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ABSTRACT

Air pollution from dumpsites is a growing concern due to its detrimental effects on both human
health and the environment. This study examines the influence of meteorological parameters on
the propagation of air pollution from a dumpsite, focusing on the Saje dumpsite in Abeokuta,
Nigeria. The concentration of the air pollutants; particulate matters (PM2.5, PM10), formaldehyde
(HCHO), total volatile organic compound (TVOC), carbon monoxide (CO), oxygen (O2) and
selected meteorological factors (wind speed, wind direction, temperature and humidity) were
measured using portable handheld gas detectors. Multiple linear regression (MLR) and multiple
nonlinear regression (MNLR) models were employed to predict the relationship between the
meteorological parameters and the air pollutants using XLSTAT® 2018 modelling software.
Regression analysis showed that, the coefficient of determination (R2) ranged from 0.114 – 0.157
(dry season sampling) and 0.006 – 0.319 (wet season sampling) for MLR and 0.466 – 0.673 (dry
season sampling) and 0.390 – 0.671 (wet season sampling) for MNLR models. The MNLR
model is best used in predicting the air pollutants concentration propagation using
meteorological parameters as predictors. This finding emphasizes the significant role of
meteorological parameters in influencing air pollution dynamics. As such, the study recommends
the adoption of MNLR models for more accurate predictors and effective management of air
pollution from dumpsites.
Keywords: Air pollution, Meteorological parameters, Propagation, Regression models.

INTRODUCTION
Air pollution is a pervasive environmental
challenge in developing countries with
significant implications for public health and
the overall balance of ecosystems. Various
human activities, such as the combustion of
fossil fuels like natural gas, coal, and oil for
industrial processes, transportation, brick
making, and other industrial operations, are
the principal source of pollutants responsible
for deteriorating air quality (Begum et al.,
2008). Furthermore, the rapid growth of urban
populations and changes in land use due to

urban expansion are significant factors
contributing to declining air quality in
developing nations (Mayer, 1999).
Consequently, both indoor and outdoor air
quality in urban areas is straying from
acceptable standards, leading to a continuous
exposure of a large number of urban residents
to harmful air pollutants and associated health
risks (Kayes et al., 2019).
The intricate interplay between the air quality
and meteorological parameters has prompted
extensive research aimed at understanding
and modeling the complex relationships
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governing pollutant concentrations (Opkala,
and Yorkor, 2013). Meteorological elements
are crucial factors influencing air quality
(Antai et al., 2018; Manju et al., 2018).
Among these, wind speed and direction,
relative humidity, air pressure, and
temperature are particularly noteworthy as
they can impact the dispersion process,
mechanisms for pollutant removal, and the
formation of atmospheric particles (Zhang et
al., 2015). Consequently, they play a
substantial role in regulating air pollutant
concentrations. Additionally, rainfall can also
have varying effects on pollutant
concentrations through the elimination of
gaseous pollutants and the deposition of
particulate matter through atmospheric
chemical processes (Shukla et al., 2008;
Kayes et al., 2019).
In recent years, statistical modeling
techniques, particularly multiple linear
regression (Antai et al., 2018) and multiple
nonlinear regression (Kayes et al., 2019),
have emerged as powerful tools for
investigating the complex connections
between meteorological elements and air
pollution. These techniques enable
researchers to analyze the impact of various
meteorological elements on pollutant
concentrations and provide valuable insights
into the underlying dynamics of pollution
sources and transport mechanisms. The aim of
this study is to model the relationship between
air pollutants concentrations propagation and
the meteorological parameters at Saje
Dumpsite, Abeokuta, Nigeria.

MATERIALS AND METHODS

Study Area
Abeokuta, the capital of Ogun State in
southwest Nigeria, spans an area of
approximately 879 km2 and is positioned
between latitude 7⁰ 9' 39’’ N and longitude 3⁰
20'54’’E. The city is situated in Nigeria's
rainforest region and benefits from its
strategic location, providing easy access to
Lagos, Nigeria's commercial capital, as well
as to industrial areas and the main seaport
(Ufoegbune et al., 2008). Abeokuta is situated
on a basement complex of igneous and
metamorphic origins. The study area which is
the Saje dumpsite and the adjoining
residential areas is located between 7°°10’30”
and 7°12’0”N and between 3°21’0” and
3°22’30”E in the humid tropical region in
Abeokuta, Nigeria. The dumpsite was created
in 2006 in order to reclaim the site as it was
previously a quarry site occupied by
Associated Granite Industry (AGI) Quarry
(Afu et al., 2015).
Data Collection
Air pollutants concentrations data of
particulate matters (PM2.5, PM10),
formaldehyde (HCHO), total volatile organic
compound (TVOC), carbon monoxide (CO),
oxygen (O2) and meteorological factors such
as wind speed, wind direction, humidity and
temperature were determined using handheld
gas detectors (Multifunctional gas detector
and professional air tester). A total of forty
data were collected on the dumpsite and the
adjoining residential area towards the four
paths of propagation (North, South, East and
Western transverse) as shown in figure 1 for a
period of six (6) month (February to July
2023). The February to April sampling were
classified as the dry season sampling and May
to July sampling as the wet season sampling.
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Figure 1: Study area map
Model Development
The regression models in predicting the air
pollutants propagation with meteorological
parameters were determined using multiple
linear regression (Antai et al., 2018) and
multiple nonlinear regression (Kayes et al.,
2019). The meteorological parameters such as
wind speed (Ws), wind direction (Wd),
Temperature (Temp) and relative humidity

(RH) were used as the predictors. The models
of each air pollutants were generated using
XLSTAT 2018 software for both multiple
linear regression (MLR) and multiple
nonlinear regression (MNLR). A polynomial
model of third order was employed to build a
models using the MNLR techniques. The
modelling of the MLR and MNLR were based
on the fundamental approaches in Equation 1
– 5.

Outcomei = (model) + errori (1)
Yi = (b0 + biXi1 + b2Xi2 + …….. + bnXn) + Ɛi (2)
Yi = β0 + �=1

� βixi + Ɛi� (3)
Yi = βo + βiX + βX2 + …. + βhXh + Ɛi (4)
yi = β0 + β1xi + β2xi2 + β3xi3 + Ɛi (5)
Where, Yi and yi are models outcome.
X1, X2 ………Xn are predictor variables.
b0, b1, b2 …….. βn are regression coefficient
h is called the degree of the polynomial and
Ɛi is the error factor called residual.
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Model Validation
Several statistical metrics, including mean
square error (MSE) and root mean square
error (RMSE), were employed to evaluate and
validate the accuracy of the prediction models.
Additionally, the coefficient of determination,
known as R-squared (R2), was used to

evaluate the extent to which the model
equations accounted for the total variability in
the dependent variables. The mean square
error (MSE) was calculated as the average
difference between the predicted and
observed values using Equation (6), while the
root mean square error was determined using
Equation (7).

MSE = 1
� �=1

� (�����, � − �����, �)� (6)

RMSE = [ 1
� �=1

� (�����, � − �����, �)²]� 1/2 (7)
Where, N represents the total number of measured data points or observation
Sum of square error (SSE) was be computed using Equation (8)
SSE = (�����, � − ��, �)� 2 (8)
The sum of squares of the regression model (SSM) was calculated using Equation (9).
SSM = � (�����, � − �����, �)� 2 (9)
Coefficient of determination (R2)
The coefficient of determination (R2) value represents the proportion of variation in the sample
that is accounted for by the regression models, indicating the degree to which the models
accurately fit the data. Equation (10) was used to compute the coefficient of determination.

R2 = ��������� ���������
����� ���������

= ���
���

= � (�����,�−��)²�

� (�����,�−��)²�
(10)

Where Ypred,i represents the predicted pollutant concentration,
Xmeas,i denotes the individual measured air pollutant concentration, and
Xm is the mean measured pollutant concentration.

RESULTS AND DISCUSSION
Variation of air Pollutants Concentration
with Meteorological Parameters in the Dry

Season
A model equations generated using multiple
linear regression model (MLR) and multiple
nonlinear regression model (MNLR) are
presented in equation 11 to 16 and 17 to 22
respectively. The equations were used to

predict the concentrations of each pollutants
in the sampling area during the dry season.
Table 1 and 2 shows the goodness of fit
statistics for multiple linear regression (MLR)
and multiple nonlinear regression (MNLR)
model during the dry season sampling.
The model equations generated using multiple
linear regression (MLR) to predict dry season
sampling are presented below:

PM2.5 = 73 - 3.5Ws + 1.45Wd - 13.5Temp + 0.76Rh (11)
PM10 = 117 - 6.6Ws + 1.53Wd - 14.6Temp + 0.72Rh (12)
HCHO = - 0.14 - 0.0154Ws + 0.00697Wd - 0.0549Temp + 0.00442Rh (13)
TVOC = - 2.29 + 0.338Ws + 0.0343Wd - 0.273Temp + 0.0302Rh (14)
CO = 4.8 + 0.193Ws + 0.0499Wd - 0.554Temp + 0.0077Rh (15)
O2 = 23.5 - 0.402Ws - 0.00810Wd + 0.0261Temp - 0.0116Rh (16)
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The model equations generated using multiple nonlinear regression (MNLR) to predict dry
season sampling are presented below:
PM2.5 = 99556.221 - 105.176*Ws + 132.597*Wd - 11636.591*Temp + 340.052*Rh - 0.476*Wd2

+ 374.830*Temp2 - 4.773*Rh2 + 5.849E-04*Wd3 - 4.001*Temp3 + 2.224E-02*Rh3
(17)

PM10 = 113179.401 - 108.869*Ws + 315.246*Wd - 14561.006*Temp + 370.553*Rh -
1.178*Wd2 + 469. *Temp2 - 5.204*Rh2 + 1.477E-03*Wd3 - 5.009*Temp3 + 2.427E-02*Rh3

(18)
HCHO = 363.321-0.503*Ws + 3.222*Wd - 65.649*Temp + 1.287*Rh - 1.212E-02*Wd2 +

2.108*Temp2 - 1.756E-02*Rh2 + 1.512E-05*Wd3 - 2.240E-02*Temp3 + 7.982E-05*Rh3
(19)
TVOC = 635.035-2.667*Ws + 18.209*Wd - 231.877*Temp + 5.829*Rh - 6.799E-02*Wd2 +

7.456*Temp2 - 7.921E-02*Rh2 + 8.407E-05*Wd3 - 7.923E-02*Temp3 + 3.601E-04*Rh3
(20)
CO = 2991.012-5.089*Ws - 7.902*Wd - 280.286*Temp + 22.608*Rh + 3.307E-02*Wd2 +

9.070*Temp2 - 0.339*Rh2 - 4.388E-05*Wd3 - 0.098*Temp3 + 1.67E-03*Rh3
(21)
O2 = -251.260 + 0.396*Ws + 11.452*Wd - 67.954*Temp - 1.310*Rh - 4.405E-02*Wd2 +

2.235*Temp2 + 1.800E-02*Rh2 + 5.573E-05*Wd3 - 2.418E-02*Temp3 - 7.780E-05*Rh3
(22)

Table 1: Goodness of fit statistics for multiple linear regression (MLR) model during the dry
season sampling

S/N Pollutants Observation DF SSE MSE RMSE R2 P-value
1 PM2.5 80 75 49652 12413 111.4136 0.157 0.012
2 PM10 80 75 58175 14544 120.5985 0.152 0.014
3 HCHO 80 75 0.94632 0.23658 0.486395 0.12 0.045
4 TVOC 80 75 22.363 5.591 2.36453 0.205 0.002
5 CO 80 75 56.073 14.018 3.744062 0.114 0.057
6 O2 80 75 2.2164 0.5541 0.744379 0.181 0.004

Table 2: Goodness of fit statistics for multiple nonlinear regression (MNLR) model during the
dry season sampling

S/N Pollutants Observation (N) DF SSE MSE RMSE R2 P-value
1 PM2.5 80 67.00 135350.087 2020.151 44.946 0.573 0.000
2 PM10 80 67.00 159822.783 2385.415 48.841 0.581 0.000
3 HCHO 80 67.00 3.897 0.058 0.241 0.504 0.000
4 TVOC 80 67.00 35.683 0.533 0.730 0.673 0.000
5 CO 80 67.00 223.312 3.333 1.826 0.546 0.000
6 O2 80 67.00 6.515 0.097 0.312 0.466 0.034

The sum of square error (SSE), mean square
error (MSE), and root mean square error
(RMSE) for the model generated for each air
pollutants (PM2.5, PM10, HCHO, TVOC, CO
and O2) for dry season sampling model using

multiple linear regression model (MLR) and
multiple nonlinear regression model (MNLR)
are presented in table 1 and 2 respectively.
The results shows that, the meteorological
factors significantly influence (p-value < 0.05)
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the propagation of the concentrations of the
air pollutants when both MNLR and MLR are
used to predict except for CO that is not
significantly influence (p-value > 0.05) the
propagation of CO by meteorological
parameters.
The goodness of fit of the various air
pollutants when MLR is used to predict shows
that, the meteorological parameters accounted
for 0.157, 0.152, 0.120, 0.205, 0.114, and
0.181 of the coefficient of determination (R2)
of PM2.5, PM10, HCHO, TVOC, CO and O2
respectively. This is similar to what is
reported by Antai et al., (2018) with a

coefficient of determination of 0.048, 0125
and 0.125 for VOC, CO and PM2.5 during the
dry sampling respectively. Also, the goodness
of fit of the various air pollutants when
MNLR is used to predict shows that, the
meteorological parameters accounted for
0.573, 0.581, 0.504, 0.673, 0.546, and 0.466
of the coefficient of determination (R2) of
PM2.5, PM10, HCHO, TVOC, CO and O2
respectively in the study area. The
relationship between the predicted and
measured of each air pollutants are presented
in figure (2) for dry season air pollutants
sampling.
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Figure 2: Relationship between predicted and measured (a) PM2.5 (b) PM10 (c) HCHO (d) TVOC
(e) CO (f) O2 during the dry season.

Variation of air pollutants concentration with meteorological parameters in the wet season
A model equations generated using multiple linear regression model (MLR) and multiple
nonlinear regression model (MNLR) are presented in equation 23 to 28 and 29 to 34 respectively.
The equations were used to predict the concentrations of each pollutants in the sampling area
during the wet season. Table 3 and 4 shows the goodness of fit statistics for multiple linear
regression (MLR) and multiple nonlinear regression (MNLR) model during the wet season
sampling.
The model equations generated using multiple linear regression (MLR) to predict wet season
sampling are presented below:
PM2.5 = - 58 - 4.01Ws - 0.240Wd + 2.28Temp + 1.02Rh (23)
PM10 = - 60 - 3.78Ws - 0.249Wd + 2.43Temp + 1.04Rh (24)
HCHO = - 0.201 + 0.00024Ws - 0.000048Wd + 0.00472Temp + 0.00116Rh (25)
TVOC = - 0.412 + 0.00220Ws - 0.000049Wd + 0.0096Temp + 0.00231Rh (26)
CO = - 0.25 + 0.0208Ws + 0.000086Wd + 0.0002Temp + 0.0026Rh (27)
O2 = 17.3 + 0.0715Ws + 0.00167Wd + 0.0770Temp + 0.0120Rh (28)
The model equations generated using multiple nonlinear regression (MNLR) to predict wet
season sampling are presented below:
PM2.5 = 9868.277 - 66.794*Ws + 231.145*Wd - 3392.115*Temp + 273.656*Rh - 0.879*Wd2 +

107.221*Temp2 - 4.169*Rh2 + 1.103E-03*Wd3 -1.123*Temp3 + 2.060E-02*Rh3
(29)
PM10 = 8164.657 - 64.662*Ws + 244.3985*Wd - 3331.443*Temp + 269.057*Rh -0.928*Wd2 +

105.287*Temp2 - 4.108*Rh2 + 1.164E-03*Wd3 - 1.102*Temp3 + 2.034E-02*Rh3
(30)
HCHO = -3.980 - 3.210E-02*Ws + 0.290*Wd - 2.380*Temp + 0.157*Rh - 1.086E-03*Wd2 +

0.0755*Temp2 - 2.473E-03*Rh2 + 1.343E-06*Wd3 - 7.937E-04*Temp3 + 1.271E-05*Rh3
(31)
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TVOC = -40.895 - 2.679E-02*Ws + 0.613*Wd - 1.715*Temp + 0.190*Rh - 2.260E-03*Wd2 +
0.05466*Temp2 - 3.159E-03*Rh2 + 2.760E-06*Wd3 - 5.762E-04*Temp3 + 1.719E-

05*Rh3 (32)
CO = 7050.499 - 1.529*Ws - 4.286E-02*Wd - 672.979*Temp + 8.919*Rh + 2.702E-02*Ws2 +

2.121E- 04*Wd2 + 20.490*Temp2 - 9.342E-02*Rh2 - 0.206*Temp3 + 2.627E-
04*Rh3 (33)
O2 = -339.295 + 0.400*Ws + 3.505*Wd + 10.208*Temp - 1.877*Rh - 1.302E-02*Wd2 -

0.372*Temp2 + 0.027*Rh2 + 1.578E-05*Wd3 + 4.463E-03*Temp3 - 1.302E-
04*Rh3 (34)
Table 3: Goodness of fit statistics for multiple linear regression (MLR) model during the wet

season sampling
S/N Pollutants Observation DF SSE MSE RMSE R2 P-value
1 PM2.5 80 75 8740.3 2185.1 46.74505 0.319 0.000
2 PM10 80 75 9490 2372.6 48.70934 0.312 0.000
3 HCHO 80 75 0.001297 0.000324 0.018008 0.061 0.309
4 TVOC 80 75 0.003672 0.000918 0.030299 0.034 0.618
5 CO 80 75 0.02989 0.00747 0.086429 0.006 0.977
6 O2 80 75 0.26905 0.06726 0.259345 0.07 0.238

Table 4: Goodness of fit statistics for multiple nonlinear regression (MNLR) model during the
wet season sampling

S/N Pollutants Observation (N) DF SSE MSE RMSE R2 P-value
1 PM2.5 80 67.00 9023.045 134.672 11.605 0.671 0.000
2 PM10 80 67.00 10893.060 162.583 12.751 0.642 0.000
3 HCHO 80 67.00 0.008 0.000121 0.011 0.622 0.000
4 TVOC 80 67.00 0.043 0.001 0.025 0.601 0.000
5 CO 80 67.00 300.123 4.479 2.116 0.390 0.040
6 O2 80 67.00 9.302 0.139 0.373 0.615 0.000

The sum of square error (SSE), mean square
error (MSE), and root mean square error
(RMSE) for the model generated for each air
pollutants (PM2.5, PM10, HCHO, TVOC, CO
and O2) for wet season sampling model using
multiple linear regression model (MLR) and
multiple nonlinear regression model (MNLR)
are presented in table 3 and 4 respectively.
The results shows that, the meteorological
factors significantly influence (p-value < 0.05)
the propagation of the concentrations of the
air pollutants when a multiple nonlinear
regression (MNLR) is used to predict the
pollutants. The meteorological parameters did
not significantly influence (p-value > 0.05)
the propagation of the air pollutants when a
multiple linear regression (MLR) is used

except for PM2.5 and PM10 which are
significantly influence (p-value < 0.05).
The goodness of fit of the various air
pollutants when MLR is used to predict shows
that, the meteorological parameters accounted
for 0.319, 0.312, 0.061, 0.034, 0.006, and 0.07
of the coefficient of determination (R2) of
PM2.5, PM10, HCHO, TVOC, CO and O2

respectively. Also, the goodness of fit of the
various air pollutants when MNLR is used to
predict shows that, the meteorological
parameters accounted for 0.671, 0.642, 0.622,
0.601, 0.390, and 0.615 of the coefficient of
determination (R2) of PM2.5, PM10, HCHO,
TVOC, CO and O2 respectively in the study
area. The variations of CO concentration was
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least explained by the meteorological
parameters.
The coefficient of determination (R2) of this
study were similar to what was reported by
Kayes et al., (2019) in the relationship
between PM2.5 and PM10 with meteorological
parameters. Kayes et al., (2019) noted that,
the coefficient of determination of CO, PM2.5,
PM10 were 0.1494, 0.7027, 0.6167 and 0.19,
0.72 and 0.63 using multiple linear regression
(MLR) and multiple nonlinear regression

(MNLR) respectively. Comparison of the
models show MNLR model performed better
than the linear model (MLR). Yi et al., (2016)
also documented that MNLR models
exhibited superior performance in elucidating
the relationship between PM2.5 concentration
and meteorological factors in China. The
relationship between the predicted and
measured of each air pollutants are presented
in figure (3) for wet season air pollutants
sampling.
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Figure 3: Relationship between predicted and measured (a) PM2.5 (b) PM10 (c) HCHO (d) TVOC
(e) CO (f) O2 during the wet season.

CONCLUSION AND
RECOMMENDATION

The results of the multiple linear regressions
and the multiple nonlinear regressions in the
study area revealed that, the meteorological
parameters induced the propagation of the air
pollutants concentrations in the study area.
The MNLR model performed better in
predicting the concentration propagation than
the MLR. The findings underscore the
significance of embracing MNLR as a
preferred modelling approach when
addressing air pollution scenarios
characterized by intricate and non-linear
dependencies on meteorological parameters.
As we strive for more effective pollution
management and targeted mitigation
strategies, the adoption of MNLR contributes
to a more comprehensive and accurate
assessment of the interaction between
meteorological parameters and air quality,
ultimately advancing our capacity to address
and ameliorate the impacts of air pollution on
public health and environmental well-being.
Given the superior performance of multiple
nonlinear regression (MNLR) models in

predicting air pollutant concentration
propagation, future research and
environmental monitoring efforts should
prioritize the use of MNLR models for more
accurate assessments. There is a need to
enhance the monitoring of meteorological
factors such as wind speed, wind direction,
temperature, and humidity. This will improve
the understanding and prediction of air
pollution dynamics. Targeted mitigation
measures should be implemented to address
the specific meteorological conditions that
contribute to increased air pollution levels.
For example, measures to control emissions
during periods of low wind speed or
unfavorable wind direction could be
implemented.
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