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ABSTRACT. This study uses a one-dimensional Lie algebraic framework, precisely adapted to the symmetry of 
molecules, to investigate the vibrational frequencies of cyclobutane. A vibrational Hamiltonian is also constructed 
using one-dimensional Morse oscillators, preserving the D2d point group symmetry for each molecule. The analysis 
compares the calculated fundamental vibrational frequencies with the observed experimental frequencies, resulting 
in a root mean square deviation of 0.886 cm-1. The result highlights the exceptional precision of the U(2) Lie 
algebraic Hamiltonian in accurately predicting the vibrational frequencies and their combination bands at the sub-
cm-1 level of precision. Specifically, this computational approach has the potential to achieve these results with 
lower computational costs compared to traditional theoretical approaches. The broader implications of our study 
suggest that the U(2) Lie algebraic framework can be effectively applied to a wide range of molecular systems, 
offering significant advantages in fields such as material science, drug design, and environmental monitoring by 
providing precise and efficient vibrational spectral analyses. 
   
KEY WORDS: Vibrational Hamiltonian, Vibrational frequencies, Morse oscillator, Cyclobutane, Lie algebraic 
method 

INTRODUCTION 

Molecular spectroscopy is essential in understanding the complex interactions between molecules 
and electromagnetic radiation, providing valuable information about molecular structure and 
properties. Infrared and Raman spectroscopy are highly effective methods for analyzing 
molecules, offering various techniques. These techniques provide insights into the vibrational 
modes of molecules, allowing us to analyze molecular structures and determine essential 
functional groups. With the advancement of modern molecular spectroscopy, there is a greater 
demand for reliable theoretical methods to improve our understanding of new experimental 
techniques, especially those used to study the more complex vibrational modes in polyatomic 
molecules [1]. 

Traditionally, two conventional theoretical frameworks have been used to study polyatomic 
molecules and their ro-vibration spectra. The first approach is the Dunham expansion, which 
comprises a sequence of expansions in rotation-vibration quantum numbers to determine energy 
levels [2]. Despite its historical significance, this approach has certain constraints. It does not 
quickly produce operator matrix elements because it is not directly connected to the wave 
functions of individual states. Additionally, the Dunham expansion necessitates many parameters 
when addressing complex polyatomic molecules. Optimizing these parameters using extensive 
experimental databases may become impractical [3]. 

A more efficient alternative to the Dunham expansion is to solve the Schrödinger equation 
using potentials. This approach, which depends on advancements in ab initio techniques and the 
computation of Hamiltonian operator matrix elements using existing wave functions, provides 
improved precision. Nevertheless, difficulties arise when dealing with larger molecules and highly 
excited energy levels, frequently associated with the computational complexities of differentiation 
and integration [4, 5]. 
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An increasingly appealing third alternative is an approach based on one-dimensional 
symmetry-adapted Lie algebra. This method addresses various challenges encountered by 
traditional theoretical frameworks [6]. Innovative studies conducted by Iachello et al. first 
employed the U(2) Lie algebraic method to analyze the vibrational spectra of small molecules [7, 
8]. This method has since expanded to include the analysis of higher overtone rotation-vibration 
spectra in medium-sized molecules [9-13]. The Lie algebraic framework offers a more efficient 
method for calculating the vibrational spectra, yielding a substantial computational reduction and 
higher precision compared to other conventional approaches [14-16]. Primary theoretical 
investigations [17-20] have focused on the fundamental vibrational spectra of cyclobutane, 
emphasizing its significant importance. 

Our study's primary objective is to develop a vibrational Hamiltonian for cyclobutane using 
the one-dimensional dynamical U(2) Lie algebra framework. We aim to determine the vibrational 
frequencies at both the fundamental level and for higher overtone and combination bands 
precisely. This novel approach addresses significant inconsistencies found in spectra obtained 
from previous studies that predominantly relied on ab initio or semi-empirical methods [21, 22]. 
We hypothesize that the U(2) Lie algebra framework will provide more accurate and 
computationally efficient results for the vibrational spectra of cyclobutane than traditional 
methods. Our research questions focus on evaluating the precision of the U(2) Lie algebraic 
method in determining the fundamental and overtone vibrational frequencies of cyclobutane 
compared to conventional techniques. 

Our findings demonstrate that the U(2) Lie algebraic approach yields higher precision and 
requires significantly fewer computational resources than traditional methods such as the Dunham 
expansion and ab initio calculations. This method's ability to handle complex vibrational modes 
with fewer parameters highlights its superiority and potential for broader applications in 
molecular spectroscopy. 

The broader implications of our study lie in the enhanced accuracy and efficiency of the U(2) 
Lie algebraic method, which can be applied to other polyatomic molecules with complex 
vibrational spectra. This advancement can improve our understanding of molecular structures and 
dynamics, potentially benefiting various fields such as material science, chemistry, and 
pharmaceuticals [23, 24]. 

STRUCTURE OF CYCLOBUTANE 
 
Cyclobutane plays a crucial role in organic chemistry, as it is a fundamental precursor for 
synthesizing more complex organic compounds, particularly those with cyclic structures. The 
molecular structure of cyclobutane allows for the study of its complex characteristics using 
infrared spectroscopy and Raman spectra techniques, which provide an incredible number of 
vibrational modes. The vibrational properties of cyclobutane are complex and varied, involving a 
variety of modes that exhibit the characteristics of its atoms and bonds. The spectra prominently 
exhibit the symmetric and asymmetric stretching vibrations of the carbon-hydrogen (C-H) 
bonds, illustrating these molecular interactions. In addition, the spectra indicate dynamic 
characteristics resulting from the vibrations of the C-H bonds, which are observed as bending 
modes. These modes provide valuable insights into the complex molecular properties of 
cyclobutane. Nevertheless, the vibrational modes present in cyclobutane exceed these 
fundamental vibrations. This structure part offers more complex molecular characteristics, such 
as ring puckering and twisting. The vibrational behavior of the cyclobutane ring is enhanced by 
these modes, which involve the deformation of the ring itself, providing complexity and depth. 
Now, let us delve deeper into the molecular structure of cyclobutene. The cycloalkane with the 
molecular formula C4H8 consists of a closed ring with four carbon atoms, each stably bound to 
two hydrogen atoms. The carbon-carbon bonds undergo fusion by forming single bonds within 
this molecular coordination. This establishes a planar molecular structure characterized by bond 
angles of approximately 90 degrees. As the study of symmetry progresses, the classification of 
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cyclobutane into the D2d point group becomes apparent. This point group encompasses symmetry 
species (irreducible representations), namely A1, A2, B1, B2, and E. Cyclobutane exhibits 23 
normal vibrational modes within its symmetrical structure, indicating the complicated interactions 
among its constituent atoms and bonds. A closer examination of the molecular vibrations reveals 
the presence of eight C-H bonds and four C-C bonds, each playing a unique role in the vibrational 
spectra of cyclobutane. When spectroscopic techniques probe this unassuming molecular 
structure, they reveal a fascinating vibrational structure. It demonstrates the complexity within 
molecular spectroscopy's seemingly modest constituents. 
 

U(2) LIE ALGEBRAIC VIBRATIONAL HAMILTONIAN OF CYCLOBUTANE 
 
Eight identical U(2) Lie algebras, denoted as {��(2): � = 1, 2, 3, 4, 5, 6, 7, 8}, have been proposed 
to represent the eight C-H stretching bonds. Additionally, four identical U(2) Lie algebras, 
{��

∗ (2): � = 1, 2, 3, 4}, have been introduced to characterize the four C-C stretching bonds 
corresponding to the structure of cyclobutane. 

 
Figure 1. The structure of cyclobutane, coupled with the bond-wise assignment of eight identical 

U(2) Lie algebras, ��(2) to ��(2), represent the C-H stretching vibrations. Additionally, 
four identical U(2) Lie algebras, ��

∗(2) to ��
∗(2), are assigned to represent the C-C 

stretching vibrations. 
 
The following are the interactions that occur between C-H bond stretching vibrations: 

Interaction 1: First-neighbor couplings  

���(2) ⊗ ��(2); (�, �) = (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (1,8)� 

Interaction 2: Second-neighbor couplings  

���(2) ⊗ ��(2); (�, �) = (1,3), (2,4), (3,5), (4,6), (5,7), (6,8), (1, 7), (2,8)� 
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Interaction 3: Third-neighbor couplings  

���(2) ⊗ ��(2); (�, �) = (1,4), (2,5), (3,6), (4,7), (5,8), (1,6), (2,7), (3,8)� 

Interaction 4: Forth-neighbor couplings  

���(2) ⊗ ��(2); (�, �) = (1,5), (2,6), (3,6), (3,7), (4,8)� 

The interactions among C-C bond stretching vibrations are: 

Interaction 1: First-neighbor couplings  

���
∗(2) ⊗ ��

∗(2); (�, �) = (1,2), (2,3), (3,4), (1,4)� 

Interaction 2: Second-neighbor couplings  

���
∗(2) ⊗ ��

∗(2); (�, �) = (1,3), (2,4)`� 

Now, construct the vibrational Hamiltonian operator that maintains the D2d symmetry of the 
molecule. Since all C-H bonds in the molecule are equivalent, the effective Hamiltonian for C-H 
stretching vibrations in cyclobutene is: 

���� = �� + � ��
���

���

���

�� + � ���
���

���

���

��� + �(���
� + ���

� + ���
� + ���

� )

���

���

���
������        (1) 

with symmetry adapted 1st, 2nd, 3rd and 4th neighbor couplings coefficients as 

���
� = 1, (�, �) = (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (1,8) 

���
� = 0, (�, �) = (1,3), (2,4), (3,5), (4,6), (5,7), (6,8), (1, 7), (2,8) 

���
� = 0, (�, �) = (1,4), (2,5), (3,6), (4,7), (5,8), (1,6), (2,7), (3,8) 

���
� = 0, (�, �) = (1,5), (2,6), (3,6), (3,7), (4,8) 

���
� = 0, (�, �) = (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (1,8) 

���
� = 1, (�, �) = (1,3), (2,4), (3,5), (4,6), (5,7), (6,8), (1, 7), (2,8) 

���
� = 0, (�, �) = (1,4), (2,5), (3,6), (4,7), (5,8), (1,6), (2,7), (3,8) 

���
� = 0, (�, �) = (1,5), (2,6), (3,6), (3,7), (4,8) 

���
� = 0, (�, �) = (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (1,8) 

���
� = 0, (�, �) = (1,3), (2,4), (3,5), (4,6), (5,7), (6,8), (1, 7), (2,8) 

���
� = 1, (�, �) = (1,4), (2,5), (3,6), (4,7), (5,8), (1,6), (2,7), (3,8) 

���
� = 0, (�, �) = (1,5), (2,6), (3,6), (3,7), (4,8) 

���
� = 0, (�, �) = (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (1,8) 

���
� = 0, (�, �) = (1,3), (2,4), (3,5), (4,6), (5,7), (6,8), (1, 7), (2,8) 

���
� = 0, (�, �) = (1,4), (2,5), (3,6), (4,7), (5,8), (1,6), (2,7), (3,8) 

���
� = 1, (�, �) = (1,5), (2,6), (3,6), (3,7), (4,8) 
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In the same way, the effective vibrational Hamiltonian for the C-C stretching vibrations of 
cyclobutene can be written as 

���� = �� + � ��
���

���

���

�� + � ���
���

���

���

��� + �(���
� + ���

� )

���

���

���
������         (2) 

with symmetry adapted 1st, 2nd neighbor couplings coefficients as 

���
� = 1, (�, �) = (1,2), (2,3), (3,4), (1,4) 

���
� = 0, (�, �) = (1,3), (2,4) 

���
� = 0, (�, �) = (1,2), (2,3), (3,4), (1,4) 

���
� = 1, (�, �) = (1,3), (2,4) 

Here, E0 is the eigenvalue of the Schrodinger equation corresponding to the electronic ground 
state of the bond vibrations; this eigenvalue will act as the zero references for all the excitations 
[13]. The second term of the vibrational Hamiltonian corresponds to the energy states of n 
independent, anharmonic oscillators. Each oscillator is linked to a specific local vibrational mode 
and is described by the Casimir operator ��  of the U(2) Lie algebra. The third term addresses the 
cross-anharmonic interactions between different local oscillators, utilizing the two-body Casimir 
operator ��� , which represents the interactions between modes i and j. The last term involves 

anharmonic, off-diagonal interactions between pairs of local oscillators, characterized by the 
Majorana operator ���. ��, ���, ���  are the algebraic parameters; ��, ��� represent the Casimir 

(invariant) operators of the associated Lie algebras. Majorana (invariant) operators, ���, are 

related to coupling schemes involving Lie algebras of the n interacting one-dimensional Morse 
oscillators. The spectroscopic data is used for determining the algebraic parameters, and the 
following expressions are used to determine the algebraic operators: 

〈��〉 =  −4(���� − ��
�)        (3) 

〈��, ��; ��, ���������, ��; ��, ��〉 = 4��� + ������ + �� − �� − ���       (4) 

〈��, ��; ��, ���������, ��; ��, ��〉 = ���� + ���� − 2����

〈��, �� + 1; ��, �� − 1�������, ��; ��, ��〉 = −[��(�� + 1)(�� − ��)(�� − �� + 1]�/�

〈��, �� − 1; ��, �� + 1�������, ��; ��, ��〉 = −[��(�� + 1)(�� − ��)(�� − �� + 1]�/�

�        (5) 

where ��, ��  are the vibrational quantum numbers. The Casimir operator ���  is diagonal in �� and 

��, and the Majorana operator, ���, in contrast, transfers one vibrational quantum from bond i to 

the bond j. 
The following mathematical expressions for the matrix elements 〈��〉, 〈���〉, 〈���〉 describe the 

fundamental vibrations,  

〈��〉 =  −4(� − 1), 〈���〉 =  −4(2� − 1), 〈���〉 = �
−� (� ≠ �)

� (� = �)
        (6)  

The following relation gives the vibron number N, corresponding to the maximum number of 
bound states of the Morse potential in each vibrating bond species [15], 

� =
��

����

− 1        (7) 
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where �� = 2860.7508 (C − H), 1855.0663 (C − C) and ���� = 64.387 (C − H),
13.6007 (C − C) are the spectroscopic constants of the respective bonds determined from 
experimental data of diatomic molecules [25, 26, 27]. 

The initial guess for ��
���, ��

��� are obtained from the energy expression for single-oscillator 
fundamental mode, 

���� = −4��
���(���� − 1), ���� = −4��

���(���� − 1) as  

��
��� = −

����

4(���� − 1)
, ��

��� = −
����

4(���� − 1)
        (8) 

The initial guesses for ���
���, ���

��� are obtained by the relations,   

���
��� =

|��
��� − ���

���|

6����
,  ���

��� =
|��

��� − ���
���|

2����
        (9) 

Here, Es and Eas are the different energies corresponding to symmetric and antisymmetric 
combination of the two local modes. The values of parameters, ��

���, ��
���, ���

���and ���
��� are 

optimized by least-square regression fitting, starting from the initial guesses as given by equations 
(8) and (9). The initial guesses for ���

���, ���
��� are taken as zero. 

 

RESULTS 
 
This study employed symmetry-adapted dynamical U(2) Lie algebras to construct a vibrational 
Hamiltonian for cyclobutane. The optimized algebraic parameters and vibron numbers are 
comprehensively shown in Table 1. Our calculations have yielded a comprehensive representation 
of the fundamental, first overtone, and their combination bands, which are presented in Tables 2, 
3, and 4. 
 
Table 1. Optimized fitting parameters: U(2) Lie algebraic vibrational Hamiltonian for D2d symmetry 

cyclobutane. 
 

Parameters  Value 
���� (C-H stretching) 44 

���� (C-C stretching) 136 

��
��� (C-H stretching) -15.8078 

��
���(C-C stretching) -1.7582 

���
��� (C-H stretching) 1.4817 

���
��� (C-C stretching) 0.1492 

���
��� (C-H stretching) 2.0921,  

���
��� (C-C stretching) 0.0514 

N (bending) 26 
Ai (bending) -11.5733 
Aij (bending) 0.7283 
��� (bending) 3.4967 
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Table 2. Predicted fundamental vibrational frequencies (in cm-1) for cyclobutane using the U(2) Lie algebraic 
vibrational Hamiltonian, together with experimental observations, mode assignments, and symmetry 
species (irreducible representations). 

 

Table 3. The first overtone vibrational frequencies (in cm-1) of cyclobutane, as anticipated by the U(2) Lie 
algebraic vibrational Hamiltonian, are presented together with details about vibrational modes and 
symmetry species. 

Vibrational mode Symmetry species Calculated 
2v1 (CH2 s-str) A1 5673.0755 
2v2 (CH2 scis) A1 2765.6914 
2v3 (CH2 scis) A1 1985.1109 
2v4 (CH2 a-str) A1 5793.5742 
2v5 (CH2 rock) A1 1326.0063 
2v6 (ring puck) A1 343.9843 
2v7 (CH2 wag) A2 2428.4403 
2v8 (CH2 twist) A2 2437.3634 
2v9 (CH2 wag) B1 2289.1770 

2v10 (Ring deform) B1 1676.8535 
2v11 (CH2 twist) B1 2380.3163 
2v12 (CH2 s-str) B2 5569.8128 
2v13 (CH2 scis) B2 2706.7340 

2v14 (Ring deform) B2 1989.5054 
2v15 (CH2 a-str) B2 5825.1040 
2v16 (CH2 rock) B2 1152.7771 
2v17 (CH2 a-str) E 5829.1959 
2v18 (CH2 twist) E 2274.2430 
2v19 (CH2 rock) E 1343.0852 
2v20 (CH2 s-str) E 5577.6613 
2v21 (CH2 scis) E 2704.6355 
2v22 (CH2 wag) E 2388.3027 

2v23 (Ring deform) E 1632.1314 

Vibrational mode Symmetry species Experimental [28] Calculated 
v1 (CH2 s-str) A1 2895 2895.3328 
v2 (CH2 scis) A1 1443 1443.2752 
v3 (CH2 scis) A1 1001 1001.6640 
v4 (CH2 a-str) A1 2975 2975.2312 
v5 (CH2 rock) A1 741 740.8023 
v6 (ring puck) A1 197 196.4120 
v7 (CH2 wag) A2 1260 1261.5139 
v8 (CH2 twist) A2 1257 1256.7816 
v9 (CH2 wag) B1 1219 1219.8067 

v10 (Ring deform) B1 926 927.1403 
v11 (CH2 twist) B1 1222 1221.7160 
v12 (CH2 s-str) B2 2893 2892.3441 
v13 (CH2 scis) B2 1443 1442.5139 

v14 (Ring deform) B2 1001 1002.8071 
v15 (CH2 a-str) B2 2987 2986.4107 
v16 (CH2 rock) B2 627 626.9212 
v17 (CH2 a-str) E 2952 2953.2273 
v18 (CH2 twist) E 1223 1222.4693 
v19 (CH2 rock) E 749 748.3305 
v20 (CH2 s-str) E 2887 2888.5371 
v21 (CH2 scis) E 1447 1446.2840 
v22 (CH2 wag) E 1257 1257.9781 

v23 (Ring deform) E 898 899.7773 
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Table 4. The frequencies of the combination bands of cyclobutane, as anticipated by the U(2) Lie algebraic 
vibrational Hamiltonian, refer to the collective vibrational modes resulting from the combination of 
the fundamental and first overtone. 

 
Vibrational mode Calculated Vibrational mode Calculated 

v1+ v12 5799.5305 2v1 + 2v12 11254.7419 
v1+ v20 5795.7235 2v1 + 2v20 11262.5904 
v12+ v20 5792.5687 2v12 + 2v20 11159.3277 
v4+ v15 5973.4955 2v4 + 2v15 11630.5318 
v4+ v17 5940.3121 2v4 + 2v17 11634.6237 
v15+ v17 5951.4916 2v15 + 2v17 11654.2999 
v1 + 2v12 8476.9992 2v1 + v12 8577.2732 
v1 + 2v20 8484.8477 2v1 + v20 8573.4662 
v12 + 2v20 8481.8590 2v12 + v20 8470.2035 
v4 + 2v15 8812.1888 2v4 + v15 8791.8385 
v4 + 2v17 8885.9088 2v4 + v17 8758.6551 
v15 + 2v17 8827.4602 2v15 + v17 8790.1849 

 

CONCLUSIONS 
 
This study utilizes the one-dimensional Lie algebraic model's powerful capabilities to reveal 
cyclobutane's vibrational frequencies. The robust theoretical framework allowed us to compute 
molecules' vibrational frequencies accurately. The outcomes of our endeavors showcased the 
exceptional precision of the U(2) Lie algebraic Hamiltonian model. The model exhibits 
remarkable accuracy, as evidenced by a root mean square deviation of 0.886 cm-1 for analysing the 
23 fundamental vibrational modes. The level of precision achieved in vibrational spectroscopy is 
impressive, showcasing the effectiveness of the U(2) Lie algebraic method in accurately capturing 
the fundamental characteristics of molecular vibrations. 

Moreover, our results provide insight into an essential component of this research endeavor: 
the effectiveness of our proposed approach in accurately predicting higher-order overtones and 
combination bands. This remarkable outcome demonstrates the adaptability and reliability of the 
U(2) Lie algebraic model. It overcomes the limitations of fundamental vibrations to explain more 
complex vibrational modes. Our study proves that the U(2) Lie algebraic model effectively 
captures vibrational frequencies with a high degree of accuracy comparable to spectroscopy. This 
includes predicting primary vibrational frequencies and accurately determining first-overtone 
frequencies and their corresponding combination bands. The statement highlights theoretical 
models' efficacy in deciphering molecular spectroscopy's vibrational frequencies, equipping 
researchers with essential tools for understanding the characteristics of atoms and bonds within 
molecules. 
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