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ABSTRACT. Perovskite-like compounds have attracted great attention because of their good properties, such as 
electrical, optical, and magnetic properties, etc. Herein, a new perovskite-like anionic dicyanamidometallate, namely 
(Bu3MeP)[Ni(dca)3] (1) (Bu3MeP = tributylmethylphosphine cation, dca = dicyanamide), was synthesized and 
structurally characterized by elemental analysis, IR spectrum, thermogravimetric analysis, and single-crystal X-ray 
diffraction. The compound crystallizes in the tetragonal crystal system with the chiral space group P43212, and 
exhibits a three-dimensional anionic dicyanamidometallate framework from Ni2+ units bridged by dicyanamides, in 
which tributylmethylphosphine cations are accommodated in the voids. The butyl groups present two conformations 
in the tributylmethylphosphine cation, resulting in chirality character occurred in compound 1. Variable-temperature 
magnetic susceptibility analysis indicates that weak ferromagnetic interaction exists between the nickel(II) ions 
coupling by μ1,5-bridings. 
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INTRODUCTION 
 
Recently, perovskite-like compounds have recently attracted a lot of attention due to their amazing 
properties [1]. Particularly, molecular perovskites including coordination polymers or metal-
organic frameworks were extensively studied during the last decade owing to their architectures 
regulated by vast diversity of guest molecules and different ligands [2]. Among the various of 
bridging ligands, dicyanamide (dca) plays an important role in building molecular perovskite-like 
compounds [3]. Thanks for the polar dicyanamide ligand, many interesting physical properties, 
such as the dielectric anomaly [4] and giant barocaloric effect [5], have been observed in the 
perovskites, originating from its conformational order/disorder transitions. 

Besides, dca anion has been employed in constructing molecular magnetic materials due to its 
fantastic ability to convey magnetic interactions [6]. Comparing to the cyanide anion, the weak 
ligand field enable dca to stabilize the high spin states of metal ions [7], leading to magnetic order 
observed in some dicyanamidometallates [8]. In addition, dicyanamide anion can coordinate to a 
metal ion in a monodentate, bidentate, even as a tridentate manner, because of its two nitrile and 
one amido nitrogen atoms, and thus resulting in various structures [9]. Accordingly, a 
considerable number of perovskite-like dicyanamidometallates were investigated for their 
magnetic behaviours [10]. For instance, (Ph4As)[Ni(dca)3] shows long-range magnetic order with 
an ordering temperature of 20.1 K. Whilst, the compound of (Ph3MeP)[Ni(dca)3] does not present 
any order [11]. This phenomenon indicates that cation templating can be used to tune the magnetic 
behavior in the anionic dicyanamidometallates [12]. Tributylmethylphosphine cation, as one of 
templating, was rarely utilized to building perovskite-like dicyanamidometallates [13]. Hence, 
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tributylmethylphosphine iodide, Ni(NO3)2 and sodium dicyanamide were chosen as the starting 
materials to assemble a perovskite-like compound, (Bu3MeP)[Ni(dca)3] (1). The compound shows 
chiral nickel-dicyanamide perovskite-like framework and weak ferromagnetic interactions. 

 

EXPERIMENTAL 
 
Materials and methods 
 
All chemicals were of reagent grade and used as received from commercial sources (Shanghai 
Aladdin Biochemical Technology Co., Ltd) without further purification. Elemental analysis for 
carbon, hydrogen, and nitrogen was carried out with a Vario EL-III elemental analyzer. Infrared 
spectrum was recorded with a Nicolet A370 FT-IR spectrometer using KBr pellets in the 400–
4000 cm–1 region. TGA experiment was performed with a Mettler Toledo TGA/SDTA85e thermo 
gravimetric analyzer from 20 to 800 °C at a heating rate of 10 °C·min–1 in air. Variable-
temperature magnetic susceptibility measurement was taken at an applied field of 1 kOe on a 
Quantum Design MPMS-XL7 SQUID magnetometer working in 300–1.8 K temperature range. 
Diamagnetic correction was applied by using Pascal’s constant. 
 
Synthesis of (TriBuMeP)[Ni(dca)3] (1) 
 
A 1 mL of tributylmethylphosphine iodide (34.4 mg, 0.1 mmol) methanol solution was carefully 
layered onto 1 mL of Ni(NO3)2·6H2O (29.0 mg, 0.1 mmol) water solution in a test tube (10 mL). 
Then, it was covered with 1 mL of sodium dicyanamide (26.8 mg, 0.3 mmol) methanol solution. 
After being static for a month, green single crystals were obtained (50%, respect to Ni), which is 
suitable for X-ray diffraction of 1. Elemental analyses: calcd. for C19H30N9PNi (%): C, 48.13; H, 
6.38; N, 26.58. Found: C, 48.22; H, 6.56; N, 26.56. IR data (KBr, cm–1): 3608(w), 2964(m), 
2873(m), 2298(s), 2254(s), 2189(s), 1459(m), 1363(s), 927(m), 649(w), 505(m). 
 
X-ray crystallography 
 
The well-shaped single crystal of 1 was selected for X-ray diffraction study. Data collections were 
performed with graphite-monochromatized Mo Kα radiation ((λ = 0.71073 Å) on a Bruker Smart 
Apex-II CCD diffractometer, using the φ-ω scan technique. Data reduction was made with the 
Bruker SAINT package [14]. Absorption correction was performed using the SADABS program 
[15]. The structure was solved by direct methods and refined by full-matrix least-squares on F2 
with SHELXTL-2018 program package [16]. All non-hydrogen atoms were refined 
anisotropically, and hydrogen atoms were located and included at their calculated position. The 
absolute configuration was refined as an inversion twin. Crystallographic data and details on 
refinements are summarized in Table 1. Selected bond distances and angles are listed in Table 2.  
 

RESULTS AND DISCUSSION 
 
Crystal structure of 1 
 
Single-crystal X-ray structural analysis reveals that compound 1 crystallizes in the tetragonal 
crystal system with the chiral space group P43212. Compound 1 exhibits a similar perovskite-like 
architecture of the Mn-dca framework [13]. The atomic numbering asymmetric unit is illustrated 
in Figure 1, which contains one Ni2+ ion, one tributylmethylphosphine cation, and four 
independent μ1,5-dca bridging ligands (two of them are half part). The central metal ion is 
coordinated by the six nitrile nitrogen atoms from dca ligands and represents an octahedral 
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coordination. The Ni–N bond lengths fall in the range of 2.055(6) to 2.073(6) Å (Table 2), 
comparing to those in (MV)[Ni3(dca)8] (MV2+ = methylviologen dication) [17]. 
 
Table 1. Crystallographic data and structure refinement for 1. 
 

Compound 1 
Temperature (K) 296(2) 
Formula C19H30N9PNi 
Formula weight 474.20 
Crystal system Tetragonal 
Space group P43212 
a (Å) 11.66 2(5) 
b (Å) 11.66 2(5) 
c (Å) 33.90(3) 
α (deg) 90 
β (deg) 90 
γ (deg) 90 
V (Å3) 4610(6) 
Z 8 
Dc (g cm−3) 1.366 
μ (mm−1) 0.936 
F (000) 2000 
Flack 0.50(6) 
Rint 0.0437 
GOF 1.090 
R1

[a], wR2
[b]

 [I>2σ(I)] (I)] 0.0487, 0.1206 
R1, wR2 (all data) 0.0634, 0.1323 

[a] R1 = ∑׀׀Fo׀−׀Fc׀∑/׀׀Fo׀. 

[b] wR2 = [∑w(׀Fo
Fc׀−׀2

Fo׀)w∑/2(׀2
 1/2[2(׀2

 
Table 2. Selected bond lengths (Å) and angles [°] for compound 1. 

Compound 1 
Ni1—N1 2.059(6) Ni1—N3 2.058(5) Ni1—N5i 2.055(6) 
Ni1—N6 2.073(6) Ni1—N8 2.061(5) Ni1—N10ii 2.073(5) 
N1—Ni1—N6 178.1(2) N1—Ni1—N8 90.7(2) N1—Ni1—

ii
90.1(2) 

N3—Ni1—N1 90.0(3) N3—Ni1—N6 91.7(3) N3—Ni1—
ii

179.7(3) 
N3—Ni1—N8 90.9(2) N5i—Ni1—N1 89.4(2) N5i—Ni1—N3 89.9(2) 
N5i—Ni1—N6 91.5(2) N5i—Ni1—N8 179.2(2) N5i—Ni1— 89.8(2) 
N6—Ni1—
N10ii 

88.3(3) N8—Ni1—N6 88.3(2) N8—Ni1—
N10ii 

89.4(2) 
Symmetry codes: i x-1/2, -y+3/2, -z+1/4; ii x-1/2, -y+1/2, -z+1/4. 

 
For its three nitrogen donor atoms, dicyanamide can present several possible coordination 

modes. Typically, its coordination mode is the bidentate form, which has been documented in 
abundant transition metals compounds [18]. In compound 1, dicyanamide shows µ1,5 coordination 
mode. With the µ1,5-mode dicyanamide bridges, each nickel ion is connected to the six nearest 
neighbor metal centers to form a porous cubic anionic framework [Ni(dca)3]– (Figure 2). While 
Bu3MeP+ cations are embedded in the large crystal cavities and balance the negative charge of the 
framework (Figure 3). The Ni···Ni separations are 8.23 and 8.26 Å within the ab-plane, whereas 
8.50 and 8.51 Å parallel to the c-axis. It is interesting that two conformations of butyl are observed 
in the tributylmethylphosphine cation (Figure 3), which is completely different from literature 
compounds [13, 19]. One butyl (C12-C15) shows skewed conformation with the torsion angle of 
78°. Furthermore, the other two butyl groups emerge staggered conformation with torsion angles 
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of 171 and 169°, respectively. Thanks for the different conformations of butyl coexisting in one 
Bu3MeP+ cation, chirality arises in compound 1 [20]. 

 

 
 
Figure 1. Molecular structure and coordination environment of compound 1. Hydrogen atoms 

have been omitted for clarity; Symmetry codes: i x-1/2, -y+3/2, -z+1/4; ii x-1/2, -y+1/2, 
-z+1/4; iii -y+1, -x+1, -z+1/2; iv y, x, -z. 
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Figure 2. The anionic framework [Ni(dca)3]– along different directions. For clearly, Bu3MeP+ 

cations are deleted. 

 
Figure 3. 3D framework of 1 showing the Bu3MeP+ cations (Space-Filling) embedded in the 

cavities. 
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IR spectrum 
 

The IR spectrum of compound 1 (Figure 4) presents the characterization absorptions of dca with 
several strong absorption νCN bands at 2298(s), 2254(s), 2189(s) cm-1, which can be assigned to 
νas+s, νas, and νs vibrations, respectively [21]. The C-N symmetric stretch band (1363 cm-1), the    
C-N asymmetric stretch band (927 cm-1) can also be identified [22]. In compound 1, the νas, and 
νs vibration bands are shifted to lower wave numbers. This phenomenon means that the charge 
density of dca ligands is high [23], indicating that μ1,5-bidendate coordination mode occurred in 
1. 
 

 
 

Figure 4. FT-IR spectrum of 1. 
 

Thermogravimetric analysis 
 

Thermal stability of compound 1 was investigated in a heating rate of 10 K min−1 under an air 
atmosphere by TG technique and the thermogravimetric curve is shown in Figure 5. For 
compound 1, the TGA plot indicates that the collapse of its skeleton comes up about 300 °C, 
which is confirmed by the exothermic peak in DSC curve. Obviously, it can be found that only 
one endothermic peak occurs about 180 °C without any weight loss, which indicates phase 
transition processes [24]. 
 

 
Figure 5. Thermogravimetric and DSC curves of compound 1. 
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Magnetic properties 
 
Magnetic susceptibility measurements of crystalline sample of 1 were carried out using a 
Quantum Design MPMS-XL7 SQUID magnetometer in an applied magnetic field of 1 KOe in 
the temperature range of 1.8–300 K. The results are shown in the form of χMT and χM

-1
 versus T 

(Figure 6). The χMT value of 1 is 1.35 emu K mol−1 at room temperature, which is of the order 
expected spin-only value for one non-interacting nickel(II) ions [23, 25]. When the temperature is 
decreased, the χMT product remains almost constant in the range of 300-25 K, and then increases 
to a maximum value of 1.48 emu K mol−1 at 16 K. Upon further cooling, the χMT plot decrease 
abruptly to a minimum value of 0.86 emu K mol–1 at 1.8 K. This magnetic behavior is similar to 
that of compound TriBuMe[Ni(dca)3] (TriBuMe = tributylmethylammonium) [10], indicating the 
presence of weak ferromagnetic interactions exist in 1  [26, 27]. In the whole temperature range, 
the magnetic susceptibility obeys the Curie–Weiss law with a Curie constant C = 1.349(1) emu K 
mol−1 and a positive Weiss constant θ = 0.5(1) K. The positive θ value furtherly suggests that 
there is weak ferromagnetic coupling in 1 [28, 29]. No peak can be observed in the χM-T curve 
(Figure 6), indicated no magnetic ordering occurred in 1 [30]. The field dependence of the 
magnetization of 1 also shows linear behavior at low fields, as expected for paramagnets [31]. 
Moreover, M(H/T) shows clear tendency to saturation at higher fields and at 60 kOe achieves a 
value of about 2.36 Nβ, which is very close to the theoretical saturated moment of one Ni(II) ion 

[10]. 
 

 
 
Figure 6. Plots of χMT and χM

-1 vs T for 1. Solid line represents the best fit of the data with Curie–
Weiss law. 

CONCLUSION 
 
We have described the synthesis, single crystal structure and variable-temperature magnetic 
behavior of a new perovskite-like coordination polymer (Bu3MeP)[Ni(dca)3] (1). The compound 
appears a three-dimensional anionic framework from Ni2+ units bridged by dicyanamides, with 
tributylmethylphosphine cations embedded in the large crystal cavities. The chirality character of 
compound 1 maybe originate from two conformations of butyl coexisting in the 
tributylmethylphosphine cation. TG-DSC shows one endothermic peak observed without any 
weight loss, indicating phase transition processes in compound 1. Variable-temperature magnetic 
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susceptibility analysis manifests that weak ferromagnetic interaction exists between the nickel(II) 
ions coupling by μ1,5-bridings. 
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