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ABSTRACT
Energy performance in buildings may now be defined during the design phase thanks to
recent advancements in dynamic energy modeling technologies. However, variations in
weather data processing, non-identical inputs, calculation mistakes, implementation issues,
and algorithms exist throughout building energy simulation (BES) systems. Building energy
modeling in many contexts during a building's life cycle is all covered in the literature this
study reviewed. The goals of building performance simulation in practice, solutions achieved
through building performance simulation, and the building industry were all explored in this
research. One of the main topics is building performance simulation which needs to be
addressed in the future. Four characteristics may be used to describe the problems and
prospects of building performance simulation: obtaining high-quality data via innovative
software or hardware technologies, quick and efficient modeling and optimization methods,
and intelligence enhancement in large-scale modeling techniques like urban simulation and
building design and operation workflows. The barriers outlined above will give rise to
different kinds of theoretical or engineering problems in different building energy modeling
application scenarios. The goal of engineers in business and researchers in academia is to find
or enhance answers to these problems.
Keywords: Scoping, Review, Building, Energy, Modelling

INTRODUCTION
Due to increased energy consumption and
carbon emissions, several governments
throughout the world are pursuing carbon
neutrality as a feasible response to global
climate change. Because it is responsible for
more than 40% of worldwide energy-related
CO2 emissions, the construction industry is
crucial to attaining carbon peaking and
carbon neutrality objectives (Walker et al.,
2020) . Currently accounting for 20% of
China's total energy usage, the construction
sector is one of the most polluting in the
world. (Candanedo and Feldheim, 2016) .
Furthermore, in the absence of stringent
regulations or efficient energy-saving
technology to reduce these emissions,

China's building industry's energy
consumption has the potential to account for
a considerably growing share of total global
emissions by 2050. Rapid and sustained
expansion in the construction industry may
jeopardize China's government's objective of
achieving net zero CO2 emissions by 2060.
One of the most significant and cutting-edge
carbon mitigation technologies in the
construction industry, building energy
modeling (BEM), is becoming a useful and
helpful technique for energy-efficient
designs. (Candanedo and Feldheim, 2016)
operations and retrofitting of buildings, to
improve energy performance and lower
carbon emissions. The two types of
scientific models are physical (ahead) or
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data-driven (verse) models and diagnostic or
prognostic models Naik et al., (2021) .
Popular BEM models are prognostic
physical models because they forecast the
behavior of a complex system based on its
characteristics, environment, and a set of
well-defined principles—such as energy
balance, mass balance, conductivity, heat
transfer, and so forth. Physical models may
represent system behavior in previously
undiscovered circumstances, but they are
frequently over-parameterized and need
more inputs than data-driven models, which
explain a system with few changeable inputs.
A growing number of people are using
building energy modeling (BEM) as a tool
to optimize energy efficiency at various

geographical and temporal dimensions, such
as system, building, district, or community,
and building sector levels.(Naik et al., 2021).
This is owing to the fast advancement of
data sensing, modeling, and visualization
technologies. Academics, tool developers,
and practitioners are still confronting
considerable barriers and uncertainty when
adopting BEM on various scales due to the
extremely intricate integration of possibly
involved multi-disciplinary methodologies
(Homod, 2018) . As a result, the goal of this
research is to provide an accurate image of
current and upcoming developments in
BEM and to function as a strong and useful
manual or reference for researchers working
in the field of BEM and its applications.

Figure 1: CO2 emissions globally.(Visualizing Global Per Capita CO2 Emissions, n.d.)

To do this, we compiled a list of 45
publications for evaluation. These were
subsequently evaluated for relevance based
on the following standards: (1) The study
concentrated on the usage of building energy
at various phases, including construction and
operation. Performance-driven design, one
of the BEM technologies, is frequently used
in the building design phase to improve
design procedures for low-carbon and net-
zero buildings. The physics-based energy
model may be used to simulate operational
performance and optimize building energy
system control strategies during the building

operation phase. The confluence of modern
digital twin technologies and classical
physics-based building energy modeling
(BEM) has been expedited by the
availability of measured energy usage and
interior environment data. This has made
BEM a valuable tool for diagnosing flaws
and forecasting building energy systems.
BEM has been expanded beyond the
operation of single structures to include
district and urban scales. (Atasoy et al.,
2015) . The operational effectiveness of
urban energy systems may be assessed
through the application of urban building
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energy modeling, which can support the
utilization of renewable energy sources for
urban sustainability. Another significant use
of BEM is the balancing of energy output
and demand at the metropolitan scale
through the combination of modeling the
building energy system and the local grid.
Our analysis shows that the literature related
to each scenario is evenly divided, with a
smaller percentage of digital twins and a
somewhat greater percentage of
performance-driven design and operational
optimization. The yearly trends of research
on urban modeling, and building-to-grid
interaction scenarios have gained
considerable attention in recent years
(Atasoy et al., 2015; Simsek et al., 2020).
The BEM field is going through a revolution
in terms of scaling simulation and modeling
approaches to bigger sizes and levels, driven
by a surge in interest in cutting-edge
applications like digital twins and urban
modeling. In this regard, we think that one
of the most important topics to address to
handle the upcoming issues resulting from
shifting simulation demand at different
scales of energy performance modeling is
differentiating between the past and present
aims of BEM application research. Future
studies on enhancing building and urban
energy efficiency may benefit greatly from
this review, which may also help other
relevant researchers rapidly grasp the
current state-of-the-art in BEM application
studies. Our goals are as follows:
• Sort suitable BEM application material
into five different application scenarios
based on construction phases and research
sizes.
• Create a comprehensive description of the
framework, methodology, significant
examples, and research needs for each
application situation.
• Make recommendations on potential future
paths and problems in the field of BEM.

BUILDING ENERGY MODELLING
FOR URBAN BUILDINGS

There is an increasing emphasis on the city's
involvement in energy system design since
urbanization is bringing large-scale district
heating/cooling networks and renewable
energy usage closer to societal sustainability.
(Atasoy et al., 2015) . Urban building energy
modeling (UBEM) has been promoted
because of the growing benefits of applying
BEM on an urban scale (Simsek et al., 2020).
Urban energy efficiency and management
are promoted by UBEM, which examines
the energy performance of a whole country,
a city, or a block rather than modeling a
single structure (Salmi, 2021) . Due to its
geographical complexity, UBEM sometimes
requires additional resources and work to
yield reliable findings (Olgyay and Herdt,
2004). Numerous research that has looked at
this topic from various perspectives in recent
years have improved the methods and
applications of UBEM. The UBEM
workflow consists of five steps: application,
simulation, calibration, model creation, and
data collecting. The concept behind this is to
apply energy modeling to specific buildings
within the stock of urban buildings. The
gathering and pre-processing of data
relevant to UBEM form the basis of the
whole procedure. Geometric and non-
geometric variables can be used to separate
the data required to create urban models.
The description of the spatial and geometric
properties of urban buildings requires
geometric data, such as those obtained from
a geographic information system (GIS)
(Alves et al., 2019) . In files like geographic
JavaScript object notation (GeoJSON) (Hou
et al., 2014) or city geography markup
language (CityGML) urban geometric data
may also be generated using geographic
coordinates and vectors. Additionally, Wang
et al. presented a novel approach to creating
3D urban models that integrate the window-
wall ratio computed using artificial
intelligence elevation photos, building
height determined by vertical edges and
building footprint from OpenStreetMap
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(Alves et al., 2019) . Any extra data needed
for simulation or calibration is considered
non-geometric data. To characterize
building aspects, such as the input IDF files
for EnergyPlus, energy-related terms are
required. (Pop et al., 2018) Weather data,
which may be intentionally created to
include the urban microclimate or utilized as
a typical meteorological year (TMY), is
suggested as another essential input for
UBEM (Yang et al., 2018) or sustained
climatic change (Pop et al., 2018) .
Furthermore, tracking building energy

expenditures may be necessary for data-
driven algorithm training or calibrating
urban models. UBEM approaches can be
broadly classified into three types based on
the data inputs: (1) physics-based methods,
which use data mining or machine learning
algorithms to reflect energy profiles; (2)
data-driven methods, which build geometric
data and thermal features to explicitly
simulate energy consumption; and (3)
hybrid methods, which combine elements
taken from physics-based and data-driven
techniques.

Figure 2: Catalogue of Urban Energy Strategies.
Source: (Urban Scale Energy Simulation: Modeling Current and Future Building Demands -

Carlos Cerezo Davila | PPT, n.d.)
Building Modelling Physics-based
Approach
The traditional physics-based techniques use
first-principles simulations to determine the
thermal dynamics of each building, and then
compile the results to provide the urban
energy profiles. The advantage of physics-
based methods is that they offer an empirical
framework for explaining the evident
connection between energy efficiency and
urban design elements. For example, (Naik
et al., 2021) used resistance-capacitance

networks to represent the building thermal
process in an open-source city-scale
simulation tool based on the electrical
analogy (Revel et al., 2015) . Urban energy
consumption was accurately predicted by
the model for both a big district and a small
neighborhood. The physics-based method
has an intrinsic disadvantage when applied
at the urban scale as it requires a substantial
quantity of technical data to fully
characterize structures. To reduce the
computational load for simulation in UBEM,
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prototype models are designed to facilitate
the entry of building geometry and other
data. By using open-source data to
automatically identify architectural
archetypes, (Roselyn et al., 2019) expanded
on previous physics-based techniques (Jin et
al., 2021). The selected archetypes and other
energy-related factors were entered into
EnergyPlus for UBEM of the downtown
Montreal building stock and calibrated
against observed energy data, indicating the
technique's good performance. Adopting
architectural archetypes for UBEM
simplification, however, could have an
impact on the findings' correctness. To
calculate the loss, (Hang-yat and Wang,
2013) assessed urban modeling
performance in both complex and basic
levels of building characteristics. Their
results showed very little difference (about
6%) (Choi et al., 2019) . Compared to the
complex models, the simple models
underestimated energy performance in
EnergyPlus and overestimated it in IDA
Indoor Climate and Energy (IDA ICE). The
most important factors influencing urban
energy consumption, such as floor space,
set-point temperature, outside wall U-values,
and thermal system type, may also be
determined to drive model simplification by
conducting an uncertainty and sensitivity
analysis (Young-Pil Kim et al., 2015). (Ke et
al., 2018) Used the physics-based method in
a Milan neighborhood with more than 600
buildings, combining it with uncertainty and
sensitivity analysis. To model and assess the
energy consumption patterns of residential
structures in all of Algeria's provinces from
1995 to 2018, hierarchical clustering was
chosen as the most sensitive input parameter
(Gruber et al., 2014) , by 25%, the
overestimation of the peak load of dwellings
was decreased from 80% when compared to
the deterministic archetype-based approach.
Building Modelling Hybrid Approach
Given their limitations, several researchers
are attempting to integrate data-driven and
physics-based methodologies to make use of

their respective benefits and produce more
thorough simulation results in UBEM.
(Sittón-Candanedo et al., 2019). For instance,
(Yu et al., 2015) Ten machine learning
techniques were used to apply physical
models created by the Urban Modelling
Interface (UMI) tool to pre-simulated energy
usage data to predict the energy
consumption intensity of heating and
cooling in Chongqing, China. In terms of
urban scale findings, the Gaussian radial
basis function kernel support vector
regression produced the best outcomes. A
surrogate modeling method based on the
Nearest-neighbors algorithm applied to a
pre-simulated building thermal load
database was proposed by (Roselyn et al.,
2019) . The hybrid approaches retain the
physical description of each building,
overcome data gaps that pure data-driven
methods do not, and offer more accurate
estimates of energy performance in building
stock that lacks exact information than
physics-based methods. As per the available
research, there are four main uses of UBEM:
(1) energy benchmarking, which involves
comparing the energy use of peers; (2) urban
planning, which involves providing optimal
strategies for urban form and energy systems;
(3) urban renovation, which aids city
policymakers in making energy retrofit
decisions; and (4) urban microclimate,
which examines the influence of urban
microclimate on energy performance. The
results of selected case studies, together with
their geographical dimensions,
methodologies, and applications. A key use
of UBEM is energy benchmarking, which is
a thorough analysis of a nation's or city's
energy profiles across time. A physics-based
method for estimating the energy usage of
Norway's building stock was presented by
(Yu et al., 2015) . They found that the
ultimate energy consumption is predicted to
decrease by 2 to 12 TWh by 2050, or by 3%
to 14% from 2020 (Khemakhem et al.,
2020) . In (Hang-yat and Wang, 2013)
created an urban model for commercial
buildings by establishing twenty archetypes
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with eight different forms of commercial
usage (Yang et al., 2018) . The average
annual energy use intensity for the various
use types ranged from 74 to 1302 kWh/m2,

according to the simulation results, giving
the government scientific backing to
improve building energy efficiency.

Figure 3: showing physis based model.
Source: (Oh et al., 2022)

Urban planning
Given that urban typology has a major
impact on energy performance,
policymakers may utilize UBEM to get
insights into how energy is used in various
urban forms and to provide guidance on the
development of urban energy systems. Liu
et al. used Grasshopper and EnergyPlus to
simulate 114 cases for seven cities in four
climatic zones in China, to study the impact
of nearby building shadowing on the thermal
energy requirements of different community
kinds (Jung and Jazizadeh, 2019) . For
instance, in Lanzhou, shading from
surrounding buildings may cause the cooling
demand to be overestimated by 45% and the
heating load to be underestimated by 21%.
This emphasizes the need for appropriate
community design. Yu et al. identified eight
key factors influencing the energy
performance of urban design using the
UBEM and sensitivity analysis (Salimi and
Hammad, 2019) . The floor size ratio and
building coverage ratio were found to be the
most sensitive factors for energy
consumption in Shanghai residential
communities in 1963. This finding helped

urban designers achieve energy-efficient
layouts. On an urban scale, UBEM may
assess the potential for energy savings or
carbon reduction from various retrofit
initiatives evaluated and simulated energy-
saving options for a low-income Venice
neighborhood using City Buildings, Energy,
and Sustainability (CityBES) (Salimi and
Hammad, 2019) . At the district level, four
common retrofit approaches had an energy-
saving potential of 67% and a 1.1 MtCO2
yearly reduction in carbon emissions.
(Khemakhem et al., 2020) Examined the
energy efficiency and potential savings of
the Italian railway building stock using a
hybrid methodology (Naug et al., 2022) .
After several energy-saving strategies were
simulated, a comprehensive analysis showed
that upgrading lighting systems was the
most effective approach, saving up to 26%
of primary energy with a payback period of
only a few months. To assess the
effectiveness of energy-saving measures in a
Dublin, Ireland region comprising 9000
residential buildings, Buckley et al.
employed UMI to conduct the UBEM
(Revel et al., 2015) . Renovation of this
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example was predicted to accomplish a 60%
decrease of greenhouse gas emissions by
2030 by figuring out the best cost-effective
mix of envelope retrofit and on-site energy
generation. The result was anticipated to
support European Union Green Deal
initiatives aimed at achieving a carbon-
neutral economy by 2050. The local
temperature created by the shape and
activity of urban areas is referred to as the
"urban microclimate" and is unique from the
surrounding environment (e.g., the urban
heat island effect and the local wind pattern
affected by buildings). The least mean bias
error was 6% using microclimate data but
12% using TMY data, according to research
done by Xu et al. utilizing on-site observed
microclimate data for UBEM of Everton
Park, a residential area in Singapore (Pop et
al., 2018) . The findings indicate that the
urban microclimate has an impact on energy
performance. UBEM and CFD modeling
were used to evaluate the effects of different
urban surfaces on the microclimate and
energy consumption of office buildings in
Trondheim, Norway (Aftab et al., 2017). An
analysis of existing applications reveals that
the UBEM is being used more and more to
simulate the energy profile of large building
stocks while accounting for the variety of
their usage, shape, and structure, as well as
how they interact to achieve specific
research goals. In the context of the building
sector's low-carbon transition, flexibility for
building operators and the energy grid is
now achievable thanks to demand response
technology's achievement of energy
resilience in energy communities. Thus, it is
still recommended to incorporate new
technologies and the UBEM in order to
develop a mature ecosystem for energy
community modeling that may help
stakeholders implement more sophisticated
energy-efficient and environmentally
friendly solutions, even though the potential
of UBEM for energy planning and building
decarbonization has been thoroughly and
extensively researched.

BUILDING GRIDMODELING
Buildings may now employ renewable
energy resources like PV panels and wind
turbines to balance their onsite grid
electricity and even sell excess generated
electricity back to the grid as prosumers,
thanks to the increasing penetration of on-
site renewable energy resources. (Ke et al.,
2018) . Conversely, intermittent, and
uncontrollable energy sources like wind and
sun are characteristics of renewable energy.
Furthermore, increasing the flexibility of
building power consumption is crucial due
to its widespread usage. Unlike standard
building performance modeling, building-to-
grid (B2G) simulation requires coupling
with renewable energy sources and the
utility grid (Obert et al., 2020) . In recent
years, many scholars have approached this
topic from a variety of angles, adding to the
modeling approaches and applications. As
mentioned earlier, the simulation includes
not only standard BPS components but also
the unity grid, energy storage system,
renewable energy system, and others. This
section will describe the simulation
approaches for the different subsystems.
These days, the most common renewable
energy sources used to generate building
electricity are solar PV and wind (Feng et al.,
2016) . Power generation estimates are
typically utilized for sizing, optimization,
and control in renewable energy systems.
There are two categories for the techniques:
The first is the easy route, Because of the
streamlined approach, the model is based on
the idea of power generation and
incorporates meteorological factors with PV
panel and wind turbine performance data.
Fan et al., (2016) employed a
straightforward model to determine the
power production from PV and wind
turbines by combining meteorological data
(such as air density, wind speed, and solar
irradiation) with device performance
parameters (such as overall efficiency, angle,
area, and capacity). Like this, (Alves et al.,
2019) employed a less sophisticated method
to predict the production of power; the key
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differences were in the model's shape and
complexity as well as the input parameters
(Zaki et al., 2017) . This method is
unquestionably simple and does not require
a significant amount of previous data (J. Y.
Park and Nagy, 2018), but the quality of the
forecast depends on elements related to the
manufacturer of the device and numerical
weather prediction (Wu et al., 2018) . Data
forms the basis of the second strategy. Data-
driven strategies for the renewable energy
system have been proposed by several
academics as computer technology has
advanced. There have been several studies
conducted on data-driven prediction models
for energy production. A support vector
machine (GASVM) model based on a
genetic algorithm was presented for short-
term PV power forecasting. An ANN model
for forecasting solar irradiance was
developed and verified by (Cheung et al.,
2019) . A radial basis function network was
employed to anticipate PV power output 24
hours ahead of time. A hybrid technique for
probabilistic wind power forecasting based
on ensemble methods, deep convolutional
neural networks, and wavelet transform was
proposed by (Du et al., 2022) . Historical
power data or weather data are common
sources of input data for these models. This
strategy could be more accurate than a more
straightforward one (Salamone et al., 2017),
but it needs a lot of previous data.
Energy storage system
In grid-interactive buildings, electrical
storage systems and thermal storage systems
are the two main forms of energy storage
systems. Because they both store and release
energy, they could both increase the
flexibility of a building's energy use. Battery
storage is the most often utilized type of
electrical storage equipment in buildings.
While various battery systems exist, the
chemical battery is the one that is most often
used in conjunction with renewable energy-
producing systems. (Salamone et al., 2017) .
On the other hand, we focus on
modifications to energy storage instead of

the underlying chemical process when
modeling for building simulation. As a
result, an energy-balanced mathematical
model of the system was created, taking into
consideration the loss of energy conversion
between electrical and chemical sources as
well as the quantity of power that enters and
exits the battery to determine its state of
charge (SOC) (Földváry Ličina et al., 2018).
Furthermore, because the charging rate is
limited during different battery stages, they
frequently use this as a model restriction. A
thermal storage tank is a common thermal
energy storage device that uses ice or water
as the medium. As with the battery system,
we take great care to ensure that heat is
conserved both inside and externally while
building the thermal storage concept.
Buildings with lower energy consumption
are the aim of this field, therefore even
though studies have simplified the energy
storage system and mainly focused on
changing its energy value, this simplification
is reasonable. Due to the unpredictability of
renewable energy production, the grid can
also address the imbalance between supply
and demand. Because of this, the utility grid
plays the part of the merchant in many B2G
studies, allowing buildings to purchase or
sell power from it. Because of this, a lot of
academics are more interested in the cost
and volume of power (Zhao et al., 2014) ,
and they developed the energy balance
model with additional subsystems like the
battery and building load (Du et al., 2022) .
Heating, ventilation, air conditioning,
lighting, and, in residential buildings,
kitchenware’s are a few of the components
that use energy in building systems.
Additionally, several studies have integrated
electric vehicles (EVs) into the building
system due to the fast-expanding market for
EVs, and their electrical requirements
should also be considered. There are three
fundamental methods for modeling a
building system's energy:
White-box approach
The first strategy is the "white-box method,"
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which builds energy models by utilizing the
mass and heat equations. EnergyPlus,
Dymola, TRNSYS, and DOE-2 are just a
few of the software programs that can
readily solve these equations. Ran et al.
employed this method to compute the
HVAC energy consumption (Földváry
Ličina et al., 2018) , whereas Wang and
Wang used it to assess the heating and
cooling load (Delgarm et al., 2016) .
Although the white box model has a lot of
possibilities for explanation, entering all the
specific architectural details might take a
while.
Method of the black box
The black-box approach, which is the
second choice, usually entails using
historical data to build the model. It does not
need tangible knowledge about the structure
as a result. Additionally, the complex link
between the input and output may be
established analytically utilizing the data
(Földváry Ličina et al., 2018) calibrated the
load profile of the reference day using
meteorological data to provide a simplified
cooling load forecast. Furthermore, the
energy model is developed by a variety of
machine learning techniques (Brager et al.,
2015). The black-box model requires a lot of
previous data, but it is easier to create than
the white-box model.
Grey-box method
Moreover, the third choice is the grey-box
model. This approach, which sits halfway
between the white-box and black-box
models, uses publicly available data and a
simplified physical model to predict energy
use. The resistance-capacitance (RC) model
is the most often used grey-box technique.
Using the 3-resistance-2-capacitance (3R2C)
model, Bay et al. assessed the target
buildings' thermal performance. (Brager et
al., 2015) , while Dong et al. used the 2-
resistance-1-capacitance (2R1C) model (Lin
et al., 2016) . When the other two models
need insufficient data, the grey-box model
could be a preferable option since it decides
between the white-box and black-box

models.
Building Design
Numerous scholars highlight the
combination of factors, such as the size of
the energy storage system and the capacity
of the renewable production system, to make
the building more grid-friendly throughout
the design stage. Furthermore, some
research focuses increasingly on the design
of net zero energy buildings (NZEBs),
which requires extensive examination owing
to their complex and interacting energy
systems and enhanced efficiency. Sun et al.
found all viable local optimums for designs
using a nonlinear heuristic glow-worm
swarm optimization (GSO)-based
optimization, and the optimization settings
performed better in terms of grid
independence and cost than the default
NZEB settings (Thapa, 2019) . Analysis
investigated the impact of 24 significant
factors in over/under voltage using global
sensitivity analysis, grid reliance, and
energy loss and identified the key variables
influencing NZEB grid interactions (H. Park
and Rhee, 2018) . To lessen the energy
impact of buildings outfitted with energy
storage and producing systems on the
electrical grid, Salvador et al. designed and
implemented a sizing strategy for a single-
story home and an industrial building
(Földváry Ličina et al., 2018) . The
simulation's findings indicate that the proper
size has a greater energy effect than the
conventional size. If building simulation is
completely considered throughout the design
stage, the optimal parameter combination of
all building components may be identified to
provide a more pleasant atmosphere at a
cheaper cost. Numerous studies focus on the
control plan to reduce the impact on the
electrical grid and operating costs when the
system is in use.
They have many systems for various types
of individual structures. It is divided into
two categories: (1) Commercial building: A
real-time optimization framework based on
Model Predictive regulate (MPC) was
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created to regulate the power flow of a
commercial building equipped with
renewable energy and an energy storage
system for demand response (DR) and
demand flexibility (DF) programs. (Du et al.,
2022) . As a result, the electric grid's
maximum load ramp rate was greatly
decreased. Li et al. suggested an operating
approach based on a dynamic programming
method to arrange the whole power flow in
real-time in order to minimize the net
present value in an average year (Wu et al.,
2018) , (2) Residential building (Földváry
Ličina et al., 2018) combined on-site energy
generation with data-driven predictive
demand response control for residential
buildings with heat pumps, and talked about
the effects of heat Two methods to DR
algorithms, one rule-based and the other
predictive-based, were assessed by (Wu et
al., 2018) in an Irish residential building
typical with the same DR pricing structure.
Additionally, the simulation results showed
that the predictive-based algorithm
outperformed the others in terms of carbon
emissions, utility generation costs, and
energy end-use expenditure. To maximize
profit, which was studied with a five-story
residential building employing energy
scheduling carried out using GA. The
findings show that, on a typical day, the
profit was around 11.53 $/day (Jin et al.,
2021) . However, many buildings frequently
display varying degrees of simultaneous
renewable energy sufficiency due to
intrinsic variances in building consumption
and system architecture. Numerous writers
offered strategies for controlling the level of
building groups to create a win-win situation
inside the structures while reducing the
energy impact on the grid. To achieve
renewable energy sharing across three
NZEBs, proposed a novel collaborative
control and compared its operational costs
and grid friendliness to those of traditional
control. Looked at the energy management
of four buildings with PV panels and
thermal energy storage using two multi-
agent techniques: a decentralized controller

and a centralized controller. The results
show that payback behavior varies
significantly depending on the kind of
residential buildings. Zhang et al. suggested
unique control algorithms for the heat pump
aggregations and offered many measures to
assess building-to-grid DR adaptability
(Brager et al., 2015) . Lin et al., (2016)
conducted simulation research on a home
communication system and presented a rule-
based carbon responsive control framework
to react in real-time to the grid's carbon
emission signals. Additionally, it can raise
the feeder's voltage profile without
compromising comfort levels. Overall,
testing the B2G operation method across
several buildings may reduce strain on the
power grid and save operating costs by
encouraging building cooperation.

FUTURE PERSPECTIVES AND
CHALLENGES

Based on the limitations of their theoretical
or case study conclusions, researchers have
proposed future directions and issues to be
addressed in the field of building energy
modeling (BEM). We distilled them into the
following five research strategies:
(1) Performance design.
Future views and challenges related to
performance-driven design are always being
developed, simulated, and improved. The
difficulties in encoding the design logic are
the fundamental building blocks of the
"generative design" idea. To meet the
various demands of clients, designers need
to develop algorithms that can automatically
modify design parameters during the
generative design process. Likewise,
approaches that prioritize performance over
traditional architectural design, such as idea
development logic over the final product,
may be the focus of performance-driven
techniques. The current algorithms lack
variation in geometric forms but can handle
metric variables with ease. It is challenging
to stay sensible while expanding the design
space. In practice, architects usually
parameterize the façade texture and the
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massing idea. There is a shortage of extreme
freeform architecture interpreted as cellular
automata. The inner space structure, which
is rarely studied, affects energy/ventilation
performance in addition to the building shell.
Even with more processing power,
simulation might still take a long time for
each iteration, especially when it comes to
CFD.
It's challenging to improve the equation
solver and physical model.
To solve the design difficulty, it may be
made scalable with the right space-time
resolution, or it can be utilized as a surrogate
model, like the fast CFD feedback of a
neural network. Another issue is whether the
design document and the simulation model
are compatible, particularly with geometry.
For example, tessellation is required for
energy modeling, and strong meshing is
required for CFD to enable automatic
iteration on the freeform envelope of
modern structures.
The design process is guided to its
completion by optimization. Upgrading the
effectiveness of approximation techniques
and search algorithms should be the main
goal of future research. Further study is
required to quantify the uncertainty of the
outcome and target the sensitive variables
with presumed design inputs. An integrated
modeling platform like Rhinoceros may
collect the data and coordinate the creation
of the models, necessitating the versatility of
programmers and algorithm developers in
architects.
(2) Optimization of operational
performance using models.
Simulation for optimization is a crucial first
step toward achieving energy savings,
carbon emission reductions, and thermal
comfort during building operations. These
days, the development of operational
optimization is most often linked to model
predictive control, or MPC, where the model
simulation results play a major role in
determining MPC's optimal performance.

Building simulation performance for
optimization may be improved from two
directions, as various recent studies have
shown that more effort needs to be made to
improve the effectiveness and efficiency of
model simulation. Speed of calculation and
accuracy of simulation results. In
engineering practice, computational speed is
critical: the time step required for real-time
control should be greater than the time step
required for one-step optimization. The
minimal temporal granularity for analysis in
many application scenarios will be around
10 minutes. The simulation time for the
model will be even shorter than 10 minutes
when the time needed for computation to
converge in the optimization phase is
subtracted. This suggests that the
optimization method for operational control
should be limited by the calculation time.
However, to optimize processing
performance, the model shouldn't be overly
simple and compromise too much accuracy.
The degree to which the model and its
anticipated outputs match actual results will
directly affect the effectiveness of MPC. As
a result, finding a way to balance model
processing speed and accuracy in MPC has
gained popularity and is receiving a lot of
attention from engineers and researchers.
(3) Data measurements are used in digital
twin-integrated simulation.
A prevalent view is that digital twins are an
inevitable byproduct of the development of
BIM principles and the integration of data
across digital and physical buildings.
Technically speaking, DT is possible, but its
rapid expansion is still impeded by the lack
of progress in the following areas and its
high cost. Viewed from a different
perspective, these difficulties might be seen
as the future direction of research and
development for integrated simulation for
DT.
The methodology is necessary to preserve
the accuracy and integrity of the data.
Sufficient and high-quality data are essential
for the integrated DT simulation.
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Throughout the building life cycle, many
various types of high-quality sensors will be
needed to obtain such data, placing a
considerable financial strain on the industry.
Additionally costly are sensor overhauls and
maintenance. The next big thing in
development will be more accurate sensors
at reduced costs.
An additional consideration for the
integrated simulation for DT is the speed of
simulation and feedback performance. The
present simulation frequently relies on
historical data instead of real-time data and
takes a long time to complete. Because of
the latency resulting from historical input
data and the computation process, virtual
models and real-time construction
conditions might occasionally be
nonsensical. Look-ahead simulations should
be generated fast and live to ensure an
accurate representation of the physical
parameter change occurring in real-time.
Furthermore, considering the expanding use
of DT, the relevant scale range of the
simulation approach need to be expanded.
Nowadays, most DT applications are found
in single buildings or systems, and not many
researchers are looking at how DT may be
applied throughout a whole city. More data
types and quantities are needed at the urban
scale to guarantee that the virtual city
correctly represents the physical metropolis.
Policy directives. For instance, DT must
monitor resident flow and communicate
with several energy data sources on an urban
scale. At the urban level, DT may be a
significant factor in realizing smart cities
and creating plans for future city planning.
(4) Building simulation for urban energy
planning.
Urban energy profiles may be predicted with
more accuracy by modeling building
archetypes, according to UBEM principles
and implementations. Nonetheless, model
calibration and uncertainty analysis may still
be utilized to improve the accuracy of
archetype creation. Consequently, the

important research gaps in UBEM that still
need to be filled are listed below. When
modeling building archetypes, uncertainty
analysis may be utilized to apply a
probability distribution to unknown factors
(such as interior air temperature and
infiltration rate). This may be further
explored in future UBEM studies to
determine statistically sound building
parameter values. Furthermore, the
reliability of the UBEM is closely linked to
model calibration concerning the uncertainty
associated with simplified archetypes. Many
model inputs are adjusted throughout the
calibration phase to bring the expected
output values closer to those found through
experimentation.
The effect of tenant behavior on building
energy consumption is one of the topics that
has been studied the most lately. Various
occupant-related models are constructed,
utilizing existing deterministic and
stochastic building-level models to describe
human activities realistically. Nevertheless,
there hasn't been much research done on
models that take into consideration the
behavior of urban dwellers. The accuracy of
the model is expected to increase with the
integration of UBEM with urban mobility
models, which fundamentally represent
human activities in space and time.
An essential area of study for assessing the
energy efficiency of existing urban building
stock is the examination of infrastructure
that generates energy, particularly that
which is recyclable. It is especially crucial to
incorporate solar systems and other
building-integrated technology into UBEM.
Solar potential analysis, which involves
detecting roof features and giving urban-
level data on viable installation sites, can be
useful and improve energy system modeling
during the photovoltaic system design
process. Consequently, combining the
UBEM with models of urban energy
systems (such as municipal energy utilities
and energy distribution networks) may
prove advantageous for future study.
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(5) Modeling demand response based on
building-to-grid interaction.
There has been a lot of attention paid to
understanding and managing the interaction
between buildings and the grid because of
the continuous advancements in building
energy conservation and carbon reduction.
After reviewing the relevant literature, we
believe that the following concerns need to
be resolved right away. The flexibility of the
created environment should be fully utilized
by the future modeling approach. The
flexibility of the built environment is not
fully used, and much of the research being
done on building system models is quite
rudimentary. Furthermore, the building
energy consumption simulation needs to
adapt to the rapid changes in solar power
production conditions and grid pricing.
Therefore, utilizing architectural flexibility
to its fullest and incorporating it into grid
interaction is a major issue. It will be
necessary to employ a large-scale model and
control for the simulation. As we said in our
literature review, the majority of B2G
research currently being done focuses on
one or a small number of buildings, with
very few studies addressing larger scales.
On the other hand, there is uncertainty about
the effective governance and cooperation
between various building types and micro-
grids at a larger urban scale. Occupancy
should be considered in the new B2G
modeling method. It is common knowledge
that occupancy has a big impact on how
much energy a building uses, and a lot of
research has been done to find out.
Nevertheless, there is a paucity of
occupancy influence on thermal comfort and
energy consumption in this field as few
scientists took occupancy into account in
B2G modeling. Therefore, it is still unclear
how occupancy affects B2G optimization.

CONCLUSIONS
The scope, condition, and application of
building performance modeling in many
contexts during a building's life cycle are all
covered in the literature this study reviewed.

This study, in general, compiled and
arranged the pertinent theories, procedures,
and instruments that are most appropriate for
researchers and engineers, along with a few
case studies of noteworthy academic or
practical applications. The objectives of
building performance simulation in
application led to the division of this
evaluation into five distinct sections:
Demand response modeling of building-to-
grid interaction, performance-driven design,
integrated simulation employing data
measurements for digital twin, and model-
based operational performance improvement
may all benefit from building simulation. It
seems that building performance simulation
is a means of continuously developing
solutions, based on the research efforts
reported in this work. These include demand
response, digital twins, automated building
design, model predictive control for
optimization, and the development of a
building energy model. These enhancements
have the potential to improve building
performance overall for the construction
industry, including lower CO2 emissions
from buildings, living in, or using high-
quality structures, and higher productivity
among building design and maintenance
personnel. This further indicates the
significant role that building performance
modeling will have in the future growth of
the architectural sector.
One of the main topics is building
performance simulation. It is unrealistic to
think that a single review paper will include
a comprehensive introduction to every topic
covered. Because of this, the focus of this
study is to present the state and direction of
BEM research that has garnered the
attention of most academics in the past ten
years. Additionally, we came to various
conclusions about the possibilities of
relevant areas based on the literature
analysis, including the kinds of questions
that need to be addressed in the future in
these research lines that are still in their
infancy. Four characteristics may be used to
describe the problems and prospects of
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building performance simulation: obtaining
high-quality data via innovative software or
hardware technologies, quick and efficient
modeling and optimization methods, and
intelligence enhancement in large-scale
modeling techniques like urban simulation,
and building design and operation
workflows. The barriers outlined above will
give rise to different kinds of theoretical or
engineering problems in different BEM
application scenarios. The goal of engineers
in business and researchers in academia is to
find or enhance answers to these problems.
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