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ABSTRACT. The synthesized Zeolite A/ZnCl2 nanoparticles via the hydrothermal route were characterized using 
FTIR, XRD, and SEM/EDAX techniques. The characterized catalyst was used for the eco-friendly synthesis of 4,5-
dihydro-pyrazole-1-carbothioamide derivatives. Under solvent-free conditions, a multi-component reaction 
between hydrazine, isothiocyanate, and chalcone was done with a prepared nano-catalyst as an inexpensive, 
recyclable, easy-to-get, and nontoxic catalyst. The molecular docking study explained that dihydro-1-
carbothioamide pyrazoles can be considered COVID-19 main protease (Mpro) inhibitors. In order to investigate the 
3D conformation of the compounds that were synthesized, the density functional theory (DFT) was applied with a 
B3LYP hybrid functional and a 6-311++ G(d,p) basis set. This allowed us to investigate the compounds' electronic 
and charge transfer properties. In this series of compounds, the derivative 30d showed the lowest HOMO–LUMO 
energy gap.  
 
KEY WORDS: Zeolite A/ZnCl2 nanoparticles, Pyrazole-1-carbothioamides, Docking, XRD, 
SEM/EDX, HRTEM 

INTRODUCTION 
 

Azoles are presented as important scaffolds with a five-membered ring in many natural and 
biological heterocyclic compounds. Natural organic compounds based on pyrazole are difficultly 
synthesized by living organisms and the formation of N-N bond is not an easy process in 
biosynthesis [1]. The pyrazole ring has been reported in 1966, then being essentially used as a 
part of pharmacophore in hypnotic drugs. The first cytotoxic pyrazole, phenylahistin, were 
isolated from natural sources in 1969 separated from the marine sponge Leucetta microraphis 
found on Australia's Great Barrier Reef, exhibited important biological activities, such as anti-
cancer or neurotoxic effects [2, 3]. Pyrazole ring contains the two main types of nitrogen, pyrrole 
like N which gives the acidic character, and aromaticity in addition to pyridine like N which gives 
the basic character. From this, the pyrazole ring has considered an electron-rich ring and has 
versatile chemical properties, and is employed in a lot of organic syntheses. Pyrazole ring 
exhibited two types of reactions; electrophilic and nucleophilic [4-7]. The nucleophilic nature was 
displayed from three positions (N1, N2, C4), in addition two electrophilic nature was displayed 
from two positions (C3, C5). Knowing that, depending on the reaction conditions, electrophilic 
addition takes place most often at C4 and/or to one of the two nitrogen atoms. Substitution at an 
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annular carbon can only be accomplished via coupling reactions such as Suzuki couplings [8]. For 
boronic acid or ester cross-coupling to happen at the intended position, halogens must be present 
in C4 [9]. Pyrazole derivatives showed abroad spectrum of biological effects, for instance, anti-
tubercular, antifungal, antimalarial, anticancer, and anti-AIDS [10-16]. Pyrazole and its 
derivatives are also considered as possible antimicrobial, antiepileptic, anti-inflammatory, 
antipsychotic, antidepressant, inhibitors of protein kinases, anti-aggregating, antiarthritic, cerebro 
protectors, reverse transcriptase inhibitor, a COX-2 inhibitor, nematocidal and soluble guanylate 
cyclase activity, etc [17]. Pyrazole and its derivatives have been found to be bioactive parts of 
commercially available therapies like deramaxx (NSAID), pyrazomycin and difenamizole 
(anticancer drugs), and floxan and difenamizole (anti-inflammatory drugs) (Figure 1). Zeolites 
are famous aluminosilicate material which is commercial used as adsorbent, catalyst in organic 
synthesis [18] and petrochemical processes [19]. Zeolites are potentially attractive heterogeneous 
catalyst due to the easy recovery of product/substrate, catalyst recycling, and possible 
regioselectivity, easy to separate, environmentally friendly [20-23]. Zn-loaded zeolites showing 
increasing surface acidity [24] and are suitable catalyst for heterocyclization [25]. Zeolite nano-
particles showed improved catalytic performance because of the increase in mass diffusion; and 
could enhance the catalytic activity as a result of the increased accessibility of the active sites [26-
29]. In this research, we introduce a zeolite A/ZnCl2 nanoparticles as new catalyst used to 
synthesis pyrazole-1-carbothioamides, candidate for covid-19 main protease (Mpro) inhibitor. 
 

 
Figure 1. Structures of some bioactive pyrazoles. 

 

RESULTS AND DISCUSSION 
 
XRD experimental data  
 
The XRD pattern of the studied zeolite sample is shown in (Figure 2). Obtained spectra show the 
crystalline nature of the sample with comparable diffraction to published data of zeolite A (JCPDS 
38-0237) revealing intense bands at Braggs angles 2θ = 6.1, 10.0, 12.5, 15.4, 18.5, 21.5, 23.3, 
27.6, 29.8, and 34.1° assigned to their corresponding Miller indices (h k l) reflection planes (200), 
(220), (222), (420), (440), (622), (642), (694), and (664) planes of the cubic crystalline system 
previously indexed by Yao et al. [30]. The zeolite A showed the same previously assigned pattern 
indicating that the structure of the studied material is well retained even after the mailing process.  
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Figure 2. (a) XRD patterns of the studied zeolite A. (b) Magnified SEM image of zeolite A in 

combination with their mapping. (c) Their energy dispersive X-ray (EDS). 
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SEM/EDAX/MAP analysis of studied catalyst  
 
Figures (2b and 2c) reveal (b) magnified SEM images of the studied mailed zeolite A sample in 
combination with their mapping, and (c) their energy dispersive X-ray (EDS).  

Captured image mapping shows a homogenous distribution of all constituting elements (Na, 
Mg, Al, Si, Ca, and O atoms) present inside the chemical structure listed in (Table 1), as well as 
their atomic and weight percentages. The data also approved that silica is the main constituent 
along the studied network structure combined with alumina, lime, magnesium, and sodium via 
oxygen linkages. It was noticed also that the weight fractions of both analyzed silica and alumina 
are nearly equal. 

 
Table 1. EDS analysis of the studied sample. 
 

Oxide SiO2 Al2O3 CaO Na2O MgO Others 
Weight% 39.2 38.1 15.5 4.52 2.11 0.57 
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Figure 3. (3a and 3b) HRTEM/SAED images. (3c) FT-IR normalized absorption spectrum of 
zeolite A. 
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High-resolution transmission electron microscopy/selected area electron diffraction 
(HRTEM/SAED) 
 
(Figures 3a and 3b) show high-resolution transmission electron microscope images combined 
with their selected area electron diffraction (HRTEM/SAED). Studied samples show nearly 
homogenous morphology with a size ranging between 20-30 nm. In addition, the selected area 
diffraction pattern (SAED) of prepared nanocrystals reveals a collective pattern of concentric 
rings with bright spots around a circular path, pointing to a crystalline structure coherent with 
XRD data. 
 
Fourier transform infrared (FTIR)  
 
(Figure 3c) reveals FTIR optical absorption spectral data of the studied zeolite A sample. Obtained 
data reveals the following spectral features in correlation with their vibrational groups within the 
spectral range extending from 4000-400 cm-1. The bands centered at about 3460, and 1665 cm-1 
attributed to the presence of OH groups resulting from moisture attack when mixing the sample 
with hygroscopic potassium bromide powder during measurements. Broad, strong band at 1010 
cm-1 is typically attributed to asymmetric stretching vibrations of silicon and aluminium atoms 
connected to oxygen atoms inside the network structure [31]. Deconvolution analysis within the 
spectral range extending between 2000 and 400 cm-1 shown in (Figure 5) reveals overlapping 
peaks attributed to such vibrations. The bands at 554 and 455 cm-1 were assigned to external 
vibrations of double four-rings, and Si-O or Al-O bending vibrations, respectively.   

 
Scheme 1. Synthesis of pyrazole-1-carbothioamides 3a-d. 
 
Catalyzed synthesis of pyrazole-1-carbothioamides 3a-d 
 
Utilizing catalysis in organic reactions is an endlessly fascinating and ever-changing 
phenomenon. My research team is continuously looking for new catalysts to characterise and use 
in the advancement of organic synthesis [32-35]. In this paper, we present a new type of catalyst 
that can be used to synthesis pyrazole-1-carbothioamides, an important class of organic 
compounds. We must begin with the optimization step, as is common in this type of reaction for 
the best reaction condition choice. The reactants (hydrazine hydrate, phenyl isothiocyanate, and 
unsubstituted chalcone) were mixed as a reference step in the presence of zeolite alone and zinc 
chloride alone, as well as in the absence of a catalyst. The product was not detected in any of the 
three cases. That made it obvious that the catalyst, which was present in the form of a zeolite-
ZnCl2 mixture, was essential. We started the reaction procedure by mixing the catalyst with 
hydrazine hydrate, phenyl isothiocyanate for 30 min. Then, the addition of chalcone to the 
separated product yielded the open structure 2-(3-oxo-1,3-diphenylpropyl)-N-phenylhydrazine-1-
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carbothioamide (m.p. = 140 °C).When the reaction was repeated with polar solvents like H2O or 
ethanol, mixed products-cyclic pyrazole and open structure-was formed. Under solvent-free 
conditions, the best reaction conditions was initiated by adding 1 mole of chalcone to 1.2 moles 
of hydrazine hydrate (98%) and 1 mole of phenyl isothiocyanate in the presence of 10 mg of zinc 
chloride@Zeolite catalyst (Scheme 1). Table 2 shows the application of the reaction on different 
chalcones and phenyl isothiocyanates. 
 
Table 2. Reaction with different substituted chalcones and phenyl isothiocyanates. 
   

Compound R1 R2 R3 Molecular 
formula 

Time 
(h) 

Catalyst Melting 
point 

Yield 

3a H H H C22H19N3S 9 Zeolite/ZnCl2 190 ᵒC 72% 
3b H H OCH3 C23H21N3OS 16 Zeolite/ZnCl2 161 ᵒC 75% 
3c CH3 H H C23H21N3S 11 Zeolite/ZnCl2 165 ᵒC 71% 
3d CH3 NO2 H C23H20N4O2S 22 Zeolite/ZnCl2 182 ᵒC 78% 

 
Computational studies  
 
The geometries of the pyrazole-1-carbothioamides 3a-d were optimised using density functional 
theory (DFT) at the B3LYP/6-311 ++ G (d, p) level [36-38] and implemented in the programme 
Gaussian 09 W [39]. Frequency calculations show that the optimised geometries are stable, with 
positive values for all obtained frequencies. Figure 4 depicts the optimised structures, while Figure 
5 depicts the patterns of distribution of frontier molecular orbitals; the highest occupied molecular 
orbitals (HOMOs); and the lowest unoccupied molecular orbitals (LUMOs). In 3a-d most of the 
HOMO is localized mainly on thioamide moiety and the pyrazole ring nitrogen atoms with a slight 
contribution of the phenyl ring-connected to the thioamide. The 3a-c LUMO has consisted of the 
π*-orbitals of the 1-thioamide-3-phenyl pyrazole substituents and nitrogens of pyrazole. In 3d, 
although the HOMO is similar to other derivatives, its LUMO showed a completely different 
composition, where it is localized only on the 5-phenyl pyrazole substituent. The HOMO and 
LUMO energies (EHOMO, ELUMO), besides the HOMO-LUMO energy gap (Egap) are shown in 
(Table 3). The trend of EHOMO is 3d > 3a≈3c > 3b. The tendency towards decreasing ELUMO is 3d 
> 3a > 3b = 3c and for Egap 3c = 3a > 3b > 3d. The HOMO energy values for 3a-d are quite similar, 
between 5.33-5.67 eV. Also, ELUMO values for compounds 3a-c are similar between 1.73-1.82 eV. 
While ELUMO of compound 3d has a considerably lower value of -3.22 eV, which consequently 
decreased Egap to 2.45 eV. This may be attributed to 5-phenyl pyrazole's electron-withdrawing 
NO2 group. 
 
Table 3. The HOMO Energy (EHOMO), LUMO Energy (ELUMO), HOMO-LUMO Energy Gap (Egap) in eV, 

electronegativity (χ), global hardness (η), softness (δ) and electrophilicity (ω) values at B3LYP/6-
31G* Level of Theory. 

 
Molecules  EHOMO ELUMO Egap χ η δ ω 

3a -5.44 -1.82 3.62 3.63 1.81 0.55 3.65 
3b -5.33 -1.74 3.59 3.54 1.79 0.56 3.49 
3c -5.40 -1.73 3.67 3.56 1.83 0.55 3.47 
3d -5.67 -3.22 2.45 4.44 1.22 0.82 8.06 
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Figure 4. The theoretical optimized structures of the compounds 3a-d with B3LYP/6- 311 ++ G 

(d, p) method. 
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Figure 5. HOMO and LUMO distribution of 3a-d. 
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Electronegativity (χ), which indicates the acidic or basic character, global hardness (η) which 
measures the resistance in charge transfer, and global softness (δ) which describes the molecule's 
ability to receive electrons. Additionally, energy reduction due to HOMO-LUMO electron flow 
can be measured by electrophilicity (ω). Table 1 shows that the 3d compound had the lowest 
global hardness, which was 1.22 eV. On the other hand, the softness is shown in the opposite 
order, with 3d being the softest at 0.82 eV. 
 
Molecular docking study  
 
During the past three years, the Corona pandemic has terrified the world. It was necessary to 
search for an urgent drug to reduce the effects of this epidemic on humans. This is why my 
research group, [41-45], has made great efforts to search for a cure for this disease. Initially, a 
theoretical study should be conducted using drug design programs (MOE) on the suitability of the 
prepared compounds with the protease enzyme. The inhibition of protease enzyme is one of the 
most important challenges in proposed treatments for Covid-19. The prepared compounds were 
compared with hydroxychloroquine as a reference compound, and from the theoretical results 
obtained, it became clear that the prepared compounds gave promising results with the protease 
enzyme compared to the reference one. The protease active site characterized as Arg 188, Ala 
191, Asn 142, Thr 45, Thr 26, Cys 145, Gln 189, Glu 166, His 41, Thr 25, Gln 192, Thr 190, Thr 
42, Met 165, Leu 167, Leu 27, Ser 46, Leu 141, Asp 187, His 164, Gly 143, Ser 144, Pro 168, 
Met 49, Cys 44. (Figure 6) showed the 2D and 3D interaction diagrams of Mpro. 
  

 
 

Figure 6. Top: 2D of the (3b-Mpro active side). Bottom: 3D distance measurements of (3b-Mpro 
active side). 



Norhan M. Younis et al. 

Bull. Chem. Soc. Ethiop. 2023, 37(2) 

400

The measuring distance between the drug-ligand 
 
There are two electrostatic bonds between the sulfur atom and the amino acid residues Gly143 
and Asn142 with distances of 2.61 and 3.11 Å, respectively also there is another bond between 
the nitrogen atom in the pyrazole ring and Asn142 with a 2.59 Å distance. This compound 
exhibited 7 intramolecular forces, indicating a high drug-ligand interaction. 

 

EXPERIMENTAL 
 

General remarks 
 
Melting points were determined with Gallenkamp melting point apparatus and are uncorrected. 
The infrared (IR) spectra were recorded on Thermo Scientific Nicolet iS10 FTIR. 1H NMR and 
13C NMR spectra were recorded DMSO-d6 as a solvent using JEOL’s spectrometer at 500 MHz 
using tetramethylsilane (TMS) as internal standard. Chemical shifts are expressed in δ, ppm. 1H 
NMR data are reported in order: multiplicity (br, broad; s, singlet; d, doublet; t, triplet; dd, doublet 
of doublet; m, multiplet), approximate coupling constant in Hertz, number of protons and type of 
protons. The purity of the compounds was checked by 1H NMR and thin layer chromatography 
(TLC) on silica gel plates using a mixture of (dichloromethane/methanol) or (petroleum 
ether/ethyl acetate) as eluent. UV lamp was used as a visualizing agent. Elemental analyses were 
recorded on Thermo DSQ II spectrometer at Faculty of Science, Alazhar University. 
 
Catalyst preparation 
 
Zeolite A powder combined with ZnCl2 catalyst was synthesized using the hydrothermal method. 
ZnCl2 (1.36 g) aqueous solution was added to 4.0 g zeolite suspension in a 100 mL Teflon-lined 
autoclave. The sealed autoclave was then placed in a regulated furnace adjusted at 100 °C for 6 
h. The furnace is turned off and left to be cooled at a rate of about 10 °C/h. The dried powder was 
then kept in a desiccator until use. 
 
General procedure for the synthesis of N,3,5-triaryl-4,5-dihydro-1H-pyrazole-1-carbothioamides 
3a-d 
 
The reaction was started by mixing chalcone (1a-c, 10 mmol) and hydrazine hydrate 80% (1 mL, 
20 mmol), the zeolite/ZnCl2 (0.2 g, 20 mol%) was added and the mixture was allowed to stir at 
70-80 °C, The reaction was monitored by TLC until 3,5-diphenyl-4,5-dihydro-1H-pyrazoles      
2a-c were formed. Then, phenyl isothiocyanate derivative (10 mmol) was added and continued 
stirring until the reaction completion and this was demonstrated by using TLC. The product was 
extracted with ethyl acetate (20 mL). Then, the mixture was filtered off and the extract was 
vaporized. The remaining residue was recrystallized using ethanol to give a pure product. 
 
N,3,5-Triphenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide 3a. White powder; yield (72%); 
m.p. = 188-190°C. IR (/cm-1): 3336 (N-H); 2918 (C–H), 1594 (C=N), 1526 (C=C, aromatic). 1H 
NMR (, ppm): 3.13-3.21 (dd, J1 = 12.00,  J2 = 6.50  Hz, 1H, pyrazole-H), 3.92-3.99 (m, 1H, 
pyrazole-H), 6.02 (s, 1H, pyrazole-H), 7.14-7.23 (m, 4H, Ar-H), 7.32-7.27 (m, 5H, Ar-H), 7.43-
7.56 (m, 6H, Ar-H), 10.19 (s, 1H, NH). 13C NMR (, ppm): 42.07, 63.35, 124.89, 125.40 (4C), 
127.01, 127.44, 128.01 (3C), 128.61 (2C), 128.69 (2C), 130.78 (2C), 139.50, 142.72, 155.41, 
173.71. Analysis calcd. for C22H19N3S (357.13): C, 73.92; H, 5.36; N, 11.75%; found: 73.81; H, 
5.31; N, 11.70%. 
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N-(p-Anisyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide 3b. White solid, yield = 
75%, m.p. = 160-161 °C. IR (/cm-1): 3321 (N-H), 2930 (C–H), 1592 (C=N), 1522 (C=C, 
aromatic). 1H NMR (, ppm): 3.21-3.25 (dd, J1 = 17.50, J2 = 3.50 Hz, 1H, pyrazole-H), 3.80 (s, 
3H, OCH3), 3.82-3.86 (m, 1H, pyrazole-H), 6.19-6.16 (dd, J1 = 12.00, J2 = 3.00 Hz, 1H, pyrazole-
H), 6.89 (d, J = 9.00 Hz, 2H, Ar-H), 7.27 (d, J = 7.50 Hz, 2H, Ar-H), 7.27 (s, 2H, Ar-H), 7.46-
7.43 (m, 6H, Ar-H), 7.77 (d, J = 8.00 Hz, 2H, Ar-H), 9.11(s, 1H, NH). 13C NMR (, ppm): 42.57, 
55.37, 63.33, 113.79 (2C), 125.44 (2C), 126.76 (2C), 126.85 (2C), 127.49, 128.84 (3C), 130.91, 
131.50, 142.00, 154.92, 157.46, 174.86. Analysis calcd. for C23H21N3OS (387.14): C, 71.29; H, 
5.46; N, 10.84%; found: 71.20; H, 5.42; N, 10.77%. 
 
N,3-Diphenyl-5-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide 3c. Pale orange solid, yield 
= 71%, m.p. = 165-165°C. IR (/cm-1): 3297 (N-H), 2921(C–H), 1595 (C=N), 1532 (C=C, 

aromatic). 1H NMR (, ppm): 2.31 (s, 3H, CH3), 3.22-3.42 (dd, J1 = 12.50, J2 = 4.50 Hz, 1H, 
pyrazole-H), 3.83-3.89 (m, 1H, pyrazole-H), 6.14-6.17 (dd, J1 = 11.50, J2 = 3.00 Hz, 1H, pyrazole-
H), 7.13-7.19 (m, 5H, Ar-H), 7.35 (t, J = 8.00 Hz, 2H, Ar-H), 7.43-7.47 (m, 3H, Ar-H), 7.65 (d, 
J = 8.00 Hz, 2H, Ar-H), 7.78-7.76 (dd, J1 = 4.00,  J2 = 1.50 Hz, 2H, Ar-H), 9.28 (s, 1H, NH). 13C 
NMR (, ppm): 21.10, 42.62, 63.02, 124.17 (2C), 125.34 (2C), 126.85 (2C), 128.52 (2C), 128.83 
(2C), 129.49 (2C), 130.68, 130.92, 137.13, 138.99, 155.06, 173.84. Analysis calcd. for C23H21N3S 
(371.15): C, 74.36; H, 5.70; N, 11.31%; found: C, 74.21; H, 5.65; N, 11.21%. 
 
5-(4-Nitrophenyl)-N-phenyl-3-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide 3d. Yellow 
solid, yield = 78%, m.p. = 180-182 °C. IR (/cm-1): 3296 (N-H), 2919 (C–H), 1595 (C=N), 1532 
(C=C, aromatic). 1H NMR (, ppm): 2.31 (s, 3H, CH3), 3.24-3.25 (dd, J1 = 12.00, J2 = 4.00 Hz, 
1H, pyrazole-H), 3.83-3.89 (m, 1H, pyrazole-H), 6.14-6.17 (dd, J1 = 11.50, J2 = 3.00 Hz, 1H, 
pyrazole-H), 7.13-7.19 (m, 5H, Ar-H), 7.37-7.34 (t, J = 7.50 Hz, 2H, Ar-H), 7.43-7.49 (m, 3H, 
Ar-H), 7.65 (d, J = 8.00 Hz, 2H, Ar-H), 7.77 (d, J = 8.00 Hz, 2H, Ar-H), 9.28 (s, 1H, NH). 13C 
NMR (, ppm): 21.08, 42.59, 62.99, 124.14 (2C), 125.30, 125.35 (2C), 126.83 (2C), 128.49 (2C), 
128.80 (2C), 129.47 (2C), 130.65, 130.89, 137.10, 138.60, 138.97, 155.05, 173.80. Analysis 
calcd. for C23H20N4O2S (416.13): C, 66.33; H, 4.84; N, 13.45%; found: C, 66.49; H, 4.88; N, 
13.54%. 

CONCLUSION 
 
Zinc chloride@Zeolite catalyst was successfully synthesized via ordinary hydrothermal 
technique. XRD approves the crystalline nature of synthesized nanoparticles while both 
SEM/EDAX and HRTEM/SAED show the homogenous morphology with a size ranging between 
20-30 nm. The dihydro pyrazole-1-carbothioamide derivatives were successfully synthesized by 
an eco-friendly method using synthesized and characterized nano Zinc chloride@Zeolite catalyst 
under solvent-free conditions. The 3D conformation, electronic and charge transfer properties of 
the synthesized derivatives was investigated by, the density functional theory (DFT) where, the 
derivative 30d showed the lowest HOMO–LUMO energy gap. Using drug design software, the 
synthesized pyrazoles can be considered COVID-19 main protease (Mpro) inhibitors. 
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