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ABSTRACT

The presence of positive autocorrelation in a controlled process is a major problem especially
when traditional quality control charts are to be used in monitoring the process. This is because
the two major assumptions in using the traditional control charts are that the process data are
independently and normally distributed. In this work, a novel method of removing
autocorrelation from data exhibiting Geometric Brownian Motion (GBM) is proposed. This
GBM is autoregressive of order AR(1). A chemical process dataset and furnace temperature
dataset were transformed to Arithmetic Return model (ARM). The fitted ARM for both datasets
were fitted and residuals obtained from both datasets were subjected to DW test for the presence
of positive autocorrelation. Initial Durbin Watson’s (DW) test result for both processes before the
transformation were 0.0538 and 1.5045 respectively which indicated the presence of positive
autocorrelation. Final DW test results from the ARM transformation were 2.0047 and 1.7848
respectively indicating that positive autocorrelation was removed from both datasets. The
proposed method is simple to understand and easy to use provided that the process data is GBM
and autocorrelation is the major concern.
Keywords: Autocorrelation, Geometric Brownian Motion (GBM), Autoregressive of order 1
AR(1), Arithmetic Return Model (ARM), Logarithmic Return Model (LRM), Durbin Watson
(DW), Statistical Process Control.

INTRODUCTION
Statistical quality control charts have been
designed to work with the two basic
assumptions that the process data are
normally distributed and that they should be
independent. In essence, a process outcome
data should not determine the outcome of the
next successive process data and so on. This
is established in the literature but in real life,
some process that are being controlled are
autocorrelated in nature. Most of such
processes are time dependent.
Autocorrelation is a representation of the
degree of similarity mathematically, between
a given time series data and a lagged version

of itself over successive time intervals (Tim,
2023). It is conceptually similar to the
correlation between two different time series,
but autocorrelation uses the same time series
twice. Once in its original form and lagged in
one or more time periods.
A process is only said to be in a state of
statistical control if it is operating in the
presence of natural causes of variation and is
free from assignable causes (Dike et al.,
2018). When autocorrelation is present in the
process, unnecessary out of control signals
may be triggered which makes a problem that
has to be treated with urgency before
monitoring of the process.
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In the continuous industries such as the
chemical industry, most process data are
autocorrelated. In other circumstances, such
as when a process follows an adaptive model
or when the process mean is a deterministic
function, for example, a harmonic function or
a linear or nonlinear trend, the data will also
be autocorrelated (Nien, 1999).
Douglas (2013) stated that the most important
of the assumptions made concerning control
charts is that of independence of the
observations, for conventional control charts
do not work well if the quality characteristic
exhibits even low levels of correlation over
time. Specifically, these control charts will
give misleading results in the form of too
many false alarms if the data are positively
correlated. To avoid such unnecessary
disturbances, the process data needs to be
cleared of autocorrelation before monitoring.
In discrete as well as in continuous production
processes, data often show some
autocorrelation, or serial dependence. Several
monitoring tools are found in the literature
that deals with the case of multiple process
variables, but a few of them deal with the case
of autocorrelated data (Hussam et al., 2021).
GEOMETRIC BROWNIAN MOTION

(GBM)
A process X is said to follow a Geometric
Brownian Motion, = ��: � ∈ 0, ∞ , with a
constant volatility � and constant drift � if it
satisfies the stochastic differential equation,

��� = ����� + �����

where �� is a wiener process as given by
Rathnayaka et al. (2014).
The GBM is a continuous time stochastic
process in which the log of the random
varying quantity follows a Brownian process
(also called Wiener’s process). �0 = 1 , so,
the process starts at 1, but this can easily be

changed. GBM is an example of a stochastic
process which is used to model processes that
can never take on negative values, such as the
value of stocks, currency exchange rates and
other financial instruments. This GBM is a
mathematical model used to describe the
random fluctuations in the price of financial
assets over time (Kyle, 2022).
From literatures, the two major ways to
remove autocorrelation from the process is by
fitting a time series model to the process data,
thereby obtaining independent residuals, and
the residuals are
now used as the process control data. Classica
l control charts for independent variables can
be applied to residual processes, provided that
the residuals are independent Erna et al.
(2018). Or, the traditional control charts limits
are simply adjusted to account for
autocorrelation in the process. Thirdly, a less
popular approach is the model-free charts as
stated by (Aytaç, 2020). These are control
charts for autocorrelation that do not apply
any modeling techniques to the data. They can
be considered as a separate category of charts
where no residuals are used and no
modifications are done to existing charts.
The first method involved the use of some
sophisticated statistical skills to build a
satisfactory model which led to the work of
Siaw et al. (2013) where a new method of
fitting a time series model to the process with
ease was proposed by using Logarithmic
Return transformation. Djauhari et al. (2014)
established that the positive time series data
are governed by Geometric Brownian Motion
law, and this GBM is an autoregressive
process of order 1 AR(1). The derivations are
found in Siaw et al. (2022).
This study is an exploration of the work done
by Siaw et al. (2022), where Logarithmic
return transformation was done on the AR(1)
process to obtain i.i.n.d residuals. According
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to literatures, when the rate of return is not
large, logarithmic return is approximately
equal to the arithmetic return. This work is
intended by using arithmetic return
transformation instead of the logarithmic
return on a GBM process to see the response.

The Proposed Arithmetic Return Model
(ARM)
The proposed method is obtained by
converting the AR (1) process to Arithmetic
Return Model, this because the Geometric
Brownian Motion (GBM) is an AR(1) process.
To consider the Arithmetic Return Model for
dependent data, transformation of Arithmetic
Return (AR) is needed and shown as

�� = ��−��−1
��−1

(1)
Consider the AR (1) process which can be written as;
��� = � + ����−1 + ℇ� (2)
where C is the intercept, � the slope in AR(1) model and the error terms ℇ� are i.i.n.d. with zero
mean and constant variance.
Then the Arithmetic Return transformation of Equation (2) is given as
�� −��−1

��−1
= � + � ��−1−��−2

��−2
+ ℇ� (3)

thus,
��

��−1
− 1 = � + � ��−1

��−2
− 1 + ℇ�

��
��−1

= � + 1 + � ��−1
��−2

− � + ℇ�

��
��−1

= � + 1 − � + � ��−1
��−2

+ ℇ�

��
��−1

= ℬ + � ��−1
��−2

+ ℇ�

(4)

where ℬ = [� + 1 − �] , and � are the regression parameters, ℬ is the intercept and � is the
slope in the model.
Equation (4) is the Arithmetic Return model (ARM).
The residuals are obtained using Equation (5)
ℇ�� = �� − ��� (5)
The Durbin Watsons test for autocorrelation
The Durbin-Watson (DW) test is a statistical test used to detect autocorrelation in the residuals of
a linear regression model.
The null and alternative hypotheses are;
H0 : There is no positive autocorrelation among the residuals.
H1 : The residuals are autocorrelated
Test statistic:

� = �=2
� (�� − ��−1 )2�

�=1
� ��2�

(6)

where T: The total number of observations
et: The tth residual from the regression model
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Decision rule for the Durbin Watsons (DW)
test for the presence of positive
autocorrelation
At significance level α (alpha), the test
statistic DW is compared at lower and upper
critical values.
If DW > dU, there is no statistical evidence
that positive autocorrelation exists in the data
If DW < dL, there is statistical evidence that
positive autocorrelation exists in the data.

If DW is between the two bounds, the test is
inconclusive (CFI, 2024).

RESULTS
Data used for the analysis were obtained from
simulations of a chemical process and a real-
life process data used by (Salleh et al., 2018).
All analysis were carried out using Microsoft
Excel 2016.

Results of Analysis from the Chemical Process Data
Table 1: Summary of results from the chemical process data
Statistic Chemical process data ARM LRM
Slope 0.025249611 0.072793689 -0.00495605
Intercept 0.983811403 -0.00382924 -0.16939806
R squared 0.99977547 1.46633E-05 0.028703173
DW 0.053810486 2.003625015 2.338180758

��
��−1

=− 0.00382924 + 0.072793689 ��−1
��−2

(7)

Equation (7 ) is the fitted ARM for the
chemical process data. Estimated values for
the regression parameters ℬ and � are
0.072793689 and −0.00382924
respectively. From the Durbin Watson’s table
at 5% significance level, n = 200, k = 1, dL =
1.758 and dU = 1.779. Initial DW test was
carried on the residuals of the process giving

the value 0.053810486 which is less than dL
indicating that positive autocorrelation exists
in the process. ARM was fitted to the process
dataset, and DW test was carried on the
residuals obtained from the ARM which gave
the value 2.003625015. The DW
2.003625015 > 1.779 which indicates that
positive autocorrelation was removed from
the chemical process data.

Results of Analysis from the Furnace Temperature Data
Table 2: Summary of results from the furnace temperature data

Statistic Furnace data ARM LRM
Slope 0.723881222 0.145460909 0.14545076
Intercept 435.9849614 −4.8315 x 10−6 −4.8926 x 10−6

R squared 0.500212167 0.021732047 0.021729192
Correlation 0.70725679 0.147417933 0.14740825
DW 1.504463924 1.784796405 2.004645495

��
��−1

=− 4.8315 x 10−6 + 0.145460909 ��−1
��−2

(8)

Equation (8) is the fitted ARM for the furnace
temperature data. Regression estimated values
for ℬ and � are −4.8315 x 10−6 and

0.145460909 respectively. From the Durbin
Watson’s table at 5% significance level, n =
78, k = 1 the lower and upper values are dL =
1.611 and dU = 1.662. Initial DW test value
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obtained from the residuals of the process
data is 1.504463924 which is less than the dL
indication that positive autocorrelation exists
in the process data. ARM was fitted to the
process dataset, and DW test was carried on
the residuals obtained from the ARM which
gave the value 1.784796405. The DW
1.784796405 > 1.662 which indicates that
positive autocorrelation was removed from
the chemical process data.

DISCUSSION
The initial DW test results from both datasets
were 0.053810486 and 1.504463924 which
indicated the presence of positive
autocorrelation because both results fell
below the DW Lower bounds.
After the ARM transformation of both
datasets, DW test was carried again on the
residuals that were obtained. Autocorrelation-
free results of 2.003625015 and 1.784796405
which were confirmed to be above the DW
upper bounds were obtained.
From results of the analysis, ARM proved
effective in removing the effect of
autocorrelation from both datasets used which
were GBM.

CONCLUSION
In conclusion, the ARM has proven to be
more effective in removing autocorrelation
from both process data which are Geometric
Brownian Motion with much simplicity in
understanding and implementation than the
LRM which has to go through the log return
transformation of the process data. Further
research is currently ongoing to find out other
strengths of the ARM in statistical process
control for autocorrelated data which is GBM
driven.
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