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ABSTRACT

The occurrence of micro-plastics in aquatic ecosystems significantly impact the structure,
organism functions, and aesthetic values of the ecosystem. Here, an extensive search of databases
such as PubMed, Scopus, Web of Science, Science Direct, Google Scholar, and African Journals
Online was conducted to gather relevant research reports on microplastics. Microplastics are
typically classified into primary and secondary microplastics originating from microbeads used in
cosmetics, the ship-breaking industry, fertilizers, and indiscriminate plastics waste disposal.
Plastic pollution in aquatic ecosystems poses a serious threat to aquatic organisms through
entanglement, ingestion, and exposure to toxic plastic additives. The toxic effect Plastic additives
can lead to oxidative stress, gastrointestinal obstruction, translocation, and trophic transfer.
Bisphenol-A and phthalates, critical components of plastic, have serious endocrine-disrupting
effects on organisms. Mitigation strategies to reduce plastic and microplastic pollution require
interventions from governments at all levels to establish effective waste management programs,
policies, and regulations. Designing eco-friendly and biodegradable plastic products is crucial for
effective plastic waste management. Furthermore, remediating contaminated environments using
eco-friendly methods is essential to address microplastic pollution in the aquatic ecosystem
without imposing severe ecological risks.
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INTRODUCTION
The presence of micro-plastics in aquatic
ecosystems impacts the structure, functions,
and aesthetic values of the aquatic ecosystem.
The late 1940s and early 1950s was a period
of significant plastic production driven by
technological advancements in petrochemical
industries. This led to a surge in production of
affordable and versatile plastics for various
applications such as aircraft parts, packaging,
construction, and more (Freinkel, 2011;
Parker, 2020). Chronological report revealed

that plastic production from fossil-based
sources skyrocketed from 2 million tonnes in
1950 to 438 million tonnes in 2017 (Geyer,
2020), with oil and natural gas constituting
about 99% of non-renewable hydrocarbon
plastic polymers (British Plastics Federation,
2019). In the 21st century, the use of plastic
products, including tyres, water bottles,
electronics, medical devices, and more, surged,
leading to the widespread presence of plastic
and plastic-related materials in the
environment (Figure 1) (Plastics Europe,
2008).



DOI: 10.56892/bima.v8i1B.649

Bima Journal of Science and Technology, Vol. 8(1B) Apr, 2024 ISSN: 2536-6041

386

Figure 1: Photomicrograph of plastic and plastic-related pollutants in the environment
Currently, approximately 369 million tons of
plastic waste are generated annually
worldwide, with about 11 million metric tons
finding their way to the ocean through wind
action, runoff, and ice melt (UNCTAD, 2020).
This is projected to triple by 2040 due to the
unprecedented global production of plastics
(UNCTAD, 2020).
The increasing environmental presence of
micro-plastics poses a serious threat to the
sustainability of aquatic ecosystems, food
security, and human health (Thompson et al.,
2009; Law, 2017).
Due to their durability, plastic materials often
degrade into smaller particles known as
"micro-plastics," which are widely distributed
across all habitats (Allen et al., 2022). It was
estimated that over 84 percent of drinking
water samples globally contain micro-plastic
particles (UNEA, 2018). Humans are
primarily exposed to micro-plastics through
the ingestion of contaminated food, water, and
airborne particles in both indoor and outdoor
environments (OECD, 2020). The impact of
micro-plastic pollution has garnered
significant attention across various human

discipline, prompting the United Nations
Environment Assembly to adopt a resolution
on plastics pollution in March 2022, urging
countries to promote material substitutes for
plastics through national policies and
multilateral developmental efforts to enhance
the Harmonized System (Walker, 2022).
Unfortunately, recent trends indicate an
increase in global plastic production, with
approximately 369 million tons of plastics
traded globally in 2020, valued at about $1.2
million (UNCTAD, 2020). This has strained
the waste management capacities of many
countries and states, underscoring the need to
identify eco-friendly alternatives to plastics.
Therefore, this paper seeks to examine the
impact of micro-plastics and their implications
for aquatic organisms and ecosystem
sustainability.

MATERIALS AND METHODS
For this review, we performed a thorough
search and examined peer-reviewed
publications without any restrictions on the
year of publication. By utilizing various
databases such as PubMed
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(www.ncbi.nlm.nih.gov/pubmed), Scopus
(www.scopus.com), Web of Science
(www.webofscience.com), ScienceDirect
(www.sciencedirect.com), Google Scholar
(www.googlescholar.com), and African
Journals Online (www.ajol.info). Additionally,
other relevant literature from local and online
newspapers, publications, inaugural lectures,
undergraduate and postgraduate theses, as
well as reports from organizations and
national environmental agencies that are not
published in traditional commercial channels
and therefore not indexed in electronic
databases were also consulted.
Classification of micro-plastics
Base on size plastics are classified as:
macroplastics (>200 mm), mesoplastics (5–20
mm), large micro-plastics (1–5 mm), small
micro-plastics (1μm –1000 μm), and
nanoplastics (<1μm) (Kershaw, 2015;
SCCWRP, 2021). Small and large micro-
plastics have different environmental

behaviors. However, scientific reports have
consistently grouped and small and large
micro-plastics (1μm–5mm) together. Micro-
plastics are typically classified as primary or
secondary micro-plastics (Hanvey et al.,
2017).
Primary micro-plastics are intentionally
manufactured for domestic, industrial
applications, and personal care purposes
(Gore and Kandasubramanian, 2018; Kumar
et al., 2020; Sun et al., 2020a). Secondary
micro-plastics are derived from deteriorated
and fragmented processes such as oxidation,
abrasion, photodegradation, and
environmental collision of secondary plastics,
resulting in <5 mm diameter micro-plastics
with relatively lightweight (Kalogerakis et al.,
2017). Other classifications of micro-plastics
are based on their physical properties such as
size, origin, polymer, and shape, highlighting
their ubiquitous presence in the environment
(Table 1) (He et al., 2020; Samandra et al.,
2022).

Table 1: Summary of the characteristics and properties of plastic
Properties Description References

Classification Plastics are a heterogeneous group of waste constituting significant volumes in
the environment with different descriptors. Currently, there is little or no
universal system for the classification of plastics. However, plastics are
classified based on size, form, polymer types, color, and origin. With little
emphasis on density

Wagner et al., 2014.

Size The following size classification systems are used to classify plastics viz:
megaplastics (> 1m), macroplastics (<1m), mesoplastics (<2.5 cm), micro-
plastics (<5 mm), and nanoplastics (<0.1 mm).

Lusher et al., 2017a;
Chatterjee and
Sharma, 2019.

Origin Primary and secondary plastics are the two major categories of micro-plastics.
Primary micro-plastics are formed from resin pellets (plastic raw materials).
Secondary micro-plastics result from the action of UV radiation, photo-
oxidation, and physical and mechanical abrasion breaking down bigger
polymers into smaller particles.

Lusher et al., 2017a).

Polymers The most common polymers found in the atmosphere are polypropylene
(PP), polyethylene terephthalate (PET), high- and low-density polyethylene
(HD / LD-PE), polystyrene (PS), and polyvinyl chloride (PVC). Also,
polyamide (nylon) fibers from fishing gear are popular.

GESAMP, 2015.

Shape Fragments (irregularly formed particles, crystals, fluff, powder, granules,
shavings, flakes, films), fibers (filaments, microfibers, loops, threads), beads
(grains, spherical microbeads, microspheres), foams (polystyrene, expanded
polystyrene), and pellet (pellets of resin, nutrients, pellets of pre-production)
are main plastic shapes.

Lusher et al., 2017b.
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Density Occurrence and availability of micro-plastics in the water column are directly
related to their density. Lower-density plastic such as polyethylene can easily
develop biofilm within a few weeks and drain on the ocean surface.

Lobelle and
Cunliffe,2011

(Adapted from He et al., 2020; Samandra et al., 2022)

Major Sources of micro-plastics and the
Role of Covid-19
The major sources of micro-plastics are
plastic particles in the aquatic environment
includes microbeads used in cosmetics
making (Anderson et al., 2016), ship-breaking
industry (Reddy et al., 2006), fertilizers
(Katsumi et al., 2021, 2022, 2023) and
indiscriminate disposal of waste and plastic
materials. The degradation of larger plastics,
such as plastic bags and containers also
increases the plastic load in the aquatic
environment (Gesamp 2016; Song et al.,
2017).
Other primary sources of micro-plastics
entering into the environment are cylindrical
beads used in sewage treatments, clothes
fibers, pharmaceutical products, facial scrubs,
and cosmetic products. Additionally, the
breakdown of large plastic materials like
rubber, chairs, and nylon bags, as well as the
wearing of tyres, contributes to significant
amount of micro-plastic load in the
environment (Napper and Thompson, 2016).
Activities such as transport, shipping,
construction, demolition, agriculture, and
hospital waste disposal also contribute to the
presence of micro-plastics in the aquatic
environment (Figure 2).
The emergence of COVID-19 significantly
increased the presence of micro-plastics in the
environment. This global health crisis posed
severe social, economic, and environmental
threats (Martín et al., 2022). To control the
spread of the virus, governments worldwide
implemented preventive measures including
social distancing, lockdowns, and the

widespread use of personal protective
equipment (PPE) such as gloves, masks, and
hand sanitizers. The increased use of plastic to
combat the pandemic led to a surge in micro-
plastic due to the heightened disposal of
single-use facemasks and gloves, coupled
with inefficient waste management practices
in many countries (Zambrano-Monserrate et
al., 2020).
However, the increased production of medical
waste and PPE to address the pandemic led to
a rise in plastic waste accumulation in the
environment (Abu Qdais et al., 2020;
Zambrano-Monserrate et al., 2020). The
environmental threats posed by plastic
pollution were overshadowed by the focus on
the public health consequences of the
pandemic. Meanwhile, this adverse effects
could have long-term ecological consequences.
By 2020, the improper disposal of face masks
alone resulted in an estimated 0.15–0.39
million tons of plastic pollution worldwide
(Chowdhury et al., 2021). Peng et al., (2021a)
estimated 8.4 ± 1.4 million tons of plastic
waste associated with the COVID-19
pandemic globally, with 12,000 tons being
micro-plastics. Reports of plastic pollution
from personal protective equipment have
surfaced in various parts of the world,
including Peru (De-la-Torre et al., 2021),
Kenya (Okuku et al., 2022), and Canada
(Prata et al., 2020). Consequently, plastic
pollution resulting from COVID-19 has led to
an increased micro-plastic load in the aquatic
ecosystem which significantly impacting both
health and aesthetic values of the aquatic
ecosystem.
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Figure 2: Sources of micro-plastics in the aquatic environment

Distribution of Micro-Plastics in Aquatic
Environments
When plastic debris enters the environment, it
breaks down, generating micro-plastics. These
micro-plastics are carried into larger water
bodies through streams, rivers, storm water
and wastewater discharges, littering and
disposal along shorelines, wind action, and
weathering events (U.S. EPA, 2016). The size,
weight, density and shape of plastics
determine how far micro-plastics travel in the
environment. Lightweight plastic products and
particles such as bags, films, clothing fibers,
pellets, and plastic bottles are transported at
greater distances by wind, storm water,
effluent discharges, and inputs from
freshwater systems, compared to more dense
and larger plastic items (U.S. EPA, 2016).
Effluents from wastewater discharges are
significant transport mechanisms for primary

and secondary micro-plastic particles. Dris et
al., (2016) reported an average of one
polyester, acrylic, or polyamide fiber per liter
of effluent from two Australian wastewater
treatment plants. Research is yet to be
conducted on airborne plastic fibers released
from residential and commercial clothes
dryers, which contribute a significant amount
of micro-plastic to the environment. The
transport and distribution of micro-plastics
(MP) in different environmental
compartments enhance their occurrence in
extreme regions of the world, such as high
mountain ranges, deep-sea, and the Polar
Regions (Kukkola et al., 2022).
Natural phenomena such as ocean currents
and ocean gyres play a significant role in
conveying micro-plastics to enclosed basins in
the aquatic ecosystem (Collignon et al., 2012).
The distribution of micro-plastics in rivers,
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estuaries, and open water areas mirrors the
patterns of sediment deposition (Sutton et al.,
2016; Wessel et al., 2016).
The spatial distribution and environmental
fate of micro-plastics in the aquatic
environment are strongly influenced by their
transport, dispersal, potential deposition, and
storage along river networks (de Carvalho et
al., 2021; Margenat et al., 2021). However, in
the hyporheic zone, flow conditions and river
discharge also directly impact micro-plastic
deposit, behaviour, residence time, and
distribution (Drummond et al., 2020).
Knowledge of the hydrological regime,
characteristic rate, and transport patterns of
micro-plastics in the respective river systems
is currently limited (Campanale et al., 2020).
The general model for existing large-scale
plastic transport assumes a downstream
convergence of particle fluxes along the river
network (Barbarossa et al., 2020).
The distribution of plastic and micro-plastics
in oceans and great lakes is also influenced by
extreme phenomena such as floods, tsunamis,
hurricanes, and tornadoes (Barnes et al., 2009).
In Japan in 2011, a
9.0 magnitude earthquake off the coast of a
highly urbanized region caused a tsunami that
transported an estimated 5 million tons of
debris, including plastics, into the marine
environment (NOAA, 2015b). Data obtained
about the world's oceans in 2012 indicated
that plastic debris is expected to be
transported through the North Pacific Current

and California Current before looping back
towards the Hawaiian Islands and eventually
accumulating in the North Pacific Gyre
(Bagulayan et al., 2012).
The movement and distribution of fishing nets
and floats, as well as other tsunami debris, has
been reported along the coast of Alaska,
British Columbia, Washington, Oregon, and
Hawaii (NOAA, 2013). In the tropics, extreme
rainfall and wind circulation facilitate the
transport and distribution of plastics and
micro-plastics from land to the aquatic
environment. Additionally, poor waste
management strategies, indiscriminate waste
disposal and lack of environmental awareness
contribute to the presence of substantial
amount of plastics and micro-plastics in the
aquatic environment.
The impact of Micro-Plastics on Important
Marine Life
Plastic pollution in aquatic ecosystems hurts
aquatic organisms. These organisms often
ingest micro-plastic particles and are exposed
to additives that leach into the environment.
While human exposure to micro-plastics is
inevitable, the associated health implications
are not well understood. micro-plastic
particles are primarily ingested by
ecologically vulnerable species in various
environments such as beaches, aquaculture,
estuaries, sea surfaces, water columns,
benthos, and deep waters (Figure 3). (Lusher
2015; GESAMP 2016; Amoatey and Baawain,
2019; Pereao et al., 2020; Taylor et al., 2016).
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Figure 3: Fraction of plastic ingestion by different types of aquatic organisms. Each bar indicates
the total number of different studies. Each study was based on the micro-plastics and the number
of individuals per group of organisms. Plastic types encountered include NS-Not specified; PU-
Polyurethane; CP-Cellophane; PT Polyether; AC-Acrylic; PA-Polyamide; PVC-
Polyvinylchloride; PES-Polyester; PP-Polypropylene; PS-Polystyrene; PEPolyethylene (adapted
from de Sá et al., 2018)

More than 220 animal species globally have
been reported to consume micro-plastic
particles (GESAMP, 2016; UNEP, 2016).
Understanding the ecological consequences of
micro-plastic interactions in different flora
and fauna is crucial. Interactions of micro-
plastic particles with environmental variables,
including pollutants and contamination, may
have adverse effects on long-lived organisms
at various stages of development (Ferreira et
al., 2016; Wang et al., 2020b).
Reports have shown the presence of micro-
plastics in marine mammals and sea birds,
which are relevant to the ecosystem and
humans. Many bird species, including those
consumed by humans (seabirds), have been
found to contain a significant number of
micro-plastics in their digestive tracts (Van
Franeker et al., 2011; Roman et al., 2019;
Basto et al., 2019). Additionally, ingestion of
micro-plastic particles has been reported in
marine mammals such as baleen whales,
Mesoplodon mirus (Lusher et al., 2015a),
beaked whales, Megaptera nevaeangliae
(Besseling et al., 2015a), and seal stomachs

Phoca vitulina (Bravo Rebolledo et al., 2013).
In marine animals, micro-plastics may be
ingested by feeding on aquaculture materials
or by consuming micro-plastic contaminated
prey (Fossi et al., 2016; Baini et al., 2017;
Lavers et al., 2019; Kuhn and van Franeker,
2020).
Exposure to micro-plastic particles has been
studied in bivalve species. Reports from the
Minch and Orkney Islands in the North Sea
using lobster revealed an increased quantity of
plastics in the heavily damaged Clyde Sea
area (Murray and Cowie, 2011; Welden and
Cowie, 2016a), followed by common shrimp
(Crangon crangon), and decapod crustacean
samples (Devriese et al., 2015). Blue Mussels
from wild and farm sources (Li et al., 2016;
Van Cauwenberghe and Janssen, 2014),
Pacific cup oysters from the coastal waters of
the Atlantic Ocean (van Cauwenberghe and
Janssen, 2014), Chinese mitten crab
(Eriocheir sinensis) from coastal waters of the
Baltic Sea (Wjcik-Fudalewska et al., 2016),
brown mussel (Perna perna) from the Santos
Estuary of Brazil (Santana et al., 2016), and
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Manila clams (Venerupis philippinarum) from
wild and farm sources (Davidson and Dudas,
2016) have all been reported to contain micro-
plastic particles in their gut, enabling the
transfer of chemical additives to the exposed
organisms. Similarly, high occurrences of
micro-plastics have been reported in the
gastrointestinal tracts of small bivalves in
Asian markets (Li et al., 2015).
Micro-plastic particles have been found in
both pelagic and benthic commercial fish in
various regions worldwide, including the
North Sea (Foekema et al., 2013; Rummel et
al., 2016b), the North-Eastern Atlantic (Neves
et al., 2015), the English Channel (Lusher et
al., 2013), the Baltic Sea (Rummel et al.,
2016b), the Indian Ocean (Robin et al., 2020),
the Indo-Pacific Ocean (Rochman et al., 2015;
Jabeen et al., 2016), the Adriatic Sea (Avio et
al., 2015b), and the Mediterranean Sea (Bellas
et al., 2016; Guven et al., 2017). In China,
fish purchased from markets in Shanghai have
been reported to contain micro-plastics from

Indonesian waters (Rochman et al., 2015;
Jabeen et al., 2016).
In Africa, micro-plastic particles have been
reported in the digestive systems of market-
purchased freshwater fish, including Nile
Tilapia (Oreochromis niloticus) and Nile
Perch (Lates niloticus) from Lake Victoria
(Tanzania). Recently, micro-plastic particles
have been discovered in the digestive tracts of
commercially valuable species of wild fish
larvae from the English Channel (Steer et al.,
2017). While it is evident that many
commercial fish consume micro-plastics,
information on the trophic transfer of micro-
plastics chemical additives to humans and
their toxicity is limited. This necessitate
further research on human consumption of
micro-plastics from contaminated food and
water.
Micro-plastics additives, Function/role and
toxicity
The toxicity of micro-plastics and their
additives on aquatic organisms is detailed in
(Table 2).

Table 2:Micro-plastic additives, Functions in micro-plastics, and toxic response in organisms
Additives Function/Role Toxic response Reference
UV Stabilizers/absorbers Inhibits

photodegradation
Mutagenic, and
estrogenic effects

Hammer et al., 2012

Surfactants Change of surface
properties

Destroy mucus layer,
damage gills

Rani et al., 2015

Flame retardants Weaken
flammability

Endocrine disruptors Fred-Ahmadu et al., 2020

Pigments Color Duplication of food
resulting in

gut blockage

Hammer et al., 2012

Antioxidants Delay oxidation
prevents aging

Estrogenic effects Hermabessiere et al., 2017

Plasticizers Make material pliable Renal, reproductive,
cardio/neuro-toxicity

Rowdhwal and Chen, 2018

(Adapted from Merlin and Balasubramanian, 2021).

Research on the toxicity of micro-plastics are
primarily conducted in laboratory settings.
These does not represent real environmental
exposure scenarios. Plastic additives can lead

to oxidative stress, gastrointestinal obstruction,
translocation, and trophic transfer in the
aquatic food web (Gall and Thompson, 2015).
The endocrine-disrupting effects of
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Bisphenol-A and phthalates are frequently
studied, while the health impacts of other
plastic additives/mixtures are less understood.
A 24-hour batched and 3-day diffusion test
with water fleas (Daphnia) demonstrated the
toxicity of chemicals desorbed from 32 plastic
products (Lithner et al., 2009). The study
found that Daphnia was most affected by
silver from a compact recordable disc,
followed by leachate from plasticized PVC
products and polyurethane items. EC50 values
of 5-80 g for 48-hour toxicity testing were
recorded for nine tested plastic products,
while leachate from other plastic products did
not show toxicity in Daphnia. This variation
may be due to exposure duration, plastic-type,
and the specific organism.
Browne et al. (2013) reported that
Nonylphenol, phenanthrene, and PBDE-47
additives of PVC can transfer to lugworm
tissues after micro-plastic ingestion. Toxic
responses due to the ingestion of these
compounds include altered feeding,
immunotoxicity, and reduced antioxidant
activity. Higher concentrations of polystyrene
micro-plastics in sediment can result in weight
loss in sediment-dwelling organisms in the
aquatic ecosystem, such as Amphidinium
marina (Besseling et al., 2013).
In a 7-day study, Mytilus gallaprovincialis
were fed polyethylene and polystyrene micro-
plastics with and without adsorbed pyrene.
The study found increased pyrene
accumulation in the mussels' gills and
digestive glands at concentrations higher than
in the contaminated micro-plastics (Avio et al.,
2015). The effects reported in this study were
not influenced by the type of polymer or

contamination except for genotoxicity.
Increased frequency of micronuclei was
recorded after exposure to pyrene-
contaminated polystyrene. Pyrene-
contaminated plastics could pose a potential
risk to the mussels with long-term, chronic
exposure (Avio et al., 2015).
Paul-Pont et al. (2016) showed that micro-
plastics amended with fluoranthene did not
change fluoranthene bioaccumulation in
marine mussels, but continuous exposure to
micro-plastics led to increased hemocyte
mortality, oxidative stress, and poor energetic
utilization in mussels, complex tissue
alterations, and low antioxidant. Biochemical,
cellular biomarkers, and behavioural analysis
of micro-plastic ingestion in fish revealed
altered immunological responses, lysosomal
membrane stability, peroxisomal proliferation,
antioxidant response, neurotoxic effects,
genotoxicity, tissue damage, and behavioral
changes. Others include slow swimming rate,
DNA damage, intestinal damage, disruptive
digestion, and inflammation in aquatic
organisms (Figure 4) (Bhuyan, 2022).
The accumulative effect and toxicological
consequences of PCBs and PBDEs in fish can
be transferred via trophic interactions between
fish, higher predators, and man (Rochman et
al., 2013a). PBDEs and PCBs
bioaccumulation in fish can induce liver
toxicity such as glycogen depletion, fatty
vacuolation, single cell necrosis, down-
regulation of chorionic in male fish, down-
regulation of vitellogenin, choriogenin, and
estrogen receptor in female fish which affect
population growth, survival, and reproduction
(Rochman et al., 2013a; Ziccardi et al., 2016).
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Micro-plastics in
Aquatic environment

Ingestion by aquatic
organisms

Toxic response

Tissue damage
Intestinal damage

Impaired digestion
Inflammation

DNA damage
Oxidative stress
Apoptosis/ferroptosis
Necrosis
Altered gene expression

Neurotoxicity

Reproductive organ damage

Increase mortality
Figure 4: Summary of the possible toxic effect of exposure to micro-plastics in aquatic

organisms.

Mitigation Approach to Cope with Micro-
Plastic Pollution
Mitigation strategies to reduce plastic and
micro-plastic pollution require comprehensive
interventions across various levels of
government to establish effective waste
management programs (Raubenheimer and
Urho, 2020). Government policies and
regulations should prioritize maximum
enforcement, compliance, collection, sorting,
treatment, and prevention of plastic pollution
in the environment. Process efficiency,
transparency, innovation, and environmental
protection should be fundamental
considerations (Basel Convention, 2013).
Understanding the sources and pathways
through which plastics and micro-plastics
enter the aquatic environment necessitates
proper monitoring plans and techniques. This

will provide valuable knowledge for the
improved design of national policies through
an evidence-based approach, as well as for
evaluating the effectiveness of existing policy
and regulatory frameworks (Basel Convention,
2013).
Waste management plans focused on
prevention, minimization, reuse, recycling,
and recovery, including energy recovery, and
final disposal should be integral components
of national policies to address ongoing
plastics and micro-plastic pollution (CIEL
2019a, and b). Additional policies aimed at
implementing waste management should work
to reduce pollution from chemical additives
used in the production of plastic materials.
Designing eco-friendly and biodegradable
plastic products is a vital aspect of effective
plastic waste management (Basel Convention,
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2019b). Products intended for reuse, repair,
and recycling will aid in mitigating plastic
pollution (OECD, 2018). Encouraging the
collection and diversion of plastic waste from
incineration or landfills is essential (EU,
2009).
Harmful plastic products, derived from
materials with severe health and
environmental consequences, should be

removed from domestic markets
(Raubenheimer and Urho, 2020). Voluntary
phase-outs with industry or outright bans are
crucial. Alternatives to microbeads in
cosmetics, plastic bags, and other problematic
single-use plastic products demand significant
attention from the general public and
government (Ocean Conservancy, 2019)
(Figure 5).

MITIGATION
MEASURE FOR

PLASTIC
POLLUTION

IMPROVE
WASTE

MANAGEMENT
AND TAXATION
ON PLASTICS

ENHANCE LITER
COLLECTION
AND SORTING

ENCOURAGE
REUSABLE, ECO-

FRIENDLY
AND

DEGRADABLE
SUBSTITUTE

REDUCED LAND,
AIR, AND
AQUATIC

ECOSYSTEM
DISPOSAL

DEVELOP
MECHANISM FOR

ENERGY
RECOVER
FROM

PLASTIC WASTE

Figure 5: Schematic representation of the summary of the approach for mitigating micro-plastics
Reduction in per capita consumption through
product taxes on plastics should be commonly
applied to producers of plastic and micro-
plastic products, and to consumers at the point
of sale. The resulting increase in product price
can discourage plastic purchases, thereby
reducing consumption (Nielsen et al., 2019;
Thomas et al., 2019). Ecological taxes on
products that do not adhere to eco-friendly
design principles and the relatively lower tax
rate for products that are more manageable at
end-of-life would encourage producers to

redesign products that meet the lower tax
criteria to save costs (OECD, 2019b).
Further Research
Noxious chemicals components in plastics and
micro-plastic debris poses serious health and
environmental risks. Processes such as
chemical exchange kinetics under conditions
of weathering, degradation, and biofilm
formation are not well understood (Koelmans
et al., 2015). However, there is a research
need to expand current knowledge regarding
the impact of chemical additives in plastics
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under different environmental conditions after
ingestion (U.S. EPA 2016). Evidence from
laboratory experiments and modelling
techniques had confirms the transfer of toxic
chemicals from plastic and micro-plastics to
organisms. However, environmental
occurrence and biota-accumulation of similar
classes of chemical compounds from other
sources make it difficult to predict such
transfer.
Little is known about nanoplastics when
compared to other plastic sizes and classes.
This is due to the lack of detection techniques
for nanoplastics analysis. However, due to the
relatively low surface area of nanoplastics,
research to investigate the higher
concentrations per unit weight than micro-
plastics is needed in this area. It is also
important to note that nanoplastics may also
have additional impacts and potentially long
retention times if these particles can cross
tissue and cellular membranes, thereby
increasing the risk of contamination in
exposed organisms (Koelmans et al., 2015).
Systematic mechanisms derived from
scientific studies and research can be used to
address the issue of plastic pollution.
Currently, there is a knowledge gap in some
aspects of plastic pollution such as sources,
transport, fate, impacts, and solutions to
plastic in the environment. Technical and
scientific evidence to adequately understand
aspects of plastic pollution would provide a
clear snapshot and guidance to stakeholders
(e.g., local community, policymakers,
politicians, manufacturers, and consumers) to
implement behavioural, technological, and
policy solutions to properly address the issue
of micro-plastics in the aquatic ecosystem
(IUCN, 2020).

CONCLUSION
Microplastics are tiny plastic particles <5mm
present in nearly all environmental settings,

significantly impacting the aquatic ecosystem.
Aquatic organisms ingest these particles due
to their small size, shape, and color, leading to
their detection in the tissues, brain, and
circulatory systems of these organisms. The
potential risk to aquatic life depends on the
extent of ingestion, the type of microplastics,
and their chemical composition. Chemicals
used in plastic production vary among
industries and types of plastics. The
accumulation of plastics and microplastics in
aquatic environments diminishes the
recreational, aesthetic, and heritage value of
the environment. To address microplastic
pollution, collaborative efforts from the
general public, socio-economic sectors,
tourism, and industries are crucial.
Remediation of contaminated environments
using eco-friendly methods is essential to
mitigate the impact of microplastics on the
aquatic ecosystem and its organisms.
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