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ABSTRACT
In this study, the effectiveness of Minisat(Minimal SAT solver) and Greedy Randomized
Adaptive Search (GSAT, Simulated Annealing option) solvers is compared on a number of
SATLIB Benchmark problems. Gaining understanding of their effectiveness in resolving SAT
cases was the main objective, with an emphasis on application and randomly generated instances.
The experimentation showed that Minisat performed better than GSAT in every case, proving to
have better solution abilities. A 2.40GHz Core i5 CPU, fitted in a Dell Latitude E7470 laptop,
was used for the experiments. All things considered, this research helps to compare the strengths
and weaknesses of the GSAT and Minisat solvers and provides insightful information about SAT
problem-solving techniques.
Keywords: Boolean Satisfiability, SAT solver, Stochastic Local Search, NP-Complete,
Algorithms.

INTRODUCTION
The difficulty of determining whether a
propositional logic formula may ever evaluate
to true is known as Boolean Satisfiability
(SAT). In computer science, this problem has
long enjoyed a unique standing. Theoretically
speaking, it was the first issue to be declared
NP-complete. It is well known that NP-
complete problems are notoriously difficult to
solve; in the worst scenario, the computing
time of any known solution for a problem in
this class grows exponentially with the
problem instance size (Malik &
Weissenbacher, 2012). Satisfiability solvers,
despite having the worst-case exponential run
time of all known algorithms, are becoming
more and more popular as general-purpose
tools in a variety of fields, including planning,
scheduling, software and hardware
verification, automated test pattern generation,
and even difficult algebraic problems (Gomes
et al, 2008; Janota et al, 2024).

Practically speaking, SAT shows up in a
number of significant application areas,
including artificial intelligence applications
and the design and verification of hardware
and software systems. Consequently, there is a
great incentive to create SAT solvers that are
practically helpful. Nonetheless, the NP-
completeness raises doubts because it seems
improbable that we will be able to scale the
answers to many real-world examples. While
there have been ongoing efforts for nearly 63
years to create SAT solvers that are practically
useful, for the greatest period of time they
were primarily academic endeavors with little
prospect of being put to use. Thankfully, a
number of relatively recent advances in
research have made it possible for us to
address cases with millions of variables and
constraints. As a result, SAT solvers may now
be successfully used in real-world scenarios,
such as software system analysis and
verification. (Malik & Weissenbacher, 2012)
Further evidence that typical-case complexity
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and the complexity of real-world instances of
NP-complete problems are much more
amenable to efficient general purpose solution
techniques than worst-case complexity results
might imply comes from the success of
current SAT solvers on numerous real-world
SAT instances with millions of variables
(Gomes et al, 2008). The SAT problem has
been extensively researched globally due to its
practical and theoretical applicability.
Numerous algorithms are suggested as a result
of its popularity. The widely studied SAT
solvers are complete and incomplete.
Complete SAT solver is the algorithm that
checks the satisfiability of the SAT problem. It
can tell whether a problem is satisfiable or not.
They use DPLL (Davis-Putnam-Logemann
Loveland) SAT algorithm with heuristic
improvements in selection of variable to
branch on, lazy data structures, restart policies
and many more techniques. Incomplete SAT
solvers employ local search algorithms to
randomly search the assignment space using
various heuristics such as Simulated
Annealing (as in GSAT), Tabu search (as in
TSAT), and so forth.
GSAT is one of the original and most popular
Stochastic Local Search (SLS also known as
incomplete solver) solvers for the SAT.
(Hossen, & Polash, 2019). Minisat is a
modern Conflict Driven Clause Learning
(CDCLalso known as complete solver) SAT
solver.
Even though MiniSat and GSAT have both
shown a great deal of success in answering
SAT instances, the kind of problem cases they
are used to solve can greatly affect their
performance characteristics. Prior work has
demonstrated that various SAT instance kinds,
including handcrafted, application-specific,
and random, can provide unique difficulties
for SAT solvers, requiring a detailed
comprehension of solver behavior in a variety
of issue domains.

In this paper, we undertake a comparative
analysis of the performance of MiniSat and
GSAT solvers on three categories of SAT
instances: random, application-specific, and
handcrafted. Our objective is to elucidate the
strengths and weaknesses of each solver
paradigm under varying problem conditions,
shedding light on their relative efficacy in
different problem-solving contexts. The aim
of this research is to provide an insight into
the performance variation of Minisat and
GSAT solvers on a number of SAT instances
from different categories drawn from SATLIB
and DIMACS benchmarks. Our objectives are
to empirically prove the general belief that
complete SAT solvers perform better on
application problems, while incomplete SAT
solvers excel on handcrafted and random SAT
instances. This work is motivated by the need
to understand the strengths and weaknesses of
both complete and incomplete solvers. This
will serve as a guide to developing a hybrid
solver that will harness the potentials of the
two SAT solvers and reduce their
shortcomings.
The remaining parts of the paper is organized
as follows: Section 2 briefly explain the major
concepts of Boolean satisfiability, categories
of sat solvers, Minisat and GSAT solvers.
Section 3 present a review of some related
work. Section 4 described the materials and
method used in the experimental setup.
Section 5 presents and discussed the
experimental results obtained. The last section
concludes the paper.

BOOLEAN SATISFIABILITY
Boolean Satisfiability is attracting more
interest because nowadays more problems are
being solved faster by SAT solvers than other
means. This breakthrough was made possible
due to the newly developed search techniques.
Thus, many problems originating in one of
these fields typically have multiple
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translations to Satisfiability and there exist
many mathematical tools available to the SAT
solver to assist in solving them with improved
performance. Boolean satisfiability problem is
the problem of determining whether there is
an assignment that satisfies a given
propositional formula. A SAT solver is a
program that determines whether or not a
given formula is satisfiable. A propositional or
Boolean formula is a logic expression defined
over variables (or literals) that take value in
the set {TRUE, FALSE}. (Biere, et al, 2009;
Vizel, Weissenbacher, & Malik, 2015)
Stochastic Local Search (Incomplete
algorithms)
The effectiveness of local search algorithms is
what makes them so popular; on a wide range
of problems, they can outperform fully
systematic search techniques like
backtracking and backjumping. The first type
of SAT instance solving algorithms are called
stochastic local search (SLS) algorithms; they
can be solved quickly and are not complete.
Incomplete solutions algorithms SAT makes
no promises regarding when it will report a
satisfiable assignment or indicate that the
provided formula is not satisfiable (Examples
of these algorithms include WalkSAT (Selman
et al. 1994; Ginsberg & McAllester, 1994),
Hill Climbing, Genetic Algorithms, Simulated
Annealing and so on. (Larrosa, Lynce &
Marques-Silva, 2010).
Complete Algorithms
The satisfiability problem is solved using a
second class of methods known as the full
algorithm, in which the SAT solver is built on
contemporary enhancements or modifications
of a Davis-Putnam–Logemann–Loveland
(DPLL) algorithm. To locate the satisfying
assignments for the variable in the search
space, the DPLL SAT solver essentially uses
the backtracking search approach (Bordeaux,
Hamadi & Zhang, 2006). The search method,

sometimes known as the "DPLL" or "DLL"
algorithm, was first described in works from
the 1960s. According to Marić and Janičić
(2010), the DPLL method is sound and
complete, which implies that it will only find
the answer in the event that the formula is
satisfiable.
The satisfiability problem is solved using a
second class of methods known as the full
algorithm, in which the SAT solver is built on
contemporary enhancements or modifications
of a Davis-Putnam–Logemann–Loveland
(DPLL) algorithm. The majority of SAT
solvers available now come in two flavors:
look-ahead (Giunchiglia et al. 2003) and
conflict-driven (Formisano & Vella 2014). By
incorporating efficient features for managing
SAT instances in electronic design automation
(EDA) tools like conflict analysis, clause
learning, non-chronological backtracking
(back jumping), "two-watched-literals" unit
propagation, adaptive branching, and random
restarts, conflict-driven solvers extended the
DPLL search routine. Look-ahead solutions
are superior to conflict-driven solvers in
challenging and complex cases, while
conflict-driven solvers perform better in large
instances. Look-ahead solvers enable
reductions and heuristics.
The benefit of the whole procedure is that it
can demonstrate that the formula is
unsatisfiable or guarantee the solution of the
associated SAT issue. Regretfully, the overall
algorithm's efficiency is incredibly low.
The worst-case time complexity is exponential,
despite the typical time complexity being
polynomial. The entire technique actually
consists of a depth-first search of the whole
solution space; but, because the search space
is so big, the computer might not be able to
return the results in a reasonable amount of
time. The computation time is intolerable due
to the combinatorial explosion issue. (Gong &
Zhou, 2017)
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GSAT Solver
GSAT is the foundation of WSAT, TSAT, and
so forth. Graph coloring, scheduling, binary
CSPs, SAT, and other classes of constraint
satisfaction issues have all been effectively
solved using GSAT. GSAT also pave the way
for research into dynamic local search
algorithms for SAT and MAXSAT problems
by using Initial weights to direct local search
(Ishtaiwi & Abu Al-Haija, 2021). Among the
many significant factors contributing to the
great interest in Stochastic Local Search (SLS)
algorithms is the advent of the GSAT
algorithm in 1992 (Selman & Kautz, 1993).
GSAT was shown to perform well on
propositional encoding of N-queens problem,

graph coloring problem and Boolean
induction problem. As a result, since then, a
lot of scholars have focused on researching
and looking into ways to create SLS
algorithms that are more reliable and effective.
As a result, SLS emerged as a primary
approach for managing and resolving real-
world issues (Ishtaiwi & Abu Al-Haija, 2021).
In order to solve a SAT-based problem, the
GSAT algorithm deterministically selects a
variable with the highest score iteratively and
modifies (flips) its value (Steinruecken, 2007).
Consequently, the GSAT method either finds a
solution or reaches a point where it is unable
to identify any additional variables that would
lower the cost of the partial solution as it is
(Ishtaiwi &Abu Al-Haija, 2021).

Procedure GSAT (SATproblem P, MAX TRIES, MAX FLIPS)
for i=1 to MAX TRIES
let A be a random initial assignment
for j=1 to MAX FLIPS if A satisfies P, return true
else let F be the set of variable-value pairs that, when flipped to, give a maximum increase
in the number of satisfied constraints;
pick one f ɛ F and let new A be current Awith f flipped
end

end
return false
end (Kask & Dechter, 1995)

Minisat Solver
Modern SAT solvers like the Minisat solver
are renowned for their ability to solve Boolean
Satisfiability Problems (SAT) quickly and
effectively. It utilizes a conflict-driven clause
learning (CDCL) algorithm to effectively
explore the solution space by fusing potent
conflict analysis approaches with effective
search strategies. According to Sakallah (2011)
Minisat is one of the best implementation of
conflict-driven clause learning. It has history
of winning SAT competitions, is open-source,
and is quite easy to modify.

Related Work
Gent and Walsh (1993) concentrated on
evaluating the performance of GSAT on two
distinct classes: of SAT instances random
structured problems and random uniform
problems without any structure. It has been
demonstrated that certain structured issues are
very easy for the Davis-Putnam technique but
very difficult for the GSAT. These issues are
so challenging that not even heuristics like
clause weighting, which were initially
intended to aid in escaping local minimums
brought on by the unique structure of the
problem, appear to be very helpful. The
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presence of closely linked variable clusters
that are further related loosely by additional
global restrictions is a defining trait of these
challenges. (Niewiadomski, Switalski,
Sidoruk & Penczek, 2019) compared the
performance of 8 modern SAT solvers on
different hard problems .
Similarly, Hoos and Stutzle (2000) performed
a detailed comparative analysis of the GSAT
and WalkSAT solvers using benchmark sets
that which contains instances from
randomized distributions. Their empirical
analysis addresses among other issues, how
the performance of different solvers compares
across a range of problem instances. Dutertre
(2020) evaluated the performance of 16 state-
of-the-art SAT solvers on a large number of
CNF problems drawn from SATLIB
repository. They evaluated the solvers based
on their performance on the number of
instances and total execution time. Mu (2015)
investigated the empirical scaling of
incomplete (WalkSAT/SKL, BalancedZ and
ProbSAT) and complete SAT solvers
(kncfs,march_hi and march_br). Sakallah
(2011) assessed the effectiveness of seven
distinct Minisat 2.2.0 settings using a set of
1000 CNF instances selected from twelve
distinct application areas. Sundermann et al
(2023) investigated the empirical performance
of 21 publicly and available #SAT solvers on
130 feature models from 15 subject system.

MATERIALSAND METHODS
The two SAT solvers Minisat 2.2.0 and GSAT
version 35 (written in C++) were downloaded
and compiled on a Dell Latitude E7470 laptop.
The system has RAM of size 16GB and runs
Ubuntu 22.04.3 LTS operating system. The
SATLIB benchmark suite which comprise of
diverse set of benchmarks that come from
random, handcrafted and application instances
is selected for evaluation of the GSAT and
Minisat solvers. The Minisat Solver run for

900s where if no solution is found it is aborted.
On the GSAT side, the version we used have
Simulated annealing option. All instance were
run with the Simulated Annealing option. The
parameters used for the Simulated Annealing
option are 300 steps for a temperature of 200
to 20 by factor of 0.8. number of iterations is
set to 20 and number of flips was set equal to
the number of variables in the instance. After
each run a problem instance should have a
status; satisfiable, unsatisfiable if a model is
obtained or it has been proved unsatisfiable
respectively. A status of indeterminate is
recorded for Minisat solver if 900s set has
elapsed while for GSAT if the number of tries
has elapsed without obtaining a model.
Since the two solvers use two different
approaches, it is not possible to compare them
apple for apple. Hence the metrics used for the
comparison are run time and number of solved
instances. Each solver is run three times and
the average execution time and the status of
the instance is recorded.

RESULTSAND DISCUSSION
This section compares the effectiveness of the
applied SAT-solvers and discusses the
experimental outcomes.
Table 1 shows the number of instances solved
by Minisat solver. The result shows that
Minisat performed well on all instances
except f and g where it aborted on 3 instances.
Table 2 shows the number of instances solved
by the GSAT solver. The result shows that the
solver aborted on most instances. It succeeded
is solving a number of instances in aim,
Dubois, ii and jnh categories. Most of the
categories where GSAT failed are really
instances that are not satisfiable and GSAT
can only find a solution if one exist but cannot
prove unsatisfiability. This is the reason why
they were classified as unsolved.
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Table 1: Number of Instances solved by
Minisat Solver

Instance
Family

No. of
instances

Solved Aborted

aim50-200 72 72 0
bf 4 4 0
dubois 13 13 0
f 3 0 3
g 4 1 3
hanoi 2 2 0
ii 40 40 0
jnh 50 50 0
logistics 4 4 0
par 30 30 0
hole 5 5 0
ssa 8 8 0

Table 2: Number of instances solved by
GSAT solver

Instance
Family

No. of
instances Solved Aborted

aim50-200 72 15 60

bf 4 0 4

dubois 13 8 5

f 3 0 3

g 4 0 4

hanoi 2 0 2

ii 40 6 34

jnh 50 14 36

logistics 4 0 4

par 30 8 22

hole 5 0 5

ssa 8 0 8

Figure 1 depicts the execution time of Minisat
solver with initial random activity and without
initial random activity. The result shows that

random initial activity has significant impact
on a few sat instance like hanoi category in
the categories selected for this experiment.

Figure 1: Comparison of the execution time of Minisat with and without random initial activity
Figure 2 shows the execution time of GSAT
and Minisat solvers on the selected SAT
instances. The result shows that Minisat
perform better than GSAT on most instances.
However, this is mostly due to the fact that

most of such instances are unsatisfiable and
Minisat (CDCL solver) quickly prove
unsatisfiabilty by deriving an empty clause.
This makes the execution time shorter
compared to GSAT solver that has to perform
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all the number of iterations and flips before
reporting inability to find a solution.

Figure 2: Comparison of the execution time of Minisat and GSAT on commonly solved instances

Table 3 depicts the number of instances solved
correctly by GSAT and Minisat. The result
shows that out of the 24 satisfiable instances
of the Aim category, GSAT was able to solve
only 15. However, Minisat solved all the 72
instances. The same result was obtained for
the other random instances jhn and Dubois.
Furthermore, Minisat also outperformed
GSAT on Inductive inference (II) and
Logistics instances.

Table 3: Comparison of the number of
instances solved by Minisat and GSAT

Instance
Family

No. of
instances Minisat GSAT

aim50-200 72 72 15
bf 4 4 0
dubois 13 13 8
f 3 0 0
g 4 1 0
hanoi 2 2 0
ii 40 40 6
jnh 50 50 14
logistics 4 4 0
par 30 30 8
hole 5 5 0
ssa 8 8 0

CONCLUSION
This paper compares the performance of
GSAT and Minisat solvers on a selected SAT
instances from SATLIB and DIMACS. This is
to give more insight on the strengths and
weaknesses of the two SAT solvers and serve
as a guide to develop hybrid solvers that can
perform well on different classes of SAT
instance. Our aim is to gain more insights into
the strengths and weaknesses of the two SAT
solvers compared in this research. This will
serve as a guide to development of Hybrid
SAT solvers.
The results obtained showed that Minisat
performs better on both random and
application SAT instances. We suggest further
research on fine tuning the Simulated
Annealing parameters to find the best for both
random application instances.
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