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ABSTRACT. One-pot, mild and efficient synthesis of various spiro-nitrogen heterocycle compounds, based on 
the reaction of ninhydrin and 1,2-diamino-benzene, (indenoquinoxalin), with N-heterocycle compounds and 
dialkylacetylenedicarboxylates is described. Using this approach, various spiro-nitrogen heterocycle compounds at 
a temperature of 50-60 °C in acetonitrile solvent, can be obtained very high yields. 
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INTRODUCTION 
 

Heterocyclic chemistry is one of the most complex branches of chemistry and heterocyclic 
compounds, the largest and most diverse family of chemical compounds. The heterocyclic 
compounds have a stable structure that cannot be easily hydrolyzed or polymerized [1-3]. The 
heterocyclic compounds are a broad category of ring compounds that contain one or more non-
carbon atoms, including nitrogen, oxygen, sulfur, or phosphorus in their structure [4-6]. 

Heterocyclic compounds play a vital role in biological processes and are widely found in 
natural compounds [7-11]. The main source of these compounds is plants. Heterocyclic 
compounds are used in the pharmaceutical industry. Some vitamins, proteins, and hormones have 
a heterocyclic structure. Multi-component reactions have always been a beneficial way of 
synthesizing heterocyclic compounds [12-17]. The quinoline, isoquinoline and indenoquinoxalin 
skeleton compounds are often used for the design of many synthetic compounds with diverse 
pharmacological properties such as antimicrobial, cytotoxic, HIV protease inhibitor, anti-
inflammatory, anti-cancer, antitumor, antimalarial and anti-viral activities [18-20]. Yavari and co-
workers had reported a huge number studies, utilizing quinoline, isoquinoline, indenoquinoxalin 
and acetylendicarboxylate esters [21-27]. 

Meanwhile, indenoquinoxalin is one of the most important compounds for the synthesis of 
many heterocyclic compounds using multiple reactions [28-34]. The extent and dynamics of this 
part of organic chemistry has made these compounds a special place. Hence, researchers are using 
new and modern techniques to produce heterocyclic compounds [35-44].  

According to the introduction, in this paper, using a gentle, effective and one-pot method, we 
reported an effective synthesis of spiro-heterocyclic nitrogen compounds based on the reaction 
between ninhydrin and 1,2-diaminobenzen, (indenoquinoxalin), with heterocyclic nitrogen 
compounds and dialkylacetylenedicarboxylate. Based on this, various spiro-nitrogen heterocycle 
compounds at a temperature of 50-60 °C in acetonitrile solvent, can be obtained very good yields. 
 

RESULTS AND DISCUSSION 
 
Initially, for the sample the reaction of ninhydrin 1 with 1,2-diaminobenzene 2 with isoquinoline 
3 and dimethylacetylenedicarboxylate 4 was selected. In this case, solvent optimization and 
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reaction conditions were performed. Acetonitrile was found to be a suitable solvent and the best 
yield of 5a was obtained at a temperature of 50-60 °C in acetonitrile. In the following, the reaction 
of ninhydrin 1 and 1,2-diaminobenzene 2 with nitrogen heterocycle compounds 3 and 
dialkylacetylenedicarboxylate 4 in an acetonitrile solvent is complete at 50-60 °C for 12 hours 
and spiro-heterocyclic nitrogen-containing compounds 5a-f produce very good yields (Scheme 1-
3).  

According to the results, products have two diastereomeric forms (60:40). But it is noteworthy 
that the reaction between dimethylacetylenedicarboxylate with pyridine or isoquinoline or 
quinoline and N-heterocycle compounds generates only one diastereoisomer, while with 
diethylacetylenedicarboxylate produce two diastereo isomers. Unfortunately, we could not 
separate these diastereoisomers (Scheme 4). 

 
 

 

 
 
 
Scheme 1. Formation of spiro-nitrogen heterocycle compounds 5a–5b. 

 
 
 

 
 
 
Scheme 2. Formation of spiro-nitrogen heterocycle compounds 5c–5d. 

 
 

 

 
 
 
Scheme 3. Formation of spiro-nitrogen heterocycle compounds 5e–5f. 
 
 The structure of the spiro-heterocyclic nitrogen compounds 5a-f is deduced from the 1H NMR, 
13C NMR and IR spectra and elemental analysis. For example, the spectrum of the 1H NMR 
composition of 5a in CDCl3 showed a singlet at δ 3.23 and a singlet at δ 4.07 for the 
methoxyprotons (2OMe), a doublet at δ 5.91 and a doublet at δ 6.57 for the methine proton 
(2=CHdihydroisoquinoline), a singlet at δ 6.88 for the (CHdiastereoisomer) proton, multiplets at δ 7-8.40 for 
aryl protons(12H). The spectrum of the 13C NMR composition of 5a in CDCl3 showed 30 distinct 
resonances in agreement with the proposed structure. 
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Scheme 4. Two diastereoisomers of spiro-nitrogen heterocycle compounds 5b, 5d and 5f. 
 
 The proposed mechanism for the synthesis of various spiro-nitrogen heterocycle compounds 
can be shown below (Scheme 5). Initially, in the reaction vessel, ninhydrin 1 reacted with 1,2-
diaminobenzene 2 and produced an intermediate of the indenoquinoxalin 6. At the same time, 
nitrogen isoquinoline 3 attacked the dialkylacetylenedicarboxylate 4 and produced an 
intermediate 7. Then, the carbonyl group of intermediate 6 was attacked by carbon with a negative 
average of intermediate 7 to furnish intermediate 8. In the following, by forming a ring, the final 
product 5 is produced. 
 

 
Scheme 5. A plausible mechanism for compound 5. 
 

EXPERIMENTAL 
 
Chemicals and apparatus 
 
Solvents, ninhydrin, 1,2-diaminobenzene, isoquinoline, quinoline, pyridine and        
dialkylacetylenedicarboxylate were obtained from Merck, Fluka, and Aldrich, and were used 
without further purification. Electrothermal-9100 was used to measure the melting temperature. 
Elemental analysis was performed with Heraeus CHN-O-Rapid. 1H, 13C NMR spectra were 
recorded with a Bruker DRX-500 Avance instrument using CDCl3 as the deuterated solvent 
containing TMS as internal standard, at 300, 500.1, 125.8 MHz, respectively; δ in ppm, J in Hz. 
IR Spectra (ν/cm−1) were recorded as KBr pellets with a Shimadzu IR-460 spectrometer. 
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General procedure for the preparation of compounds 5a-f  
 
To a mixture of (1 mmol) ninhydrin and (1 mmol) of 1,2-diaminobenzene in 10 mL of acetonitrile 
solvent, (1 mmol) isoquinoline was added and the solution was stirred. Then (1 mmol) of 
dialkylacetylenedicarboxylate in 2 mL of acetonitrile was dropwise added to the solution for 15 
min at room temperature. Then the reaction mixture was allowed to warm to 50-60 °C and was 
stirred for 12 hours. The product was filtered and the solvent was removed under reduced pressure. 
The remaining residue was recrystallized and poured from ethanol. 
 
Dimethyl 11b'H-spiro[indeno[1,2-b]quinoxaline-11,2'-[1,3]oxazino[2,3-a]isoquinoline]-3',4'-
dicarboxylate (5a). Yellow powder; m.p. = 240; yield: 0.448 g (89%); IR (KBr) (νmax/cm-1) = 1700, 
1736 (2C=O); 1H NMR: δ 3.23 (3H, s, MeO), 4.07 (3H, s, MeO), 5.91 (1H, d, 3J = 7.9 Hz, =CH), 
6.57 (1H, d,    3J = 7.9 Hz, =CH), 6.88 (1H, s, CH), 7-8.40 (12H, m, =CH); 13C NMR: δ 51.45, 
53.41 (2OMe), 80.82 (CH), 105.12 (Cspiro), 122.72, 123.43, 123.97, 125.18, 126.37, 127.06, 
127.78, 128.81, 129.07, 129.45, 129.73, 129.85, 130.10, 130.41 (14=CH), 132.33, 137.80, 141.36, 
142.06,  145.50, 147.49, 154.23 (10C), 162.33, 163.90 (2C=O). Anal. calcd. for C30H21N3O5 
(503.15): C, 71.56; H, 4.20; N, 8.35; O, 15.89%. Found: C, 71.54; H, 4.23; N, 8.32; O, 15.91%. 
 
Diethyl 11b'H-spiro[indeno[1,2-b]quinoxaline-11,2'-[1,3]oxazino[2,3-a]isoquinoline]-3',4'-
dicarboxylate (5b). Yellow powder; m.p. = 240; yield: 0.462 g (87%); IR (KBr)(νmax/cm-1) = 1701, 
1736 (2C=O); NMR data for the major isomer (60%): 1H NMR: δ 0.51(3H, t, 3J = 7.1 Hz, Me), 
1.49 (3H, t, 3J = 7.1 Hz, Me), 3.60 (2H, m, OCH2), 4.53 (2H, m, OCH2), 5.89 (1H, d, 3J = 7.8 Hz, 
=CH), 6.59 (1H, d, 3J = 7.7 Hz, =CH), 6.90 (1H, s, CH),  7-8.30 (12H, m, =CH); 13C NMR: δ 
13.19 (Me), 13.96 (Me), 60.19 (OCH2), 62.79 (OCH2), 80.77 (CH), 104.79 (Cspiro), 122.33, 
123.44, 124.09, 125.12, 126.45, 126.98, 127.82, 128.94, 129.08, 129.40, 129.84, 129.91, 130.28, 
130.41 (14=CH), 131.81, 132.14, 137.12,  138.26,  141.32,  142.53, 145.75, 147.65, 149.01, 
154.23 (10C), 163.19, 163.39 (2C=O); NMR data for the minor isomer (40%): 1H NMR:  δ 0.57 
(3H, t, 3J = 7.1 Hz, Me), 1.50 (3H, t, 3J = 7.1 Hz, Me), 3.69 (2H, m, OCH2), 4.56 (2H, m, OCH2), 
5.91 (1H, d, 3J = 7.8 Hz, =CH), 6.59 (1H, d, 3J= 7.7 Hz, =CH), 6.90 (1H, s, CH), 7-8.30 (12H, m, 
=CH); 13C NMR: δ 13.11 (Me), 13.93 (Me), 60.24 (OCH2), 62.79 (OCH2), 80.23 (CH), 106.13 
(Cspiro), 122.68, 123.91, 125.07, 125.21, 126.24, 126.96, 127.36, 128.79, 128.85, 129.46, 129.79, 
129.86, 130.05, 130.12 (14=CH), 131.81, 132.14, 137.12, 138.26, 141.82, 142.38, 145.57, 147.65, 
149.01, 154.23 (10C), 162.21, 162.42 (2C=O). Anal. calcd. for C32H25N3O5 (531.18): C, 72.31; 
H, 4.74; N, 7.91; O, 15.05%.  Found: C, 72.28; H, 4.70; N, 7.93; O, 15.10%. 
   
Dimethyl 4a'H-spiro[indeno[1,2-b]quinoxaline-11,3'-[1,3]oxazino[3,2-a]quinoline]-1',2'-
dicarboxylate (5c). Yellow powder; m.p. = 240; yield: 0.427 g (85%); IR (KBr) (νmax/cm-1) = 1707, 
1713 (2C=O); 1H NMR: δ 3.27 (3H, s, OMe), 3.93 (3H, s, OMe), 5.95 (1H, dd, 3J = 9.8 Hz, =CH), 
6.52 (1H, d, 3J = 4.3 Hz, =CH), 6.83 (1H, d, 3J = 9.8 Hz, CH), 7.05-8.16 (12H, m, =CH); 13C NMR: 
δ 52.02, 53.27 (2OMe), 81.03 (CH), 114.31 (Cspiro), 118.58, 121.79, 122.42, 122.45, 123.75, 
128.65, 128.93, 129.22, 129.24, 129.27, 129.79, 129.84, 129.93 (14=CH), 130.42, 132.13, 135.89, 
138.29, 141.41, 142.89, 143.67, 146.46, 154.01, 161.24 (10C), 164.02, 164.45 (2C=O). Anal. 
calcd. for C30H21N3O5 (503.15): C, 71.56; H, 4.20; N, 8.35; O, 15.89%. Found: C, 71.53; H, 4.25; 
N, 8.33; O, 15.88%. 
 
Diethyl 4a'H-spiro[indeno[1,2-b]quinoxaline-11,3'-[1,3]oxazino[3,2-a]quinoline]-1',2'-
dicarboxylate (5d). Yellow powder; m.p. = 240; yield: 0.409 g (77%); IR (KBr)(νmax/cm-1) = 1726 
(2C=O), NMR data for the major isomer (60%): 1H NMR: δ 0.60 (3H, t, 3J = 7.1 Hz, Me), 1.31 
(3H, t, 3J = 7.1 Hz, Me), 3.72 (2H, m, OCH2), 4.41 (2H, m, OCH2), 5.95 (1H, dd, 3J = 9.6 Hz, 
=CH), 6.01 (1H, d, 3J = 4.7 Hz, =CH), 6.88 (1H, d, 3J = 9.6 Hz, CH), 7.02-8.20 (12H, m, =CH); 
13C NMR: δ 13.18 (Me), 13.96 (Me), 60.20 (OCH2), 62.78 (OCH2), 81.03 (CH), 114.31 (Cspiro), 
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118.58, 121.79, 122.42, 122.45, 123.75, 128.65, 128.93, 129.22, 129.24, 129.27, 129.79, 129.84, 
129.93 (14=CH), 130.42, 132.13, 135.89, 138.29, 141.41, 142.89, 143.67, 146.46, 154.01, 161.24 
(10C), 164.02, 164.45 (2C=O); NMR data for the minor isomer (40%): 1H NMR: δ 0.59 (3H, t, 
3J = 7.1 Hz, Me), 1.31(3H, t, 3J = 7.1 Hz, Me), 3.60 (2H, m, OCH2), 4.32 (2H, m, OCH2), 5.95 
(1H, dd, 3J = 9.6 Hz, =CH), 6.01 (1H, d, 3J = 4.7 Hz, =CH), 6.88 (1H, d, 3J = 9.6 Hz, CH), 7.02-
8.20 (12H, m, =CH); 13C NMR: δ 13.18 (Me), 13.96 (Me), 60.20 (OCH2), 62.78 (OCH2), 79.93 
(CH), 114.31(Cspiro), 118.58, 121.79, 122.42, 122.45, 123.75, 128.65, 128.93, 129.22, 129.24, 
129.27, 129.79, 129.84, 129.93 (14=CH), 130.42, 132.13, 135.89, 138.29, 141.41, 142.89, 143.67, 
146.46, 154.01, 161.24 (10C), 164.02, 164.45 (2C=O). Anal. calcd. for C32H25N3O5 (531.18): C, 
72.31; H, 4.74; N, 7.91; O, 15.05%. Found: C, 72.35; H, 4.73; N, 7.89; O, 15.07%. 
 
Dimethyl 9a'H-spiro[indeno[1,2-b]quinoxaline-11,2'-pyrido[2,1-b][1,3]oxazine]-3',4'-
dicarboxylate (5e). Yellow powder; m.p. = 192 °C; yield: 0.390 g (86%); IR (KBr) (νmax/cm-1) = 
1737 (2C=O), 1259; 1H NMR: δ 1.15 (6H, s, 2MeO), 5.32 (1H, dd, 3J= 6.7 Hz, =CH), 5.49(1H, 
dd, 3J = 9.9 Hz, =CH), 6.20 (1H, dd, 3J = 9.9 Hz, =CH), 6.45 (1H, d, 3J = 7.5 Hz, =CH), 6.96 (1H, 
dd, 3J = 3.2 Hz, CH), 7.42-8.17 (8H, m, =CH); 13C NMR: δ 53.42, 57.99 (2OMe), 79.37 (CH), 
101.69 (Cspiro), 107.28, 116.48, 122.42, 123.66, 124.84, 125.11, 128.93, 129.04, 129.73, 129.91, 
130.34 (12=CH), 132.09, 138.28, 141.21, 142.58, 145.50, 147.28, 153.91, 161.70(8C), 163.54, 
163.77 (2C=O). Anal. calcd. for C26H19N3O5 (453.45): C, 68.87; H, 4.22; N, 9.27; O, 17.64%. 
Found: C, 68.79; H, 4.23; N, 9.30; O, 17.66%. 
 
Diethyl 9a'H-spiro[indeno[1,2-b]quinoxaline-11,2'-pyrido[2,1-b][1,3]oxazine]-3',4'-
dicarboxylate (5f). Yellow powder; m.p. = 198 °C; yield: 0.380 g (79%); IR (KBr) (νmax/cm-1) = 
1695, 1734 (2C=O); NMR data for the major isomer (60%): 1H NMR: δ 0.50 (3H, t, 3J = 7.1 Hz, 
Me), 1.44(3H, t, 3J = 7.1 Hz, Me), 3.59 (2H, m, OCH2), 4.48 (2H, m, OCH2), 5.35 (1H, dd, 3J = 
10 Hz, =CH), 5.54 (1H, dd, 3J = 9.9 Hz, =CH), 6.24 (1H, dd, 3J = 9.9 Hz, =CH), 6.51 (1H, d, 3J = 
7.6 Hz, =CH), 7.03 (1H, dd, 3J = 3.2 Hz, CH), 7.50-8.16 (8H, m, =CH); 13C NMR: δ 13.15 (Me), 
13.96 (Me), 60.23 (OCH2), 62.78 (OCH2), 79.44 (CH), 101.38 (Cspiro), 107.19, 116.47, 122.27, 
123.81, 124.84, 125.11, 128.84, 129.16, 129.78, 130.23 (12=CH), 132.04, 138.53, 141.24, 142.69, 
145.76, 147.56, 154.12, 161.91 (8C), 163.08, 163.35 (2C=O); NMR data for the minor isomer 
(40%):  1H NMR: δ 0.50 (3H, t, 3J = 7.1 Hz, Me), 1.44 (3H, t, 3J = 7.1 Hz, Me), 3.60 (2H, m, 
OCH2), 4.49 (2H, m, OCH2), 5.35 (1H, dd, 3J = 10 Hz, =CH), 5.54 (1H, dd, 3J = 9.9 Hz, =CH), 
6.24 (1H, dd, 3J = 9.9 Hz, =CH), 6.51 (1H, d, 3J = 7.6 Hz, =CH), 7.03 (1H, dd, 3J = 3.2 Hz, CH), 
7.50-8.16 (8H, m, =CH); 13C NMR: δ 13.15 (Me), 13.96 (Me), 60.23 (OCH2), 62.78 (OCH2), 
79.99 (CH), 101.38 (Cspiro), 107.19, 116.47, 122.27, 123.81, 124.84, 125.11, 128.84, 129.16, 
129.78, 130.23 (12=CH), 132.04, 138.53, 141.24, 142.69, 145.76, 147.56, 154.12, 161.91 (8C), 
163.08, 163.35 (2C=O). Anal. calcd. for C28H23N3O5 (481.51): C, 69.84; H, 4.81; N, 8.73; O, 
16.61%. Found: C, 69.80; H, 4.83; N, 8.75; O, 16.60%. 

 

CONCLUSIONS 
 
In this work, one-pot, mild and efficient synthesis of various spiro-nitrogen heterocycle 
compounds based on the reaction of ninhydrin and 1,2-diaminobenzene with isoquinoline or 
quinoline or pyridine and dialkylacetylenedicarboxylate in CH3CN at 50-60 °C is described. 
Using this approach, all spiro-nitrogen heterocycle compounds are obtained in high yields. The 
method offers several advantages including high diversity via various functional groups, 
operational simplicity and high yields. 
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