to assess volatility in the series
after ascertaining that the variable is
stationary.
Model selection criteria
The Akaike Information Criterion (AIC): it
measures the relative goodness of fit of a
statistical model and also the order of the
model. It is expressed as;

= 2 − 2 ln( ), (20)
where signifies the number of parameters in the model, and represent the maximized value of
the likelihood function for the estimated model.
Schwarz Information Criterion: The SIC employed a likelihood function for choosing the least
complex probability model among multiple options. The SIC is expressed by:
��� = ��� � − 2 ln �� (21)
where the likelihood �� is defined as
�� = ���� (�⃒ ���) (22)
where m signifies the model � are the data and �� represents the estimate parameters of the model.
Hannan-Quinn Information Criterion: The HQIC is a measure of the goodness of fit defined by:
���� = − 2 ���� + 2 ���[ ln � ] (23)
where ���� is the log-likelihood, k represents the number of parameters and n is the number of
observations

Model Diagnostics
Test for serial correlation and presence of
heteroscedasticity after model’s estimation is
highly essential for a mean and hybrid
modeling. Adequacy of the selected models
was validated employing the residual
normality test, the Portmanteau test and

Autoregressive Conditional
Heteroscedasticity Lagrange Multiplier
(ARCH-LM) test to examine the white noise,
serial correlation and the heteroscedasticity
test respectively.
Residual Normality Test.
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Lung box test for the residual examination is
given by;
� = �(� + 2) �=1

� � − �−1���
2� (24)

If �> �2 or the �- value is less than the Significant value, then there will be rejection of the null
hypothesis of no residual with white noise property.

Portmanteau Test
The Portmanteau test examines the existence of autocorrelation in the residuals of a fitted
model.
Let the autocorrelation between ��and ��−� be defined as �� = Corr(��, ��−�)
Then, the null hypothesis states that all lags correlation are zero,
0: 1 = 2 = ⋯ = 0.

The test statistic is given by:
�1 = �(� + 2) �=1

� (� − �)−1� ���� (�)
2 (25)

The �1 statistic follows an approximation of �2distribution with − − degrees of freedom.
Autoregressive Conditional Heteroscedastic-Lagrange Multiplier (ARCH –LM) Test
ARCH-LM test proposed by Engle (1982) accommodate issues of conditional heteroscedasticity
in squared residuals with the null hypothesis that there is no heteroscedasticity in the model
residuals. The test statistic is given by;
� = �(� + 2) �=1

� ��
(�−1)'� (26)

where the statistic follows an asymptotic �2distribution with degrees of freedom provided the
squared residuals is uncorrelated. M signifies the number of observation and �� represent the
sample correlation coefficient between squared residuals ���

2 ��� ���−1
2 . The null hypothesis of

squared residuals states that ���
2 are not correlated.

Model Forecasting and Performance Evaluation

The forecasts accuracy of the model is evaluated employing the Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE),) and the Mean Absolute Percentage Error (MAPE)
respectively.

MAE is the absolute value of the difference between the forecasted value and the actual value. It
calculates the average absolute deviation of predicted values from real values. MAE is estimated
as follow:

��� = 1
� �=1

� ⃒��� − ��⃒� (27)

MAPE is projected as the computation of the percentage of mean absolute error occurred in the
model formation. It is given by;

���� = 100
� �

� ⃒
���−��

��
� ⃒ (28)

RMSE illustrate the absolute fit of the model to the observed data, it is estimated as:
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���� = 1
� �=1

� ��� − ��� (29)

where: ��� ��� �� are the estimated and the real values respectively; n is the sample size. Model
with lesser value is likely to have the best precision power of forecast.

Data Collection and Description
The data for this study is a secondary data
obtained from Nigeria Stock exchange

website. The data comprises of daily data of
All Share Index on the Nigeria Stock
Exchange is in unit, ranging from first day in
January 2012 to last day in October 2023.

RESULTS AND DISCUSSION
Table 1: Summary Statistics
Mean Median Max Min St. dev. Skewness Kurtosis Jarque B. Prob. No. of Obs.
0.0414 0.0055 7.9848 -5.032 0.9632 0.3376 8.7176 407.723 0.0000 2909
Table 1 gives the summary statistics of the daily returns of the stock series ranging from the
period of January 2012 to October 2023.
Stationarity Test

Table 2: ADF and PP Test Result of NSE at level

Note - ADF is the Augmented Dickey Fuller

The various stationarity tests at level are presented in Table 2. The tests shows that the data
series exhibits non-stationary characteristics respectively

Table 3: ADF and PP Test Result of NSE at first difference.

Table 3 shows the unit root tests using ADF and PP at first difference. The p-values of ADF and
PP are less than 0.01, thus, reject the null hypothesis that the series has a unit root at 1%, 5% and
10% and this leads to conclude that the market returns series is stationary.

Test t- statistic Probability Test t- statistic Probability
ADF -15.143 0.2804 Phillips Perron 16.218 0.3115
Test Critical Values
1%

-2.9418 Test Critical Values
1%

-3.1618

5% -3.004 5% -3.2103
10% -3.2819 10% -2.9603

Test t- statistic Probability Test t- statistic Probability
ADF -39.132 0.000 Phillips Perron -38.982 0.000
Test Critical Values
1%

-3.5381 Test Critical Values
1%

-3.5339

5% -3.2750 5% -3.2684
10% -3.1562 10% -3.1602



DOI: 10.56892/bima.v8i1.601

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

177

Fig 2: correlogram of the stock returns
From the correlogram presented in fig 2, the model with the lowest value of AIC, SIC and HQIC
was selected as the best model amidst the competitors.

Table 4: Tentative ARIMA models of the daily stock returns.
Model Specification(p,d,q) AIC SIC H QIC
Model 1 ARIMA (1,1,1) 182.4159 183.0026 179.2679
Model 2 ARIMA (1,1,8) 184.3697 184.7056 183.1260
Model 3 ARIMA (7,1,1) 184.6289 185.2247 185.1962

Note- ARIMA is Autoregressive Integrated Moving Average
The competitive models and their respective values for the selection criteria are tabulated in
Table 4 above.

Table 5: Parameter Estimation of ARIMA(1,1,1) model
Parameter Coefficient Standard Error Prob.

C 0.0552 0.6125 0.0075
�1 0.1103 0.3631 0.0032
∅1 -0.0571 0.0491 0.0000

where Θ1 is the autoregressive parameters of seasonal component and Φ1 is the moving average
parameters of the ARIMA component. From the results shown in Table 5, the parameter
estimation adopted from Box and Jenkins procedures engaging maximum likelihood method of
estimations which relied on asymptotic condition for any time series observation in line with
Brockwell et al, 2013.

The equation of the selected ARIMA (1,1,1) model is expressed;

���� = 0.0552 + 0.1103����−1 − 0.0571��−1
(30)

Table 6: Diagnostic Check for the ARIMA Model.
Times
series

ARIMA(p,d,q) Autocorrelation Test Normality test

Model Lung Box � Portmanteau Jarque Bera Test Shapiro Wiki
p- value p- value p-value p-value

Stock R. ARIMA(1,1,1) 0.1825 0.1904 0.3328 0.3715
� 0.05 0.05 0.05 0.05

Table 6 presents results of serial correlation and Heteroskedacity check for the selected ARIMA
models. The Ljung-Box and the Durbin Watson p value for the series exceeds 0.05(the
significant level) which indicates there is no autocorrelation among the residual of the model's
forecast errors and the residual is normally distributed. .

GARCHModel Estimation.

Heteroscedasticity Test



DOI: 10.56892/bima.v8i1.601

Bima Journal of Science and Technology, Vol. 8(1A) Mar, 2024 ISSN: 2536-6041

178

To model the volatility of a time series variable, it is mandatory to test for the presence of ARCH
Effect in the residuals of the series.

Table 7: Results of test for Arch effect on Daily Data
Test statistic value Probability

F Statistic 127.8196 0.0000**
Observed R2 121.2779 0.0000

From Table 7, it was deduced that there is an ARCH effect in the ARIMA(1,1,1) residual model
since the probability value of Obs * R-squared is smaller than the significance level of 0.05.

Figure 3: Volatility clustering of the series
The GARCH model was identified by examining the autocorrelation function (ACF) and the
partial autocorrelation function (PACF) of the squared residual data correlogram. From the
squared residual data correlogram, the tentative GARCH models were presented in Table 8
below. GARCH models for variables were fitted to the series and the model with the lowest
value of AIC and SIC was chosen as the best amidst the competitors.

Table 8: Tentative GARCH Models
GARCH MODEL AIC SIC S. Error Log likelihood
GARCH(0,1) 3.7169 3.7243 2.9652 - 285.11
GARCH(1,1) 3.5194* 3.5530* 3.1966 -277.34
GARCH(1,2) 3.6552 3.6502 3,5075 -288.06
Note- GARCH is Generalized Autoregressive Conditional Heteroscedastic
ARIMA-GARCH model combines the ARIMA model that considered the mean behavior of the
time series and the GARCH model which is employed to model the variance behavior (ARCH
effect). Applying the residual series obtained from the fitted ARIMA models, suitable GARCH
models were built. The results of the combined models are presented in Table 9 below,

Table 9: Estimate of ARIMA GARCH.
Parameter Coefficient Std. Error t- value Prob.

� 0.1103 0.3631 -2.4458 -2.4458
� 0.0004 0.0006 2.1270 0.0005
� 0.1126 0.0247 4.3345 0.0000
� 0.4938 0.0159 7.3492 0.0000

Table 10: Diagnostics check for the ARIMA GARCH Model.
Times series Model Portmanteau Test ARCH LMTest
All Share Index ARIMA(1,1,1) GARCH(1,1) (13.258) 0.2046 (15.287) 0.4721

Table 10 above present the serial correlation and heteroscedascity diagnostics for the ARIMA-
GARCH models
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Table 11:Measurement of Forecast Accuracy
Preferred Model MAE MAPE RMSE
ARIMA(1,1,1) 0.6824 0.9025 1.2926
ARIMA(1,1,1) GARCH(1,1) 0.7352 0.7962 0.8157

Table 11 present the summary of forecast
accuracy of selected ARIMA and ARIMA
GARCH model. ARIMA/GARCH models
outperform ARIMA models in modeling
returns of Nigeria stock exchange in terms of
MAPE and RMSE validation criteria but
ARIMA yields a better precision than
ARIMA GARCH Model with MAE.

CONCLUSION
The complete combination of powerful and
flexibility of ARIMA and the strength of
GARCH models in handling volatility and
risk in the data series as well as to overcome
the linear and data limitation in the ARIMA
models made the combination of ARIMA-
GARCH as a new potential approach in
analyzing and forecasting the returns of
Nigeria stock exchange. The stages in the
model building strategy such as identification,
estimation and model evaluation has been
explored and utilized in erecting adequate
model for forecasting stock returns of Nigeria
stock exchange, from the result of the
research, ARIMA-GARCH model outperform
ARIMA of Nigeria stock market volatility
with the aid of validation criteria, ARIMA
(1,1) GARCH (1,1) was selected as best
forecast model. The result justifies the result
of Emenyonu, et al., (2023) that works on
estimating Volatility of Daily Price Returns of
Nigerian Stock Market.
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